
CME 323: Distributed Algorithms and Optimization, Spring 2020

http://stanford.edu/~rezab/dao.

Instructor: Reza Zadeh, Matroid and Stanford.

Lecture 17, 5/21/2020. Scribed by Andreas Santucci, Edited by Robin Brown.

17 Singular Value Decomposition (SVD)

Today we’re going to see how to do SVD in a distributed environment where the matrix is split

up across machines row by row1. Recall that the rank-r singular value decomposition (SVD) is a

factorization of a real matrix A ∈ Rm×n, such that A = UΣV T , where U ∈ Rm×r and V ∈ Rn×r

are unitary matrices holding the left and right singular vectors of A, and Σ is a r × r diagonal

matrix with non-negative real entries, holding the top r singular values of A. Recall that U, V

being unitary means that UTU = V TV = I, i.e. its transpose is its inverse.

Large data, few features For this lecture, we will focus on row matrices that are tall and

skinny. Specifically, if A is m× n then m� n. We will assume that n2 fits in memory on a single

machine. For example, our data could be one trillion movies and each has a thousand features such

as text-transcription and director, acting staff, etc. Computing full-on SVD requires O(mn2) work.

Computing the top k singular values and vectors costs O(mk2) work. This is still a tremendous

amount of work even on a cluster.

17.1 When A is a RowMatrix

We will explicitly use the assumption that our matrix is tall and skinny. The following computation

shows that the singular values and right singular vectors can be recovered from the SVD of the

Gramian matrix ATA:

ATA = (UΣV T )TUΣV T = V ΣUTUΣV T = V Σ2V T

We can exploit this property to efficiently compute the SVD of a tall-skinny matrix. If n is small

enough to fit on a single machine, then A can be distributed as a one-dimensional block-row matrix

(in Spark this is called a RowMatrix). (We will hold off on details of computing ATA until the

following section.) We may then solve the SVD of ATA locally on a single machine to determine

Σ and V . Finally, we can solve for U by simple matrix multiplications:

A = UΣV T =⇒ U = AV Σ−1

So our general approach is as follows

1We have many different ways of representing a matrix: coordinates are sprinkled across machines, or rows can

be sprinkled across machines, and then there’s the block matrix which is itself a lot like a coordinate representation

except each coordinate represents a matrix rather than an element.

1

http://stanford.edu/~rezab/dao 


Algorithm 1 Distributed SVD

Compute ATA = V Σ2V T dimension n × n Compute top k

singular values of ATA on a single machine using local LinAlg ops Compute U = AV Σ−1

distributed multiplication

We’ll explain the implementation of each step in the MapReduce framework in detail. Note that

A is stored as a row matrix, and entries of ATA are all pairs of inner-products between columns of

A.

17.2 Computing ATA

A is an m× n matrix:

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n


Note that A has sparse rows, each of which has at most L nonzeros. In general, A is stored

across hundreds of machines and cannot be streamed through a single machine. In particular, even

two consecutive rows may not be on the same machine. An example of A in real applications would

be a Netflix matrix: A lot of users and only a few movies. Rows are all sparse, but some column

can be very dense, e.g., the column for a popular movie, such as the Godfather. Our task is to

compute ATA which is n× n, considerably smaller than A. ATA is in general dense; each entry is

simply a dot product of a pair of columns of A.

Implementing as map-reduce The key observation is that ATA is a much smaller matrix than

A when n � m. In general, computing the rank-r SVD of A will cost O(mnr) operations (not to

mention expensive communication costs), while this computation only costs O(n2r) operations for

ATA. Similarly, if A is short and fat (i.e. n � m), we can run this same algorithm on AT . Since

(ATA)jk =
∑m

i=1 aijaik, this gives insight for our mapper.

Algorithm 2 ATA mapper

The ith row of a matrix, denoted by ri

for all (non-zero) pairs aij , aik in ri do Emit
〈
(j, k) → aijaik

〉
(j,k) is the key, the

product is the value

The reducer is a simple summation.

Algorithm 3 ATA reducer

A coordinate pair as key and a listing of products of scalars:
(
〈j, k〉, (v1, . . . , vm)

)
(j, k)→

∑m
i=1 vi

2



Computing U = AV Σ−1 We compute V Σ−1 on a single machine, since it’s only of dimension

n× k. This matrix-product can then be broadcast to all machines. After this broadcast, we don’t

require machines to talk with each other anymore. Let w = V Σ−1, and compute Aw. We allow

the rows of A to stay where they are, and locally compute Aw, and the result sits on each machine

as desired in the end.

Communication costs We assume that we use combiners so that each machine locally computes

its portion of ATA in line 1 separately before communication between machines occurs in line 2.

The only communication costs are the all-to-one communication on line 2 with message size n2, and

the one-to-all communication on line 5 with message size nr. These require O(log p) messages when

a recursive doubling communication pattern is used. If each row has at most L non-zero entries,

then it is easy to see that the shuffle size is O(mL2) since there are m mappers and each performs

O(L2) emits, and the largest reduce-key is O(m). Since m is usually very large (e.g., 1012), this

algorithm would not work well. It turns out that we can bring down both complexities via clever

sampling. This leads us to Dimension Independent Matrix Square using MapReduce (DIMSUM),

which we will cover in the next section.

Network communication patterns The first mapreduce (to compute ATA) is a potential

all-to-all for the emit stage and all-to-one in the reduce. The second mapreduce (to compute

U = AV Σ−1) is one-to-all.

References

[1] MapReduce-Combiners. Retrieved from http://www.tutorialspoint.com/map_reduce/

map_reduce_combiners.htm.

[2] Broadcast Variables. Retrieved from https://jaceklaskowski.gitbooks.io/

mastering-apache-spark/content/spark-broadcast.html.

3

http://www.tutorialspoint.com/map_reduce/map_reduce_combiners.htm
http://www.tutorialspoint.com/map_reduce/map_reduce_combiners.htm
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-broadcast.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-broadcast.html

	17 Singular Value Decomposition (SVD)
	17.1 When A is a RowMatrix
	17.2 Computing ATA


