Communication Patterns

Reza Zadeh -gb MQtroid

S,c>cn"l’<\Z

@Reza_Zadeh | http://reza-zadeh.com



Outline

Shipping code to the cluster
Shuffling

Broadcasting

Other programming languages



Outline

Shipping code to the cluster



Life of a Spark Program

1) Create some input RDDs from external data or
parallelize a collection in your driver program.

2) Lazily transform them to define new RDDs using
transformations like filter() ormap()

3) Ask Spark to cache() any intermediate RDDs that
will need to be reused.

4) Launch actions such as count() and collect() to
Kick off a parallel computation, which is then optimized
and executed by Spark.



Example [ransformations

map () intersection() cartesion()
flatMap() distinct() pipe()
filter() groupByKey () coalesce()
mapPartitions() reduceByKey() repartition()
mapPartitionsWithIndex() sortByKey () partitionBy()
sample() join()

union() cogroup()



Example Actions

reduce()
collect()
count()
first()
take()
takeSample()

saveToCassandra()

takeOrdered()
saveAsTextFile()
saveAsSequenceFile()
saveAsObjectFile()
countByKey ()

foreach()



Sending your code to the cluster



RDD - Stages = Tasks

RDD Objects DAG Scheduler Task Scheduler Worker
Cluster
~, ) (| manager Threads
DAG > TaskSet Task Block

—

. I > < . manager

rddl.join (rd%Zg split graph into launch tasks via execute tasks
.groupBy (..
Filter() stages of tasks cluster manager
submit each retry failed or store and serve

build operator DAG stage as ready straggling tasks blocks



Communication Patterns

Narrow Dependencies: Wide Dependencies:

=S5 €

map, filter groupByKey

join with inputs
co-partitioned

join with inputs not

union co-partitioned



Example Stages

IIIIIIIIIIIIIIIIIII

_Stage2 Map  nter

IIIIIIIIIIIIIIIIIII

W - cached partition
B - [ost partition



Talking to Cluster Manager

Manager can be:
YARN

Mesos

Spark Standalone

executor executor

HDFS or other storage




Shuffling



Shuffle

groupByKey

sortByKey

reduceByKey

Sort: use advances in sorting single-machine
memory-disk operations for all-to-all communication



Sorting

Distribute Timsort, which is already well-
adapted to respecting disk vs memory

Sample points to find good boundaries

Each machines sorts locally and builds an
iIndex



Sorting (shuffle)

Ll;lvadoop Spark Spark

orld Record 100 TB * 1PB

Data Size 102.57TB 100 TB 1000 TB
Elapsed Time 72 mins 23 mins 234 mins

# Nodes 2100 206 190

# Cores 50400 6592 6080

# Reducers 10,000 29,000 250,000
Rate 1.42 TB/min 4.27 TB/min 4.27 TB/min
Rate/node 0.67 GB/min 20.7 GB/min 22.5 GB/min
Sort Benchmark

Daytona Rules ves ves No
Environment Sj:tlgfted date EC2 (i2.8xlarge) EC2 (i2.8xlarge)

Distributed TimSort




Example Join

// Load RDD of (URL, name) pairs
val pageNames = sc.textFile(“pages.txt”).map(...)

// Load RDD of (URL, visit) pairs
val visits = sc.textFile("“visits.txt”).map(...)

val joined = visits.join(pageNames)

pages.txt

visits.txt

Map tasks Reduce tasks



Broadcasting



Broadcasting

Often needed to propagate current guess for
optimization variables to all machines

The exact wrong way to do it is with “one
machines feeds all” — use bit-torrent instead

Needs log(n) rounds of communication



Bit-torrent Broadcast




Broadcast Rules

Create with SparkContext.broadcast(initialVal)

Access with .value inside tasks (first task on
each node to use it fetches the value)

Cannot be modified after creation



Replicated Join

val pageNames = sc.textFile(“pages.txt”).map(...)
val pageMap = pageNames.collect().toMap()
val bc = sc.broadcast(pageMap)

val visits = sc.textFile(“visits.txt”).map(...)

val joined = visits.map(v => (v._1, (bc.value(v._1), v._2)))

visits.txt

I

pages.txt
ﬁgé
maStel\

LI}

L

map result



Model Broadcast

W—w—a Zg(’w;wz‘,yz’)
i=1

val points = spark.textFile(...).map(parsePoint).cache()
var w = Vector.zeros(d)

for (1 <- 1 to numlIterations) {
val gradient = points.map { p =>
(1 /7 (1 + exp(-p.y * w.dot(p.x)) - 1) * p.y * p.X
).reduce(_ + _)
w -= alpha * gradient

}



Model Broadcast

n
Call sc.broadcast Ww—w—a Zg(w; Ti5 Yi)
1=1

val \points = spark.textFile(...).map(parsePoint).cache()
var w = Vector.zeros(d)

for (1 <- 1 to numlIterations) {
val gradient = points.map { p =>
(1 /7 (1 + exp(-p.y * w.dot(p.x)) - 1) * p.y * p.X
).reduce(_ + _)
w -= alpha * gradient
}

Use via .value



Spark for Python (PySpark)



PySpark and Pipes
Spark core is written in Scala

PySpark calls existing scheduler, cache and
networking layer (2K-line wrapper)

No changes to Python

“Python chid
Python chid

-

Your
app @

I




