
CME 305: Discrete Mathematics and Algorithms
Instructor: Professor Amin Saberi (saberi@stanford.edu)

Midterm – 02/28/10

Problem 1. Show that a graph has a unique minimum spanning tree if, for every cut of the
graph, the edge with the smallest cost across that cut is unique. Show that the converse is
not true by giving a counterexample.

Solution: Suppose MST is not unique, i.e., there exist T1 and T2 where both of them are
MST and they are not identical. Suppose e1 ∈ T1 but e1 /∈ T2, if we remove e1 from T1, then
we will have two trees with vertex sets V1 and V2. By problem 1 of HW #2, we know that e1
is a minimum cost edge in the cut between V1 and V2. Now consider T2, again problem 1 of
HW #2, we know that T2 contains an edge e2 that is a minimum cost edge of the cut between
V1 and V2. However, since e2 6= e1 we must have: c(e1) = c(e2) which is contradicting with
the assumption that for every cut of the graph, the edge with the smallest cost across that
cut is unique.

Counter-example for the converse: suppose the graph is a tree with 3 nodes, where both
edges have cost 1. Let v be the node with degree two. Clearly the only spanning tree is
the graph itself, but the cut between v and the two leaves contains two cost 1 edges, so the
minimum cost edge is not unique across this cut.

Problem 2. The edge connectivity λ(G) of an undirected graph G(V,E) is defined as
the cardinality of a minimum set of edges S ⊆ E, whose removal disconnects G. Give a
polynomial-time algorithm for computing λ(G).

Solution: There are k = n(n− 1)/2 distinct pairs of vertices in G. We solve k maximum
flow problems, one for each pair, and pick the one with the smallest maximum flow. Each
flow problem for vertex pair {i, j} is formulated as follows. For each edge in G, replace it
with two directed edges i.e. for each {i, j} define directed edges (i, j) and (j, i). Define a
flow network N by introducing a source s and sink t to the modified graph. Connect s to
vertex i with a directed edge (s, i) and j to t with directed edge (j, t). Each max-flow in each
of the k networks then corresponds to the min cut in N by the max-flow min-cut theorem.
We pick the minimum of these k values. This min-cut defines the set S in a straightforward
way since we have for any cut (S, S̄) in G there is a vertex pair {i, j} for which we’ve solved
a max-flow problem and thus found a min-cut. Our algorithm takes polynomial time since
we max-flow can be solved in polynomial time and we solve a polynomial number k of such
problems.

Problem 3. Recall the job scheduling problem. We have m machines and n jobs such that
any machine j takes time ti to process job i. Let Aj be the set of jobs assigned to machine j.
In that case, Tj =

∑
i∈Aj

ti will be the load of machine j. Our goal is to find an assignment
of jobs to machines that would minimize maxj Tj. Denote this minimum value OPT .



Consider a slightly modified greedy approach to the one showed in class. First, we sort the
jobs so that t1 ≥ t2 ≥ · · · ≥ tn. Then, we assign them iteratively to the machines, every
time to the machine with the smallest load.

Show that the approximation factor of this algorithm is at most 3/2.

Hint: Note that if n > m then tm+1 ≤ OPT/2. Why is this true?

Extra Credit: Prove that the approximation factor of the algorithm is actually equal to
4/3.

Solution: If there are at most m jobs, the scheduling is optimal since we put each job on
its own machine. If there are more than m jobs by the pigeonhole principle, at least one
processor must get 2 of the first m + 1 jobs. Each of these jobs is at least as big as tm+1.
Thus, as in the hint OPT ≥ 2tm+1.

Consider machine j assigned maximum load T where j > m since otherwise we are done. Let
i be the last job assigned to j. By the hint and since the loads are sorted ti ≤ tm+1 ≤ OPT/2.
Then, following the notes in class

T = (T − ti) + ti ≤
1

m

m∑
j=1

Tj + ti ≤ OPT +OPT/2 =
3

2
OPT

Extra Credit: First, lets assume that n > 2m. Applying the same reasoning as above we
have OPT ≥ 3 t2m+1 ≥ 3 ti for i > 2m+ 1 and as before we have

T = (T − ti) + ti ≤
1

m

m∑
j=1

Tj + ti ≤ OPT +OPT/3 =
4

3
OPT

where T is the makespan produced by the algorithm.

Now, we need to show that for n ≤ 2m, the algorithm produces a makespan with value
T = OPT . Consider the following properties of the optimal assignment for jobs:

1. Each job i ≤ m is assigned its own machine. Otherwise, any two such jobs on a
machine would produce a load greater than T . Thus, w.l.o.g. we can assign each such
job i to machine j = i in the optimal assignment.

2. By the same reasoning, the next k ≤ m jobs have to be placed on machines m,m −
1, . . . ,m− k + 1. Otherwise, we again would exceed T .

Finally, the optimal assignment of the last k jobs has to follow the algorithm placement since
any interchange of the last job with any other increases the makespan. Thus, the algorithm
reproduces the optimal makespan for n ≤ 2m.

2


