
CME 323: Distributed Algorithms and Optimization, Spring 2020

http://stanford.edu/~rezab/dao.

Instructor: Reza Zadeh, Matroid and Stanford.

Lecture 7, 4/21/2020. Scribed by Robin Brown.

7 Iterative Solutions for Solving Systems of Linear Equations

First we will introduce a number of methods for solving linear equations. These methods are

extremely popular, especially when the problem is large such as those that arise from determining

numerical solutions to linear partial differential equations.

The objective for solving a system of linear of equations is as follows. Let A be a full-rank

matrix in Rn×n, and b be a vector in Rn. The objective is to find x that satisfies

Ax = b.

We are guaranteed that x is unique because we assumed A to be invertible. The key observation

is that the components of x can be solved for in terms of each other. Specifically, if aii 6= 0 and all

of xj , j 6= i are known then we can solve for xi as

xi = − 1

aii

∑
j 6=i

aijxj − bi

 .

If this is true for all i then we can solve for each xi in parallel. Clearly, this cannot be the case (or

we would have the solution!), however if have estimates for each component, we can solve for new

estimates of the components in simultaneously. The algorithms introduced in this section work by

iteratively computing estimates of the solution. If each estimate is closer to the true solution than

the previous one, then we will converge to the true solution. Each algorithm is initialized with any

x(0) ∈ Rn, and the next iterates are computed as follows.

The Jacobi Algorithm applies this idea directly, by simply using the estimate of x at iteration

t, xt, to compute the estimate of x at time t + 1, xt+1. The iterates in the Jacobi algorithm are

given as follows.

Jacobi Algorithm

xi(t+ 1) = − 1

aii

∑
j 6=i

aijxj(t)− bi

 .

1

http://stanford.edu/~rezab/dao

The Gauss-Seidel algorithm boosts convergence by using information as soon as it is computed.

Specifically, if xi(t+ 1) is computed before a processor begins computing xj(t+ 1), then the Gauss-

Seidel algorithm uses xi(t + 1) in place of xi(t). The iterates in the Gauss-Seidel algorithm are

given as follows.

Gauss-Seidel Algorithm

xi(t+ 1) = − 1

aii

∑
j<i

aijxj(t+ 1) +
∑
j>i

aijxj(t)− bi

 .

The choice to update the coordinates in order is arbitrary, and in general, different update or-

ders may produce substantially different results. We will see later how the order of updates can

significantly impact how parallelizable the Gauss-Seidel algorithm is.

There are also relaxed versions of these algorithms that weight the previous iterate and the

Jacobi and Gauss-Seidel updates respectively.

Jacobi Overrelaxation

xi(t+ 1) = (1− γ)xi(t)−
γ

aii

∑
j 6=i

aijxj(t)− bi

 .

Successive Overrelaxation

xi(t+ 1) = (1− γ)xi(t)−
γ

aii

∑
j<i

aijxj(t+ 1) +
∑
j>i

aijxj(t)− bi

 .

Richardson’s Method Richardson’s method is obtained by rewritingAx = b as x = x−γ[Ax−b].
The updates are then given by

x(t+ 1) = [I − γA]x(t) + γb

where γ is a scalar relaxation parameter. Richardson’s method can also be executed in a Gauss-

Seidel fashion (called RGS). Explicitly, the updates for the RGS algorithm are given by

xi(t+ 1) = xi(t)− γ

∑
i<j

aijxj(t+ 1) +
∑
j≥i

aijxj(t)− bi


Here we emphasize that the update order for the coordinates is variable. Another variant of the

Richardson algorithm is obtained by rewriting Ax = b as x = x − B(Ax − b) where B is any

invertible matrix. Then the iterates are given by

x(t+ 1) = x(t)− b [Ax(t)− b] .

The Gauss-Seidel variant of this update is also possible.

2

7.1 Convergence of the Classical Iterative methods

We will now prove a general theorem that encompasses the convergence of the classical iterative

methods.

Theorem 7.1 Suppose b ∈ Rn and A = M−N ∈ Rn×n is nonsingular. If M is nonsingular and the

spectral radius of M satisfies ρ(M−1N) < 1, then the iterates x(k) defines by x(k+1) = M−1(Nx(k)+

b) converge to x = A−1b for any starting vector x(0). Additionally,
∥∥e(k)∥∥ ≤ ρ(M−1N)k

∥∥e(0)∥∥.

Consequently, we need log
(
ρ(M−1N)

e(0)

)
iterations to get an ε-approximate solution.

Proof: Let e(k) = x(k)−x denotes the error in the kth iterate. Since Mx = Nx+ b, it follows that

M(x(k+1) − x) = N(x(k) − x), and thus, the error in x(k + 1) is given by

e(k+1) = M−1Ne(k) =
(
M−1N

)k+1
e(0).

So,
∥∥e(k)∥∥ ≤ ρ(M−1N)k

∥∥e(0)∥∥. Taking the log of both sides are rearranging gives the result.

For the Jacobi algorithm, M is a diagonal matrix with the same diagonal entries as A, and N is

the negative of the off-diagonal entries of A. For the Gauss-Seidel algorithm, M is the diagonal,

and subdiagonal entries of A, while N is the negative of all of the entries above the diagonal.

8 Parallel Implementation of Classical Iterative Methods

We now discuss how to parallelize the previously introduced iterative methods. The Jacobi and

Jacobi overrelaxation algorithms are easily parallelized. The update for each component can be

computed completely independently of each other. Suppose that the ith processor has access the

ith row of A. Then the update can be calculated via the inner product between two vectors, and

after each component is updated, processor i passes xi(t) to all of the other processors. Another

implementation is one in which the ith processor has access to the ith column of A. After each

update, processor i passes ajixi(t) to processor j. Each component update is computed by summing

up all of the received values.

In contrast, the Gauss-Seidel and successive overrelaxation algorithms are not well-suited to

parallel implementation. Unfortunately, the modifications made to boost convergence introduced

an inherently sequential component to their implementation. As written, the compute xi(t + 1),

processor i needs to know the value of xj(t+ 1) for all j < i. Fortunately, when A is sparse (as is

often the case when A arises from the discretization of a partial differential equation), we can use

a coloring scheme to parallelize the updates.

8.1 Coloring

In the Gauss-Seidel algorithm, one might hope that if each coordinate update does not directly

affect all of the other coordinates then they can be implemented in parallel. This is exactly the

3

case. Precisely, notice that if aik = 0 for some k < i then the updates

xi(t+ 1) = − 1

aii

∑
j<i

aijxj(t+ 1) +
∑
j>i

aijxj(t)− bi


xi(t+ 1) = − 1

aii

 ∑
j<i,j 6=k

aijxj(t+ 1) +
∑
j>i

aijxj(t) + aikxk(t)− bi


are equivalent. We make this intuition precise via the following graph-theoretic notion of which

Gauss-Seidel updates can be computed in parallel.

Given a dependency graph, G = (V,E) representing the Gauss-Seidel iteration, a K-coloring is

a map C : V → [K] that assigns a color C(i) to each node in the graph.

Theorem 8.1 There exists an ordering of the variables such that the Gauss-Seidel algorithm can

be performed in K parallel steps if and only if there exists a K-coloring of the dependency graph

where no positive cycle is entirely the same color.

Proof: (⇒) Consider an ordering of the variables with which the Gauss-Seidel iteration takes K

parallel steps. We define our coloring map by C(i) = k if node i is updated at the kth step. Then

given any positive cycle i1, . . . , im, let il be the node that is updated first out of all i1, . . . , im. Since

(il, il+1) ∈ E this means xil+1
depends on xil, and the two variables cannot be updated in the same

step. Consequently, they cannot be assigned the same color, and the cycle i1, . . . , im has more than

one color.

(⇐) We will use the result that if a graph is a DAG, there there exists an ordering on the nodes

such that if (i, j) is an edge, then node j comes before node i in the ordering.

Now assume that there exists a K-coloring of G = (V,E) such that no positive cycle is entirely

the same color. We define the subgraphs Gk of G by only keeping nodes of the color k and the

edges joining them. Then, by assumption, each of the subgraphs Gk is a DAG, so by the previous

result, there is a topological ordering of each of these subgraphs. Then we order the nodes of G

in increasing color order, where the ordering of nodes of the same color depends on the topological

ordering of their associated subgraph. Consider the Gauss-Seidel update according to this ordering.

Let nodes i and j have the same color k. Then if (i, j) ∈ E and (j, i) ∈ E, then clearly xi and xj
cannot be updated in parallel. It is not possible for (i, j) ∈ E and (j, i) ∈ E if nodes i and j have

the same color k since each Gk is acyclic. If (i, j) ∈ E and (j, i) 6∈ E, then node j is updated before

node i, and so the computation of xj(t+ 1) only requires the value of xi(t) and not xi(t+ 1). The

case where (i, j) 6∈ E and (j, i) ∈ E follows similarly. Therefore, every node of the same color can

be updated in parallel, proving the result.

It’s important to note that the dependency graph for the Gauss-Seidel updates is not necessarily a

4

DAG. To illustrate this, we consider an example where

x1(t+ 1) = f1(x1(t), x3(t))

x2(t+ 1) = f2(x1(t), x2(t))

x3(t+ 1) = f3(x2(t), x3(t), x4(t))

x4(t+ 1) = f4(x2(t), x4(t))

Figure 8.1 depicts the dependency graph for this problem.

Figure 8.1 shows the DAG representing the Jacobi updates for the first two times steps.

Figures 8.1 and 8.1 show the DAGs representing the Gauss-Seidel updates for two different

update orders. In figure 8.1, the variables are updated in order x1 → x2 → x3 → x4, whereas in

figure 8.1 the variables are updated in order x1 → x3 → x4 → x2. The first ordering requires 3

parallel steps while the second only requires 2.

5

Figure 1: Gauss-Seidel updates with ordering x1 → x2 → x3 → x4

Figure 2: Gauss-Seidel updates with ordering x1 → x3 → x4 → x2

9 Unconstrained Optimization

We will now show that the iterative algorithms for solving linear systems can be generalized to

develop optimization algorithms.

In unconstrained optimization, the objective is to minimize some function F : Rn → R. If F is

continuously differentiable, and x∗ is a minimizer of F , then∇F (x∗) = 0. Consequently, minimizing

F is closely related to solving the nonlinear system of equations ∇F (x∗) = 0. In general, without

the appropriate guarantees of convexity, ∇F (x) = 0 does not guarantee that x is a global minimizer

of F . However, assuring that a critical point is a global minimizer is often intractable so many

algorithms will settle for a critical point instead.

We will motivate the derivation of these algorithms by noticing that solving Ax = b is equivalent

to minimizing F (x) = 1
2x

TAx − xT b. Then the gradient and Hessian of F are given by ∇F (x) =

Ax − b and ∇2F (x) = A. Then, the following algorithms can be interpeted as generalizations of

the Jacobi overrelaxation, successive overrelaxation, and Richardson’s algorithm respectively.

6

Jacobi Algorithm

x(t+ 1) = x(t)− γ[diag(∇2F (x(t)))]−1∇F (x(t))

where diag(∇2F (x(t))) is the diagonal matrix with the same diagonal elements as ∇2F (x(t))

Gauss Seidel Algorithm

xi(t+ 1) = x(t)− γ
∇iF (x̂(i, t)

∇2
iiF (x̂(i, t)

where x̂(i, t) = (x1(t+ 1), . . . , xi−1(t+ 1), xi(t), . . . , xn(t)) is the most recent update of x

Gradient Algorithm Richardson’s method can similarly be generalized as

x(t+ 1) = x(t)− γF (x(t)).

And the Gauss-Seidel variant of the gradient algorithm is given by

xi(t+ 1) = xi(t)− γ∇iF (x̂(i, t)), i = 1, . . . , n

For a fixed x ∈ Rn where ∇F (x) 6= 0, if v ∈ Rn is a vector such that vT∇F (x) < 0 then v is said to

be a descent direction. This is because since F is continuously differentiable, there exists a positive

γ small enough such that F (x + γv) < F (x). Any algorithm that computes the next iterate by

updating x(t) along a descent direction is said to be a descent algorithm. The Jacobi, Gauss-Seidel,

and gradient algorithms are all descent algorithms. They are generalized by the following scaled

gradient algorithm

Scaled Gradient Algorithms

x(t+ 1) = x(t)− γ(D(t))−1∇F (x(t))

where D(t) is a scaling matrix. In practice D is often chosen to be diagonal so its inverse is just

the diagonal matrix with entries 1
Dii

. Not only is its inverse easy to calculate, but it is also more

straightforward to implement in parallel.

9.1 Nonlinear Algorithms

The algorithms presented up until this point are called linear algorithms because each of the

updates is a linear function of ∇F (x). Nonlinear or coordinate descent algorithms work by fixing

all components of x but xi and minimizing F (x) with respect to only xi.

In the nonlinear Jacobi algorithm, the minimizations with respect to each of the xi are carried

out simultaneously. Explicitly, the updates are given by

xi(t+ 1) = arg min
xi

F (x1(t), . . . , xi−1(t), xi, xi+1(t), . . . xn(t)).

Similarly, the Gauss-Seidel updates are carried out by using the most recent information as it is

computed. Explicitly, the Gauss-Seidel updates are given by

xi(t+ 1) = min
xi

F (x1(t+ 1), . . . , xi−1(t+ 1), xi, xi+1(t), . . . xn(t)).

7

9.2 Parallel Implementation

Just as before, the parallel implementation of the Jacobi, and gradient algorithms are straightfor-

ward. We can assign the computation of xi(t) to the ith processor. After each xi(t) is computed,

its value is communicated only to the processors which require it. In particular, the ith proces-

sor needs to know the current value of xj(t) if ∇iF or ∇2
iiF depends on xj . For many problems

arising in practice, both ∇iF and ∇2
iiF are sparse; this can be leveraged to drastically reduce the

communication requirement of the algorithms.

In general, the Gauss-Seidel algorithms are unsuitable for parallel implementation except when

the dependence graph is sparse. Then, the same coloring scheme technique can be applied to

parallelize the computation.

One might recall that a common technique to boost convergence of optimization algorithms

is to vary the step-size γ(t) with each iteration such that F (x(t) − γ∇F (x(t))) is minimized.

Unfortunately, this minimization step is not amenable to parallelization.

10 Constrained Optimization

We will now consider the problem of constrained optimization. Here, our objective is to

minimize
x ∈ Rn

F (x)

subject to x ∈ χ
(1)

We will assume F : Rn → R to be continuously differentiable, and χ to be nonempty, closed, and

convex. The necessary condition for x ∈ χ to be optimal is that (y − x)T∇F (x) ≥ 0 for all y ∈ χ.

If F is convex over χ then this condition is also sufficient.

10.1 Projected Gradient Descent

We will want to apply the descent algorithms of section 9 for constrained optimization. However,

we will not be able to apply them directly. This is because even if an iterate is feasible i.e., x(t) ∈ χ,

it is not guaranteed that x(t + 1) is feasible. We will remedy this by simply projecting x(t + 1)

back into the feasible set χ. In particular, we will define the projection operation as

Πχ(x) = arg min
z∈χ
‖x− z‖

and the iterates in the projected gradient algorithm are given by

x(t+ 1) = Πχ (x(t)− γ∇F (x(t)))

Now we just need to show that our projection step is well-defined and the progress we have made

in our descent step is not completely undone by the projection step. This is will follow from the

projection theorem:

Theorem 10.1 (Projection Theorem) 1. For every x ∈ Rn there exists a unique z ∈ χ that

minimizes ‖x− z‖ over all z ∈ χ (denoted as Πχ(x)).

8

2. For some x ∈ Rn, Z ∈ χ is equal to Πχ(x) is and only if (y − z)T (x− z) ≤ 0 for all y ∈ χ.

3. The mapping Πχ : Rn → χ is continuous and nonexpansive. In other words,

‖Πχ(x)−Πχ(y)‖2 ≤ ‖x− y‖2

for all x, y ∈ Rn.

10.2 Parallel Implementation

The gradient projection algorithm is generally not well-suite to parallelization due to the projection

step. One case where it is, though, is when the feasible set χ can be represented as the Cartesian

product of constraint sets for the individual components of x i.e., χ =
∏n
i=1[li, ui]. In this case,

the projection onto χ is straightforward—if processor i is responsible for computing xi, then it can

simply project xi onto [li, ui]. This approach can also be generalized when the constraint set is a

Cartesian product of sets i.e., χ =
∏m
i=1 χi. By viewing Rn as the Cartesian product of spaces Rni ,

where n1 + . . .+nm = n and each χi is a closed convex subset of Rni , it is apparent that projecting

x onto χ is equivalent to projecting the appropriate components of x onto χi individually. In other

words Πχ(x) =
∏m
i=1 Πchii(x

(i)), where here we let x(i) denote the appropriate components of x

corresponding to χi. For example, if χ = {x ∈ R4|x1 + x2 = 0, x3 + x4 = 0}, then we can express

χ = {x ∈ R2|x1 + x2 = 0} ⊗ {x ∈ R2|x3 + x4 = 0}, and x(1) = (x1, x2), x
(2) = (x3, x4).

A similar discussion also applies to the parallel implementations of the scaled gradient algorithm.

In general, we cannot expect to be able to compute x(t + 1) = x(t) − γ(D(t))−1∇F (x(t)) in a

distributed manner. However, if (D(t))−1 has a “nice” structure, it is possible. We briefly discussed

the case where D(t) is diagonal, and thus (D(t))−1 is diagonal and each components updates can

be computed in parallel. In general, if there is a permutation, represented by matrix P , where

P (D(t))−1 is block diagonal, then the components in the same block (after permutation) need to

be updated together, but those that are not in the same block can be updated independently of

each other.

10.3 Distributed Nonlinear Algorithms

If we assume χ to be a Cartesian product, then it makes sense for us to consider the projected non-

linear Jacobi and Gauss-Seidel algorithms. They operate simply by restricting the the minimization

to the feasible sets for each component. The updates are given as follows:

Jacobi

xi(t+ 1) = min
xi∈[li,ui]

F (x1(t), . . . , xi−1(t), xi, xi+1(t), . . . xn(t)).

Gauss-Seidel

xi(t+ 1) = min
xi∈[li,ui]

F (x1(t+ 1), . . . , xi−1(t+ 1), xi, xi+1(t), . . . xn(t)).

9

10.4 Parallelization by Decomposition

Previously we showed that a number of descent algorithms can be parallelized. However, these

methods are not always applicable, especially for constrained optimization (which require the con-

straint set to be the Cartesian product of constraints on individual components). We will now

explore how specific problem structure can be exploited to derive a parallel solution algorithm by

find a suitable transformation of the problem. Oftentimes the dual optimization problem is much

more amenable to parallel implementation than the original problem. We will illustrate this idea

with several examples.

10.5 Quadratic Programming

The objective of a quadratic programming problem is to solve a problem of the form

minimize
x ∈ Rn

1

2
xTQx− bTx

subject to Ax ≤ c
(2)

where Q ∈ Rn×n is positive definite, A ∈ Rm×n, b ∈ Rn, and c ∈ Rm are all known. The dual of

this problem is given by

minimize
u ∈ Rm

1

2
uT (AQ−1AT)u+ (c−AQ−1b)Tu

subject to u ≥ 0

(3)

If u∗ is the optimal solution to problem (3), then the optimal solution x∗ can be recovered by the

relation x∗ = Q−1(b − ATu∗). Notice that while the constraint set defined by {x|Ax ≤ c} cannot

generally be expressed as the Cartesian product of simpler sets, u ≥ 0 certainly can, making the

methods we have previously discussed suitable for solving the dual problem. In particular, we will

consider the non-linear Jacobi algorithm.

Let D(u) = 1
2u

TPu+rTu, with P = AQ−1AT ,and r = c−AQ−1b be the dual objective function.

Note that ∇jD(u) = rj +
∑m

k=1 pjkuk
. Because the dual objective is convex, its minimizer can be

found by finding u such that ∇D(u) = 0. Using the expression we derived for ∇jD(u), we see that

arg min
uj

= ũj = − γ

pjj

rj +
∑
k 6=j

pjkuk


Then, taking into account the nonnegativity constraint, uj = max{0, ũj}. Our iterates are then

given by

uj(t+ 1) = max

{
0, uj(t)−

γ

pjj

(
rj +

m∑
k=1

pjkuk(t)

)}
.

Notice that each of components can be updated in parallel.

10

10.6 Separable Strictly Convex Programming

Suppose that the space Rn is represented as the Cartesian product of spaces Rni , i = 1, . . . ,m

where n1 + . . .+ nm = n, and consider the problem

minimize
x ∈ Rn

m∑
i=1

Fi(x
(i))

subject to eTj x = sj , j = 1, . . . , r,

x(i) ∈ Pi, i = 1, . . . ,m

(4)

Where Fi : Rni → R are strictly convex, x(i) are the appropriate components of x, ej are given

vectors in Rn, sj ar es alres, and Pi are bounded polyhedral subsets of Rni . Then, the dual problem

is given by

maximize
p ∈ Rr

q(p) (5)

where,

q(p) = min
x(i)∈Rni

 m∑
i=1

Fi(x
(i)) +

n∑
j=1

pj(e
T
j x− sj)

 (6)

This is now separable

qi(p) = min
xi∈Pi

(
Fi(x

(i))+
∑r

j=1 pj ê
T
jixi
)

(7)

where êji denotes the appropriate components of ej corresponding to x(i). The evaluation of the

dual function is amenable to parallelization with each separate processor computing a component

qi(p) of q(p).

11

	7 Iterative Solutions for Solving Systems of Linear Equations
	7.1 Convergence of the Classical Iterative methods

	8 Parallel Implementation of Classical Iterative Methods
	8.1 Coloring

	9 Unconstrained Optimization
	9.1 Nonlinear Algorithms
	9.2 Parallel Implementation

	10 Constrained Optimization
	10.1 Projected Gradient Descent
	10.2 Parallel Implementation
	10.3 Distributed Nonlinear Algorithms
	10.4 Parallelization by Decomposition
	10.5 Quadratic Programming
	10.6 Separable Strictly Convex Programming

