Partitioning for PageRank

Reza Zadeh '§>-D Motroid

S,c>cn"l’<\Z

@Reza_Zadeh | http://reza-zadeh.com

Motivation

Recall from first lecture that network
pandwidth is ~100x as expensive as memory

pandwidth

One way Spark avoids using it is through
locality-aware scheduling for RAM and disk

Another important tool is controlling the
partitioning of RDD contents across nodes

Spark PageRank

Given directed graph, compute node
importance. Two RDDs:

» Neighbors (a sparse graph/matrix)

» Current guess (a vector)

Best representation for vector and matrix”?

Example

1. Start each page atarankof1

2. On each iteration, have page p contribute
rank / |neighbors | to its neighbors

3. Seteach page’sranktoo.15+ 0.85 x contribs

// RDD of (url, neighbors) pairs
// RDD of (url, rank) pairs

val 1links
var ranks

for (i <- 1 to ITERATIONS) {
val contribs = links.join(ranks).flatmap {
case (url, (links, rank)) =>
Tinks.map(dest => (dest, rank/links.size))

}
ranks = contribs.reduceBykKey(_ + _).mapvalues(.1l5 + .85%_)

}

Execution

" InputFile
lmap
Links J ‘ Ranks,
(url, neighbors) (url, rank)
\¢ljoin
~ Contribs, 1
l reduceByKey
. Ranks, |
\¢l join
. Contribs,
l reduceByKey
Ranks,

\d

1inks and ranks are
repeatedly joined

Each join requires a full

shuffle over the network
» Hash both onto same nodes

join
Tinks \ AF
. %, G-L
; M-R
ranks . S-Z
Map tasks Reduce tasks

Solution

Pre-partition the 1inks RDD so that links for URLs
with the same hash code are on the same node

val ranks
val 1links

// RDD of (url, rank) pairs
sc.textFile(...).map(...)

.partitionBy(new HashPartitioner(8))

for (i <- 1 to ITERATIONS) {
ranks = Tinks.join(ranks).flatmap {
(url, (links, rank)) =>
Tinks.map(dest => (dest, rank/links.size))
}.reduceByKey(_ + _)
.mapvalues(0.15 + 0.85 * _)

New Execution

Input File Links
-
-
J

\

map partitionBy

Ranks, Ranks,

join flatMap reduceByKey join flatMap reduceByKey

How It works

Each RDD has an optional Partitioner object

Any shuffle operation on an RDD with a
Partitioner will respect that Partitioner

Any shuffle operation on two RDDs will take
on the Partitioner of one of them, If one Is set

Examples

pages.join(visits).reduceByKey(...)

-
-
-

join reduceByKey

pages.join(visits).map(...).reduceByKey(...)

1]

join map reduceByKey

pages.join(visits).mapvalues(...).reduceByKey(...)

- - -
-~ -
J -

join mapValues reduceByKey

Main Conclusion

Controlled partitioning can avoid unnecessary
all-to-all communication, saving computation

Repeated joins generalizes to repeated Matrix
Multiplication, opening many algorithms from
Numerical Linear Algelbra

Performance

200 171

n

c ! “ Hadoop

2 150

©

o i Basic Spark

= 100

v

- Spark + Controlled
o) cpr

£ > 23 Partitioning

- -
0

(Why it helps so much: Tinks RDD is much bigger \
in bytes than ranks!

. J

RDD partitioner

Use the .partitioner method on RDD

scala> val a = sc.parallelize(List((1, 1), (2, 2)))

scala> val b sc.parallelize(List((1, 1), (2, 2)))
scala> val joined = a.join(b)

scala> a.partitioner
resO: Option[Partitioner]

None

scala> joined.partitioner

resl: Option[Partitioner] Some (HashPartitioner@286d41c0)

Custom Partitioning

Can define your own subclass of partitioner to
leverage domain-specific knowledge

Example: in PageRank, hash URLs by domain
name, because may links are internal

class DomainPartitioner extends Partitioner {
def numpartitions = 20

def getpartition(key: Any): Int =
parsebomain(key.toString) .hashCode % numPartitions

def equals(other: Any): Boolean =
other.isInstanceOf[DomainPartitioner]

