
CME 305: Discrete Mathematics and Algorithms
Instructor: Reza Zadeh (rezab@stanford.edu)

Problem Session #1 – 02/10/15

1. (Kleinberg Tardos 11.10) Suppose you are given an n by n grid graph G with
vertex weights w(v) ≥ 0 that are all distinct and integer. The goal is to choose an
independent set S of nodes of the grid, so that the sum of the weights of the nodes in
S is as large as possible.

Consider the “heaviest-first” greedy algorithm. Start with S = ∅, and while |V | 6= 0
pick the node vi ∈ V of maximum weight, add vi to S and delete its neighbors from
G. The resulting S will be an independent set by construction.

(a) Let S be the independent set returned by the algorithm above, and let T be any
other independent set in G. Show that, for each node v ∈ T , either v ∈ S, or
there is a node v′ ∈ S so that w(v) ≤ w(v′) and (v, v′) ∈ E.

(b) Show that this algorithm returns an independent set of total weight at least 1
4

times the maximum total weight of any independent set in the grid graph G.

Solution: (a) Let T be an independent set in G and let S be the output of the greedy
algorithm. Note that the algorithm terminates when all vertices are either deleted or in
set S. Thus for v ∈ T , either v ∈ S or v was deleted which means it has some neighbor
v′ of maximal weight moved into set S. This vertex must satisfy w(v′) ≥ w(v) and we
have the desired result.

(b) Let W ∗ be the weight of the optimal independent set T . Let W be the weight of
set S output by the algorithm. For each v ∈ T , define v′ = v if v ∈ S or as its neighbor
in S otherwise. Such a neighbor is guaranteed by part (a) and satisfies w(v′) ≥ w(v).

W ∗ =
∑
v∈T

w(v)

≤
∑

v′,v∈T

w(v′)

≤ 4
∑
u∈S

w(u)

= 4W

where we’ve used the fact that each u ∈ S can have at most 4 neighbors in T .

2. An n-dimensional cube can be represented by a graph with 2n vertices with every
vertex corresponding to an n-bit binary number. Two vertices are connected by an
edge if their corresponding binary numbers differ by only one bit. For example, the
following represents a 2-D cube.

Prove that every n-dimensional cube has a Hamiltonian cycle.

Solution: Do this by induction on dimension n. The base case pictured has the
Hamiltonian cycle 00, 01, 11, 10.

We assume there exist one for an n dimensional cube (IH). To show for n+ 1, fix the
first bit at 0. Use (IH) on the last n bits to construct a walk using the Hamiltonian
cycle without taking the last step. We are now at vertex 0i1i2 . . . in. Take a step to
1i1i2 . . . in switching the first bit. Recreate the walk from before in reverse order. We
now find the walk in the same configuration as when we started with the exception of
the first bit which is 1. Take the last step switching the first bit to 0. We are back
where we started visiting each vertex exactly once and constructing a Hamiltonian
cycle in an n+ 1-dimensional cube.

3. (Lovasz, Pelikan, and Vesztergombi 8.5.6) A double star is a tree that has exactly
two nodes that are not leaves. How many unlabeled double stars are there on n nodes?

Solution: We can represent each unlabeled double star by an unordered pair {a, b}
where a is the number of leaves adjacent to one of the two non-leaf nodes and b is the
number of leaves adjacent to the other. Therefore, to compute the number of double
stars we need to find the number of sets {a, b} (note that {a, b} = {b, a}) such that
a, b > 0 and a + b + 2 = n. The first condition comes from the fact that the non-leaf
nodes must be adjacent to at least one leaf and the second condition is simply the
statement that, taken together, the leaves and the two non-leaf nodes make up the
entire node set.

First, assume n is even. Then a can take on values in A = {1, 2, . . . , (n − 2)/2}. A
smaller value contradicts a > 0 and a larger one implies that b ≤ n/2 − 2 so b ∈ A
and we have counted {a, b} twice. Now, assume n is odd. Then a can take on values
A = {1, 2, . . . , (n − 3)/2}. A smaller value again contradicts a > 0 and a larger one
implies b ≤ (n− 3)/2 so again b ∈ A resulting in double counting.

Thus the number of unlabeled double stars is given by (n − 2)/2 whenever n is even
and (n− 3)/2 whenever n is odd.

4. (Lovasz, Pelikan, and Vesztergombi 8.5.10) If C is a cycle, and e is an edge
connecting two nonadjacent nodes of C, then we call e a chord of C. Prove that if
every node of a graph G has degree at least 3, then G contains a cycle with a chord.

Solution: Suppose u0u1 . . . uk is the longest path in G(V,E). Since d(u0) ≥ 3, there

2

exist two neighbors w, v of u0 not equal to u1. Since u0u1 . . . uk is the longest path,
we must have that w, v ∈ {u2, u3, . . . , uk}. Suppose w = ui, v = uj with i ≤ j. Then
u0u1 . . . uju0 is a circle with chord u0ui.

5. Show that every graph G = (V,E) has a subgraph on at least |E|/2 edges which is
bipartite.

Solution: The claim is easily shown by probabilistic method. Consider flipping a fair
coin for each node; if heads, put the node in a set S and if tails, do not. So we have a
partition of the nodes into two sets, S and V \S. Now consider the subgraph obtained
by just taking the edges crossing this cut, then we have created a bipartite subgraph
of G, and the expected number of edges in the subgraph (in the cut) is |E|/2, so by
probabilistic method, there must exist some cut (subgraph) with at least this many
edges.

6. Suppose G = (V,E) has degree sequence d1,...,dn, where n = |V |. Show that G has an
independent set of size at least:

n∑
j=1

1

dj + 1

Hint: consider a random permutation π(∗) of the vertices and consider the set: A =
{x ∈ V |π(x) < π(v), ∀y ∈ N(x)}.
Solution: We claim that A is independent set because for every edge, only the lesser
node can be in A, so at most one endpoint of the edge is in A. Now we have E[A] =∑

v∈V E[(1v∈A)] =
∑

v∈V Pr[v ∈ A] =
∑

v∈V
1

1+dv
, and we are done by probabilistic

method.

7. Let G be an undirected simple graph on n vertices and with m edges. Given a pair of
vertices (s, t) design a random walk based algorithm to determine whether the two are
connected. Your algorithm should must store only the current position of the random
walk and have polynomial running time.

Solution: Here is the algorithm. Fix k such that 1/2k is “very” small. Run a random
walk starting at s for 4m(n− 1)− 1 steps or until we hit t. Repeat this process for k
trials and report that s and t are disconnected if and only if we do not hit t during any
of these k trials. The running time of our algorithm is O(nm) which is polynomial in
the input.

Next, note that E(Hst) ≤ C(G) (the hitting time of t starting at s is shorter than the
time to hit all vertices). Then applying Markov’s inequality and using the result of
part (a) we obtain

P(Hst ≥ 4m(n− 1)) ≤ E(Hst)

4m(n− 1)
≤ C(G)

4m(n− 1)
≤ 1

2
.

This implies that starting at s and running the random walk for 4m(n−1)−1 steps, the
probability that we do not hit t given that s and t are connected (i.e. the probability

3

of of failure) is at most 1/2. If we run this procedure k times and never hit t, the
probability that s and t are connected is P(Hst ≥ 4m(n− 1))k ≤ 1/2k. So if we never
hit t we know with high probabililty that s and t are disconnected.

8. Show that every instance of 3-SAT has assignment of variables that satisfy at least a
7/8 fraction of the clauses.

Solution: We know a clause is not satisfied if all literals are false. Consider tossing a
fair coin for each variable to set (heads to true, tails to false). Then all three literals of a
clause will be false with probability 1/8. By linearity of expectation, expected number
of satisfied clauses = 7/8 times number of clauses. And we are done by probabilistic
method.

4

