
Parallel and Distributed Deep Learning

Vishakh Hegde
Stanford University

vishakh@stanford.edu

Sheema Usmani
Stanford University
sheema@stanford.edu

Abstract

The goal of this report is to explore ways to paral-
lelize/distribute deep learning in multi-core and distributed
setting. We have analyzed (empirically) the speedup in
training a CNN using conventional single core CPU and
GPU and provide practical suggestions to improve training
times. In the distributed setting, we study and analyze syn-
chronous and asynchronous weight update algorithms (like
Parallel SGD, ADMM and Downpour SGD) and come up
with worst case asymptotic communication cost and com-
putation time for each of the these algorithms.

1. Introduction
In this report, we introduce deep learning in 1.1 and ex-

plain the need for parallel and distributed algorithms for
deep learning in 1.2. We then go on to give a brief overview
of ways in which we can parallelize this problem in section
2. We then perform an empirical analysis on CPU and GPU
times in section 3. We then explain stochastic gradient de-
scent briefly in section 4 and provide the pseudo-code for,
and analyze a few distributed gradient update algorithms in
section 5. We conclude in section 6 and give some ideas for
future work.

1.1. Deep Learning

Deep neural networks are good at discovering correla-
tion structures in data in an unsupervised fashion. There-
fore it is widely used in speech analysis, natural language
processing and in computer vision. This information of the
structure of the data is stored in a distributed fashion. i.e.
Information about the model is distributed across different
layers in a neural network and in each layer, model informa-
tion (weights) are distributed in different neurons. There are
a lot of ways to combine the information in a layer spread
across different neurons and there are lot of ways to com-
bine layers in order to minimize a loss function (which is a
proxy for how well the neural network is doing in terms of
achieving its goals). In our project, we use a deep network
for classifying greyscale images of size 224 × 224 pixels

into one of 40 possible classes to which we know it should
belong.

1.2. Need for Parallel and Distributed Algorithms
in Deep Learning

In typical neural networks, there are a million parame-
ters which define the model and requires large amounts of
data to learn these parameters. This is a computationally
intensive process which takes a lot of time. Typically, it
takes order of days to train a deep neural network (like
VGG network [13] on a single core CPU and about 1

q on
a single machine with q cores in the CPU, which is still
in the order of several hours (assuming we have 8 cores,
it still takes up to 10 hours (roughly) to train a model like
VGGNet on a single machine). Sometimes the data-set is
too large to be stored on a single machine.

Therefore it is important to come up with parallel and
distributed algorithms which can run much faster and which
can drastically reduce training times.

2. Parallel and Distributed Methods
One can think of several methods to parallelize and/or

distribute computation across multiple machines and mul-
tiple cores. We list some of the methods used to achieve
faster training times:

• Local training: The model and data is stored on a sin-
gle machine.

– Multi-core processing: Here, we assume that the
whole model and the data can be fit into the
memory of a single machine with multiple cores.
These multiple cores share the memory (PRAM
model). There are two ways to use multiple cores
to speed up the training process.

∗ Use the cores to process multiple images at
once, in each layer. This is an embarrass-
ingly parallel process.
∗ Use multiple cores to perform SGD of mul-

tiple mini-batches in parallel.

1

– Use GPU for computationally intensive subrou-
tines like matrix multiplication.

– Use both multi-core processing and GPU where
all cores share the GPU and computationally in-
tensive subroutines are pushed to the GPU.

• Distributed training: [1] When it is not possible to
store the whole data-set or a model on a single ma-
chine, it becomes necessary to store the data or model
across multiple machines.

– Data parallelism: Data is distributed across mul-
tiple machines. This can be used in case data is
too large to be stored on a single machine or to
achieve faster training.

– Model parallelism: If the model is too big to be
fit into a single machine, it can be split across
multiple machines. For example, a single layer
can be fit into the memory of a single machine
and forward and backward propagation involves
communication of output from one machine to
another in a serial fashion. We resort to model
parallelism only if the model cannot be fit into
a single machine and not so much to fasten the
training process.

3. Empirical analysis: CPU versus GPU time
We used Amazon AWS EC2 instances with GPU. Here

is the configuration for the machine we used to perform this
analysis:

• 8 High Frequency Intel Xeon E5-2670 Processors.

• NVIDIA GRID K520 GPU with 1,536 CUDA cores
and 4GB of video memory.

In this section, we present the results from tests we’ve
conducted on computational times for various operations
on a CPU and a GPU and also talk about steps to be taken in
order to speed up the learning process. We do not provide
any theoretical analysis for this section.

In a Convolutional Neural Network (CNN), the first layer
is usually a convolution. A convolution is a sliding kernel
(of a fixed size, and is usually square in shape) which does
an element-wise multiplication on each of the pixels it has
an overlap with, and sums all the elements together. In a
modern CNN, there are several different kernels applied to a
single image and the results are stacked in the output. Each
kernel slides through the whole image (in predetermined
steps with a fixed step size). Backpropagation is used to up-
date the parameters of these kernels (also called weights).
So both forward and backward propagation is computation-
ally intensive. In a deep network, there are several layers of

convolution and therefore adds a lot to total compute time
on a CPU. Therefore, an important way to improve the per-
formance of the whole network is to reduce the run-time of
convolution.

3.1. Parallel Implementation of Convolution in
Caffe

Since the same kernel slides over the whole image,
Caffe [8] uses the function im2colgpu to unwrap the
parts of the image that the kernel slides over, into vectors.
These vectors are stacked to form a matrix. For example, in
our network, the first convolution layer is made up of filters
of size 11× 11 and has a stride of 4 (i.e. it slides in steps of
4 pixels). Therefore, there are 54 parts in the image where
a single kernel overlaps with the image. For each of the 54
parts which have a size 11× 11, we unroll it into vectors of
size 121. Since there are 54 such vectors, they are stacked
together to form a matrix of size 54× 121.

In order to perform convolution for a single kernel, we
need to perform a matrix-vector multiplication, where the
vector is the unrolled form of the kernel. There are multiple
kernels used in a single convolution layer. Therefore, the
unrolled vectors of kernels are stacked together to form
another matrix. In our case, there are 96 kernels used in the
convolution layer. So we form a matrix of size 121 × 54.
Therefore in order to perform convolution for the whole
convolution layer, we now need to perform a matrix-matrix
multiplication. In our case is a multiplication between
matrix of size 54 × 121 and 121 × 96. All this is done
for a single image. It can be noted here that matrix-matrix
multiplication is the most computationally intensive part of
the whole process.

The CPU handles all the complicated logic part of this
process, while im2colgpu is called for unrolling the im-
age into a matrix (in parallel) and for performing the matrix-
matrix product (this is also computed in parallel). This hap-
pens serially for all the images in a mini-batch. Once all
the images have been processed, the CPU moves to the next
layer in the model. [12]

3.2. Results

We timed forward propagation times for convolution
layer and fully connected layer 10 times and found the aver-
age computational times for both CPU and GPU for differ-
ent batch sizes (for the convolution layer) and for different
matrix sizes (for the fully connected layer).

3.2.1 Convolution Layer

This layer consists of outputs from 96 different filters ap-
plied at a stride (or sliding step-size) of 4. Each kernel has

2

Figure 1. Comparison between CPU and GPU for time taken to
forward-propagate through a convolution layer as a function of
batch-size

Figure 2. CPU to GPU speedup as a function of batch-size for the
convolutional layer

size 11× 11. The size of the image is 224× 224.
The slope of the CPU line in figure 1 is 6.45 and the

slope of the GPU line is 0.16. This means that on an aver-
age, GPU is about 40 times faster than a CPU when comput-
ing the convolution of an image. It is important to note that
both lines are linear, which means that it is O(n). It is not
surprising that this is the case for a CPU (it processes im-
ages sequentially). For a GPU though, the program control
still rests with the CPU while the GPU takes care of com-
putationally intensive subroutines (like convolution and ma-
trix multiplication). Therefore, even for a GPU, it is O(n).
However, the constants multiplying n for CPU is 40 times
that of a GPU. We also plot the ratio of CPU to GPU time
to forward propagate the convolution layer summarized in
figure 2:

This indicates that the speedup is more if the batch-size is

Figure 3. Comparison between CPU and GPU for time taken to
perform matrix-matrix multiplication as a function of matrix size

Figure 4. CPU to GPU speedup as a function of batch-size for
matrix-vector multiplication, as a function of matrix size

higher. The conclusion of this experiment is that it is almost
always better to have a higher batch-size while training a
CNN since it gives a higher speedup as seen in the figure.

3.2.2 Fully Connected Layer

The fully connected layer is implemented as a matrix-vector
multiplication.

In figure 3, it can be seen that for both CPU and GPU,
the computation time isO(n2), which is as expected. How-
ever, the constant multiplying n2 are very different (again,
by about a factor of 40). Figure 4 is a graph of the ratio of
CPU to GPU times for different matrix sizes.

Like before, it is apparent that higher matrix sizes imply
higher speedup. However, this information cannot be used
for our advantage because the dimensionality of the fully
connected layer is usually fixed in a model.

3

4. Stochastic Gradient Descent

The goal of a learning algorithm is to minimize the
loss function in a systematic manner. In the case of
neural networks, the total-loss function is a separable and
differentiable function of the model parameters. We need to
come up with a way to iteratively update these parameters
so that the value of the total-loss function reduces. One can
visualize the total-loss function as consisting of a bunch
of peaks and valleys and the goal is to get to the deepest
valley [3].

One of the most popular ways to achieve this is to use
a greedy approach: by following a direction opposite to
the gradient of the loss function, since this is the direction
which is most promising, locally (so to speak). The loss
function in the case of neural networks is normally a
separable function (i.e. it is average of loss functions for
individual data points). So, in order to make the most
optimal decision, we need to compute the gradient of
the loss for all the images in the data-set with respect to
all the paramaters of the model. However, doing this is
computationally expensive because of the sheer number of
images on which we train these neural networks [4].

Therefore, it is necessary to use stochastic gradient de-
scent, which computes the gradient of loss functions of a
representative subset of the original data-set. This is re-
peated for many subsets of the original data-set until all im-
ages have been used up. This is called an epoch and the sub-
set of data used for parameter update is called a mini-batch.
Let the weights of the model be w. Here is the gradient
descent update:

w ← w − α∇wLtotal (1)

Where Ltotal = 1
n

∑n
i=1 Li and ∇wLtotal is the gradient

of the total loss function with respect to the weights. In
the neural network that we trained, we used the logistic loss
function for each image, given by:

Li = −fyi + log
∑
j

efj (2)

where fj means the jth element of the vector of class scores
f .

In stochastic gradient descent, we have the following
weight update rule:

w ← w − α∇wLminibatch (3)

Here,

Lminibatch =
1

m

∑
i∈M

Li (4)

Figure 5. Data parallelism for updating parameters

where M is the set of all images in a mini-batch and m =
|M|, the size of the minibatch[2]. Performing gradient de-
scent on multiple mini-batches is computationally intensive
and time consuming. Therefore, there is a need to paral-
lelize the weight update procedure to achieve faster learn-
ing.

5. Data Parallelism
Data Parallelism is a way to distribute computing across

different machines in a way that data is split across differ-
ent machines and some computation is performed locally in
each machine using the whole model, but only for part of
the full data-set. For the purposes of analysis, we will as-
sume that we can fit all the parameters of the model on a
single machine. This will be the driver. Stochastic Gradient
Descent (and some flavors of it) is the most commonly used
update rules in neural networks.

Depending on how these parameters are updated, we
have two paradigms for parameter update:

• Synchronous update

• Asynchronous update

5.1. Synchronous update

For synchronous update, all loss gradients in a given
mini-batch are computed using the same weights and full
information of the average loss in a given mini-batch is used
to update weights. The synchronization part comes because
we wait till loss-gradients for all images in the mini-batch
are computed.

5.1.1 Parallel SGD

Assume that the images are distributed across several ma-
chines and that they are not stored in a random manner. We

4

can also assume that the data-set is sorted according to the
label. This happens in many realistic scenarios. Assume
further that the total loss function we are trying to minimize
is strongly convex (this is not a very reasonable assumption
to make. It has been shown that the loss function in typ-
ical deep learning scenarios is non-convex, with multiple
valleys). However, we can get around such an assumption
performing multiple iterations. Here is the pseudo-code for
the parallel SGD algorithm. [9]

Algorithm 1 ParallelSGD
1: procedure PARALLELSGD((parameters, data, k))
2: Shuffle the data on all machines so that each machine

has a representative subset of the global data-set
3: for eachmachine i ∈ {1, ...k} in parallel do
4: vi ← SGD(parameters, data)

5: Aggregate from all machines v ←
(1/k)

∑k
i=1[vi]and return v

The first step in the above algorithm is shuffling so as to
have a representative subset of the full data-set in each of
the machines. Below is the pseudo-code to achieve this. L
is the label of the images, ImInd is the index of the image
(location of the image in the entire data-set), CLoc is the
current location of the image (the machine on which it sits
prior to shuffling).

Algorithm 2 ShuffleSGD
1: procedure SHUFFLESGD(L,ImInd,CLoc)
2: Obtain uniform sample of data from each machine -

perform k-way merge.
3: Create k bins to have equal number of images in each

bin.
4: Decide the destination machine for each image based

on the bins
5: Communicate this decision to each machine
6: Perform all-to-all communication to shuffle the data

Analysis of ShuffleSGD algorithm

Assume that the total size of the data-set is D and that
there are k machines at our disposal. Let each machine
have a network bandwidth of B and latency of L. We can
assume that data is sorted in each machine. Also assume
that there are q processors on each machine. Assume that
we sample d images (and send a data structure which only
contains label, index and machine on which the sampled
images currently reside) from each machine and send it to
the driver for it to put together a distribution.

Work-depth analysis: k- way merge in the driver
machine is O(kd) work and O(kdq + log(kd)) depth for q

processors. Deciding the bin size and start/end points of
each bin is W (n) = O(kd) in the work case.

Communication Cost: For establishing the distribution
of data, each machine passes a sample data of size d to mas-
ter machine to find the distribution of the data. To achieve
this, we do a bit-torrent aggregate communication where in
the first round, k

2 machines talk to k
2 other machines and

pass d message from one machine to another. In the next k4
machines communicated 2d data between each other and so
on. There are log(k) rounds of communication happening.

Here is the Communication cost of this procedure:

=
k

2
(L+

d

B
) +

k

4
(L+

2d

B
) + . . . (log(k)terms)

= L(
k

2
+
k

4
+ . . .) +

dk

B
(
1

2
+

1

2
+ . . .)

= O(Lk) +O(dk
B
logk)

Once the distribution has been established, we perform a
One-to-All communication to send this information to each
of the k machines. This is again a bit-torrent aggregate pat-
tern. Therefore, the communication cost is similar to All-to-
One communication explained about. Communication cost
is:

= O(Lk) +O(dk
B
logk)

Since k, d and L are very small in comparison to D (the
total size of the data-set), we can easily ignore all the costs
associated with establishing the distribution.

Now, each machine must transfer some if its data (in the
worst case, all its data) during the shuffle procedure. Let
total data of size D be split across k machines i.e. N = D

k
data for each machine.

Communication cost of all to all communication
(to shuffle data based on the distribution) will be
O(kN) = O(D) because the total size of the data-
set is D.

Analysis of ParallelSGD algorithm

In this section, we analyze the communication costs of
everything else apart from ShuffleSGD step. The
assumption made here is that of strong convexity.

Computation Time: Once each machine has data
which mimics the distribution of the whole data-set, we
can run SGD on each machine locally. If we want to
achieve an error less than ε, the computation time of SGD
on each machine is O(p log 1

ε) where p is size of the
parameters. (with O(log(1ε)) iterations for convergence).

5

Computation time for All-to-One step when aggregating
the gradients (using BitTorrent Aggregate): There are log k
rounds of communication and in each round we sum up
the parameters. Each summation is W = O(p) work
on a single processor. With q processors, we can do this
summation in O(pq + log p) depth. Therefore computation
time is O(pq log k) +O(p log 1

ε).

Communication Cost: SGD is computed on each ma-
chine locally. Therefore we will not have any communi-
cation cost for SGD. Once all the parameters are updated
for each machine locally, we need to perform an All-to-One
communication to send it to the driver machine where it
will be averaged. For this, we will do a BitTorrent aggre-
gate communication. The communication cost for this will
be:

= L(
k

2
+
k

4
+ . . .) +

kp

B
(
1

2
+

1

4
+

1

8
+ . . .)

= O(Lk) +O(kp
B

)

Communication cost for broadcasting parameters
(One-to-All) computing average (All to one) in the last
step is O(kp) as pk(12 + 1

4 + 1
8 + . . .). Therefore the total

communication cost is O(Nk) +O(pk).

Communication Time: Communication time for
All to one step when aggregating the gradients (using
BitTorrent Aggregate): There are log k rounds of parallel
communication over the network and each require O(p)
communication time (as communication time depends
linearly on the size of the message). Thus Communication
Time is O(p log k).

ParallelSGD assumes the loss function to be strongly
convex, which gives it a unique minima. However, this is
not the case in deep neural networks. One way to improve
the accuracy is to systematically shuffle data between ma-
chines and carry out another round of SGD on each machine
locally and updating the parameters. Systematic shuffling
can be done by having two machines exchange part of the
data in a single round of communication (say half of the data
in each machine). The total communication cost will be
O(kN). However, the communication time will be O(N),
where N = D

k . Since SGD happens in parallel, one round
of SGD will be equivalent to one epoch of training. Typi-
cally, images are trained on order of 10 epochs. Therefore,
this procedure looks like a practical approach to training
deep networks in a distributed fashion.

5.1.2 Alternating Direction Method of Multipliers
SGD [10]

Algorithm 3 ADMM.SGD
1: procedure STARTSYNCHRONOUSLYFETCH-

INGPARAMETERS(parameters)
2: parameters ←
GETPARAMETERSFROMPARAMSERV ER()

3: procedure STARTSYNCHRONOUSLYPUSH-
INGGRADIENTS(gradients)

4: SENDGRADIENTSTOPARAM-
SERVER(gradients)

5: procedure PARAMSERVER((p1, p2, ...pk, k))
6: Aggregate from all k machines p ←

(1/k)
∑k
i=1[pi]andupdate p

7: procedure ADMM.SGD(parameters)
8: step← 0
9: while true do STARTSYNCHRONOUS-

LYFETCHINGPARAMETERS(parameters)
10: data← GETNEXTMINIBATCH()
11: gradient ←

COMPUTEGRADIENT (parameters, data)
12: parameters← parameters− αgradient
13: STARTSYNCHRONOUSLYPUSHINGGRA-

DIENTS(gradients)
14: step← step+ 1

Analysis: In the ADMM procedure, we communicate the
parameters to each machine, where SGD is used to update
weights of the model. Once this is done, the weights are
sent over to the driver machine for aggregation. Once
the parameters have been aggregated and updated using
data from all machine (this is why it is synchronous),
parameters are broadcasted to all machines for the whole
procedure to be repeated. This avoids the need for shuffling
data between machines, which is the main bottleneck for
ParallelSGD algorithm.

Computation Time: It is to be noted that same amount
of computation is done in both ADMM and ParallelSGD
procedure while performing SGD. In ADMM, computation
is interspersed with communication of parameters to the
driver machine. Computation time of SGD on each ma-
chine is O(p log 1

ε), where p is size of the parameter. (with
O(log(1ε)) iterations required for convergence).

The difference is that in each iteration, we summed up
weights while sending it to the driver machine. There are
log k stages and each require O(p) computation when ag-
gregating the gradients between two machines. For log(1ε)
iterations the computation time is,

O(p log k log
1

ε
) +O(p log

1

ε
)

6

Communication Cost: Each iteration requires the
gradient to be sent over the network. Communication cost
for broadcasting the parameters(One to all) and compu-
tation of average (All to one) in the last step is O(kp) as
pk(12 + 1

4 + 1
8 ...). We do this for log 1

ε iterations. Thus the
total communication cost is O(kplog 1

ε).

Communication Time: Communication time for All to
one step when aggregating the gradients (using BitTorrent
Aggregate) there are log k layers and each require O(p)
communication time (as communication time depends
linearly on the size of the message). This is the commu-
nication time for each iteration. For log 1

ε iterations, the
Communication Time is O(p log 1

ε log k).

5.2. Asynchronous Update Methods[11]

So far, in synchronous update methods, we have used
loss gradients from all the machines before we updated the
parameters in the parameter server. Because we have a
limited bandwidth, we might have to queue these updates.
Apart from that, we will have to wait till the last machine
performs and sends its parameter update before we perform
another iteration. These clearly are communication bottle-
necks. One way to avoid such bottlenecks is to resort to
asynchronous update methods. In these methods, as soon
as a machine finishes computing updates, the parameters in
the driver get updated [6][5]. Any machine using the pa-
rameters will fetch the updated parameters from the server.

Algorithm 4 DOWNPOURSGD
1: procedure STARTASYNCHRONOUSLYFETCH-

INGPARAMETERS((parameters))
2: parameters ←
GETPARAMETERSFROMPARAMSERV ER()

3: procedure STARTASYNCHRONOUSLYPUSH-
INGGRADIENTS((accruedgradients))

4: SENDGRADIENTSTOPARAM-
SERVER(gradients)

5: procedure DOWNPOURSGD
6: step← 0
7: while true do STARTASYNCHRONOUS-

LYFETCHINGPARAMETERS(parameters)
8: data← GETNEXTMINIBATCH()
9: gradient ←
COMPUTEGRADIENT (parameters, data)

10: parameters← parameters− αgradient
11: STARTASYNCHRONOUSLYPUSHING-

GRADIENTS(gradients)
12: step← step+ 1

5.2.1 Downpour SGD [7]

Computation Time: This is similar to the computation
time of ADMM procedure.

Communication Cost: Each iteration requires the
gradient to be sent over the network. This is O(p) data. We
do this for θ iterations (say). The total communication cost
is O(θp).

Communication Time: Let T be the time taken to
compute the gradient and τ be the time the server takes to
receive the gradient message and apply parameter update.
When there are few machines, the speed of training is
bound by the gradient computation time T . Thus, even
with an infinite pool of workers, we cannot perform more
than 1/τ updates per second. A pool of k workers will, on
average, serve up a new gradient every T

k seconds. Thus,
once we have P = T

τ workers, we will no longer see any
improvement by adding more workers.

The run-time for a single parameter update with single
machine is T + τ . Both T and τ are O(p), but the constant
factor differs substantially. Thus if k < T

τ , communication
cost is governed by gradient computation time i.e. O(θ pk),
otherwise communication cost is governed by time taken
by servers to update i.e. O(τ).

Currently asynchronous update of parameters is done
for each layer. When we use back-propagation to update
weights of each layer, we move to the previous layer to up-
date its paramaters, only after completely updating parame-
ters of the current layer. Therefore, parameter update is still
in many ways, synchronous. Truly asynchronous weight
update can be achieved if we do the back-propagation also
in an asynchronous manner.

6. Conclusion and Future Work
Neural networks typically have millions of parameter

and requires large amounts of data to tune these parameters
to achieve a goal (for example, classification of images
into one of several possible classes). With growing size
of the network and larger the data-set, we are able to
extract more complex representations, but at the cost of
insanely high computation time. Some Neural Networks
take weeks to train on a single core CPU. Also the size of
the neural network may not fit in a single machine. This
made exploring ways to parallelize convolutional neural
network an interesting problem.

We have done an empirical analysis on the speedup of
convolutional layer (as a function of batch-size) and matrix-
vector multiplication (as a function of matrix size) and have

7

mentioned practical suggestions to improve training times.
We have talked about ways to achieve distributed training
and have analyzed most commonly used algorithms (like
parallelSGD), ADMM and DownpourSGD) used to
update weights in a distributed fashion. In particular,
we have analyzed ParallelSGD in depth and provide
practical suggestions to get around the strong convexity
assumption problem, since the loss function in typical deep
neural networks are non-convex in nature.

In a distributed setting we may implement Model
Parallelism i.e. split the model across different machines or
Data Parallelism and analyze the cost of computation and
communication cost.

We sincerely thank Reza for providing us with the oppor-
tunity to work on such an interesting project and for provid-
ing computational resources required for the project.

References
[1] S. W. W. W. Q. G. C. J. G. Z. L. A. K. H. T. Y. W. Z. X.

M. Z. K. Z. B. Chin Ooi, K. Tan. Singa: A distributed deep
learning platform. ACM Multimedia, 2015.

[2] L. Bottou. Large-scale machine learning with stochastic gra-
dient descent. COMPSTAT, 2010.

[3] L. Bottou. Stochastic gradient descent tricks. In Neural Net-
works: Tricks of the Trade, pages 421–436, 2012.

[4] K. O. Christopher De Sa and C. Re. Global convergence of
stochastic gradient descent for some nonconvex matrix prob-
lems. ICML, 2015.

[5] S. O. Cyprien Noel. Dogwild!distributed hogwild for cpu
and gpu. 2014.

[6] C. R. F. Niu, B. Retcht and S. J. Wright. Hogwild! a lock free
approach to parallelizing stochastic gradient descent. Neural
Information Processing Systems, 2011.

[7] R. M. K. C. M. D. Q. L. M. Z. M. M. R. A. S. P. T. K. Y.
A. Y. N. J. Dean, G. Corrado. Large scale distributed deep
networks. Neural Information Processing Systems, 2012.

[8] Y. Jia. Caffe: An open source convolutional architecture for
fast feature embedding. http://caffe. berkeleyvision.org/.

[9] A. S. L. L. Martin A. Zinkevich, Markus Weimer. Paral-
lelized stochastic gradient descent. Neural Information Pro-
cessing Systems, 2010.

[10] E. C. B. P. Stephen Boyd, Neal Parikh and J. Eckstein. Dis-
tributed optimization and statistical learning via the alternat-
ing direction method of multipliers. Foundations and Trends
in Machine Learning, 2011.

[11] J. Y. Z. L. T. Paine, H. Jin and T. S. Huang. Gpu asyn-
chronous stochastic gradient descent to speed up neural net-
work training. CoRR, abs/1312.6186, 2013.

[12] K. L. Xiaqing Li, Guangyan Zhang and W. Zheng. Deep
learning and its parallelization.

[13] K. S. . A. Zisserman. Very deep convolutional networks for
large-scale image recognition. 2015.

8

