Singular Value Decomposition

Reza Zadeh

€ databricks

Spcn"lgZ

@Reza_Zadeh | http://reza-zadeh.com



Optimization

At least two large classes of optimization
problems humans can solve:

» CGonvex

» Spectral



Distributed Singular Value Decomposition



Distributing Matrices

How to distribute a matrix across machines?
» By Entries (CoordinateMatrix)

» By Rows (RowMatrix)

» By Blocks (BlockMatrix) As of version 1.3

All of Linear Algebra to be rebuilt using these
partitioning schemes



Singular Value

Decomposition

Amxn=

mxk




Singular Value Decomposition

Two cases

» Tall and Skinny

» Short and Fat (not really)
» Roughly Square

SVD method on RowMatrix takes care of
which one to call.



Tall and Skinny SVD

@ Given m x n matrix A, with m > n.

@ We compute AT A.
@ ATAis n x n, considerably smaller than A.

e A’ Ais dense.
@ Holds dot products between all pairs of columns of A.

A=UxV" ATA = ve2v?



Tall and Skinny SVD

- _ Getsus V and the
ATA = VXV singular values

Getsus U by one

_ T
A=U%V matrix multiplication



Square SVD

ARPACK: Very mature Fortran/ 7 package for
computing eigenvalue decompositions

JNI interface available via netlib-java

Distributed using Spark — how?



Square SVD via ARPACK

Only interfaces with distributed matrix via
matrix-vector multiplies

K,=[b Ab A% -.. A"

The result of matrix-vector multiply is small.

The multiplication can be distributed.



Square SVD

o Number of Time per iteration Total time

Matrix size

nonzeros (s) (s)
23,000,000 x

51,000,000 0.2 10
38,000
63,000,000 x

440,000,000 1 50
49,000
94,000,000 x

1,600,000,000 0.5 50
4.000

With 68 executors and 8GB memory in each,
looking for the top 5 singular vectors



Optimization Example: Gradient Descent



ML Objectives

T
w— w— - E glw;xi, y;)

i=1



Scaling

1) Data size wew—a- ) gwizi,y;)

i=1

2) Model size

3) Number of models



Data Scaling

W—w—a Zg(’w;%,yz’)
i=1

val points = spark.textFile(...).map(parsePoint).cache()
var w = Vector.zeros(d)

for (i1 <- 1 to numlterations) {
val gradient = points.map { p =>
(1 /7 (1 + exp(-p.y * w.dot(p.x)) - 1) * p.y * p.X
).reduce(_ + _)
w -= alpha * gradient

}



Separable Updates

Can be generalized for
» Unconstrained optimization
» SMOooth or non-smooth

» LBFGS, Conjugate Gradient, Accelerated
Gradient methods, ...



Model Scaling

Model is distributed (an RDD)

Linear Models only need dot products with
training data computed (Block Matrices).
How?



Model Scaling

More complicated models (e.g. large NN)
need parameter servers



L ots of Models

Easy, often embarrassingly parallel

Shipping the work to the cluster is hardest
part, but that’s usually taken care of by data-
flow language



