CME 323
Project

A Distributed Solver for Kernelized SVM

Haoming Li, Bangzheng He

Stanford ICME

haoming@stanford.edu
bzhe@stanford.edu

June 3, 2015

Overview

CME 323
Project

© SVM and Kernels
© SGD method on single machine
© Parallel Kernal SVM

@ Experiments

© Conclusions

Support Vector Machines

CME 323
Project

@ A widely used supervised learning model, originally for binary
classification.

@ Model represented as the normal vector of a separating hyper-plane,

SViMlsnd w, and has convex objective (primal):

Kernels

w) = SIwlE+ > max{o,1 - yitw, o))}

i=1
It has the form 2-norm regularization 4 empirical loss.
{(xi,yi)lxi € RY, yi € {=1,1}}" is the training data.
@ The lagrange dual function has the form:

m

Lp = —% > viviaiai($(xi), 6(9)) + Y ai

ij=1 i=1

Kernels

CME 323
IPlieljzs @ The optimal w can be written as a superposition of training data:

m
w= Za;yiqﬁ(x,-)
SVM and i=1
Kernels

(w, ¢(x)) = Za;y; (¢(x1), #(x))

@ Therefore we need not specify the transformation ¢(x;) at all, but
require only knowledge of the kernel function:

K(xi, %) = (¢(xi), (%))

@ Popular kernels include radial basis function (rbf), d*'-Degree
polynomial kernels, etc.

rbf : K(xi, %) = exp(—y|lxi — x||°)

Stochastic Gradient Descent: S-pack Algorithm

CME 323
Project

@ Based on stochastic gradient descent, the empirical loss can be
approximated by the hinge loss on a single training sample.

@ At iteration t, we randomly pick up a sample (x;, y;), then we have
the sub-gradient:

SGD method () <)>
on sin_gle _ y,¢ Xi), Yi (b Xi <1
machine Aw —{ otherW/(se

@ For faster learning rate, update the predictor w:

1 Xi), Vi i 1
we (1= ?)WjL{ xeola) }t/31“§1erw1(se)> <

Wemin{l,m}

Iwll,

CME 323
Project

ng He

SGD method
on single
machine

S-pack sequential algorithm

Input: A\, T, training data
Initialize: H =0, s = 1, norm = 0
fort=1,2,...T do
Randomly pick training sample (x, y)
Y s, 8y)en BiK(xi x)
s+ (1—1/t)s
if yy/ < 1 then
norm <— norm + 2yy’ /At + (y/At)?K(x, x)
if key x is found in H then
| (6 B) « (x, B +y/xts)
else

L H + HU(x, y/\ts)

if norm > 1/X then

s < s/ Anorm

norm < 1/X

return s, H

Training data size m, number of features d(x € Rd)4 Only line 4 take at most O(md) time, other
commands run in constant time.

And it was analyzed in Pegasos[Shalev-Shwartz, Shai, et al.] that it requires T = O(1/\é¢) iterations to get
[f(w) — f(wx)| < e with at least 1 — & probability.

Total runtime O(md/A&e). Since the optimal A = O(1/m), total runtime O(m?d/&e)

Parallel P-pack Algorithm

CME 323
Project

Assumptions:
@ The feature dimension d is not too large, that is, a small number of
data points can fit in single machine.
@ The data size m is large so that it should be distributed as RDD.
el (Kemel @ The model, i.e., support vectors, are also distributed.
VM @ Kernel function K(x1,x2) can be computed in O(d).
Idea: parallelize the computation in each iteration, in particular the

computation of sub-gradient, in which the most costly part is to evaluate
the response of the chosen sample based on the current model.

Parallel P-pack Algorithm

CME 323
Project

@ If the current model is stored as RDD[x, y,], then given any sample
(xi, ¥i), we can easily compute its response in parallel by broadcasting
- map - all reduce. Then send this response back to the driver and
finish the computation of sub gradient locally on worker, which takes

e TR L] constant time in spite of m or d or anything.

SVM @ The tricky part is updating the model. RDDs usually don’t serve well
as distributed hash tables.

@ Luckily found IndexedRDD: developed by AMPLab, using Long keys
and can efficiently lookup/update elements in RDD by key.

Parallel P-pack Algorithm: packing strategy

CME 323
Project

Suggested by the author, a packing strategy might help. In each iteration:
@ Pick r rather than 1 samples at a time.
@ Compute sub-gradient with respect to these samples sequentially.
Parallel Kernal @ update the model with r updates at a time.

SVM . . N .
Doesn't reduce the computational cost at all (even increases it a little bit),

but is desirable in practice. (Latency and efficiency of IndexedRDD).

Parallel P-pack for Kernal SVM

CME_ 323 Processor i (total number of processors p)
Project Input: A, T, r, D (training data rdd)

Initialize: H = IndexedRDD(D.map((x, y) => (idx, x, y, alpha = 0)), s = 1, norm = 0
fort=1,2,...,T/rdo
Randomly pick r samples (idxy, X1, ¥1) - - -, (idx,, X, , y;), broadcast to all processors
for k =1,
yk — H map(h => h.y x h.a x K(xx, h.x)).reduce(+)
Calculate pair,,, < K(xy,x,)(u=1,...,rv=1,...,ru < v)in distributed manner
LocalSet « 0
fork=1,...,rdo
—t-r+k; sf—(l—l/t/)s
forlfk+,1 Lo, rd
yp = 1= l/f W
Parallel Kernal if yky, < 1then
SVM norm <«— norm + Zykyk’/)\t + (y/At)zpairk P
LocalSet «+ LocalSet | {(Ika, Xks Yi» ,)}
forl:k+1 ..., rdo
i Vi

y, “—y + N7 - pairy,;

if norm > 1/ then
s = ;norm <— 1/X

V' X-norm
forl:k+1,...,5do
y — i
! VX norm

Update H according to LocalSet

return s, H

CME 323
Project

L7 Data size m, feature dimension d, regularization parameter X\, packing size r, running T iterations (T /r
rounds of updates), using p processors. In each round:

@ Line 6, computing contribution to responses by each support vector for r samples: O(rd - %)
@ Line 6, sum up responses from all processors: O(rp)
. . - 24
@ Line 9, computing pairwise inner-products: O(T)
@ The rest: O(r?)

Parallel Kernal The total computation cost is:
SVM

T rmd r2d 5 (m+r)d
Lo s Tl Ay =T o)
r P P P

Considering the fact that r = O(m) and optimal A = O(1/m) and T = O(1/Xd¢€), we have computational
cost:
1
o((m*d/p + mp) - <)+ Olmr/5¢)
€

Compared with O(m?d/&¢) of single machine.

Communication Cost

CME 323
Project

Li Data size m, feature dimension d, regularization parameter X\, packing size r, running T iterations (T /r
rounds of updates), using p processors. In each round:

@ Line 4, taking r samples: shuffle O(rd)

@ Line 4, broadcasting samples: 1-to-all O(rdp)

@ Line 6, all reduce(with combiners) to get estimated responses: all-to-1 O(rp)
@ line 7, collect to send all pairwise inner-product to driver: all-to-1 O(r?)

@ Line 23, updating parameters: 1-to-1 O(rd)

Parallel Kernal Summing % rounds of update, we have total communication cost:

SVM

T 2
— - O(rdp + r°)
r

Since optimal A = O(1/m) and T = O(1/Ad€), the total communication cost can also be denoted as:

O((dp + r)m/éS¢)

Empirical results

CME 323
Project

Using the "UCI Adult” dataset on LibSVM website. 18,000 training
samples with 123 features. Rbf kernel is used and we study:

@ Convergence with respect to number of iterations T.

@ Performance with respect to packing size r.

Experiments

@ Scalability with respect to number of processors p.

Convergence

CME 323
Project

ing Li Study convergence: does this algorithm converge at all? How many
- iterations does it take? Test accuracy against number of iterations:

o J
- —lambda =03, m=18000,r=100 | |
o]

Experiments 086

We find that this converges after 10000 iterations, about half of the
data size m.

Packing size

CME 323
Project

Experiments

L , L
I R

Empirically the optimal r in our case is around 200.

Scalability

CME 323
Project

Experiments

We do benefit from adding cores. We believe better scalability can be
achieved if tuning packing size r for different p.

Conclusions

CME 323
Project

@ We studied and implemented a SGD algorithm that can solve
Kernel SVM and can benefit from adding more machines,
especially when there are not already too many machines.

@ Some parameters (i.e, T, r) need to be properly set for best
performance.

Conclusions

References

CME 323
Project

[@ Zhu, Zeyuan Allen, et al (2009)
P-packSVM: Parallel primal gradient descent kernel SVM.
Data Mining, 2009. ICDM’09 .

ﬁ Shalev-Shwartz, Shai, et al. (2011)
Pegasos: Primal estimated sub-gradient solver for svm.
Conclusions Mathematical programming 127.1 (2011): 3-30.

CME 323

Project

ng He

Thank you!

Conclusions

	SVM and Kernels
	SGD method on single machine
	Parallel Kernal SVM
	Experiments
	Conclusions

