Binary Black Holes: An Introduction

Roger Blandford
KIPAC
Stanford

29 xi 2012 Tucson
Inertial Confinement of Extended Radio Sources

Three-Dimensional Magnetohydrodynamic Simulations of Buoyant Bubbles in Galaxy Clusters

De Young and Axford 1967, Nature
O’Neill, De Young and Jones 2011

Fig. 1. Calculated shape of plasma.
Mergers and Acquisitions

- Mpc Problem
- kpc Problem
- pc Problem
- mpc Problem
The Megaparsec Problem

- **Galaxies with Spheroids** have massive black holes (MBH)
 - \(m_8 \sim \sigma_{200}^4 \); \(m \sim 10^{-3} M_{\text{sph}} \)
 - **Evolution?** (Treu et al)

- **Galaxies assembled through hierarchical mergers of DM halos.**
 - Major and minor
 - Halo Occupation Density
 - DM simulations quantitative; gas messy

Can we calculate \(R(m_1, m_2, z, \rho \ldots) \)?
Energy self-sufficiency?

- Kocevski eg (2012) [CANDELS]
 - Modest power
 - X-ray selected
 - Imaged in NIR
 - $z \sim 2$

- AGN
 - ~ 0.5 in disks; ~ 0.3 in spheroids
 - >0.8 undisturbed like control sample

- Selection effects rampant!
 - Opposite conclusions drawn from other studies

How do we ask the right questions observationally?
The kiloparsec Problem

- **Circum-Nuclear Disks**
 - ULIRGs ~ 100 pc
 - Sgr A* ~ 1 pc
- **Invoked to supply friction**
 - Is it necessary for merger?
Double AGN

• **Sample**
 – SDSSIII etc
 – Double-peaked spectra
 • O[III] $5007 \Delta V \sim 300$-1000 km s$^{-1}$
 – Adaptive optics
 – X-rays, radio
 – Spectra

• **Are they outflows/jets/NLR?**

Double gas, disks, holes, NLR?

29 xi 2012

Tucson
Deadbeat Dads?

- Are quasars mergers of two gas-rich galaxies?
- Is there a deficit of dual AGNs?
- If so, why?
 - Selection effects?
 - Dust?
 - Need both galaxies to be gas rich before merger?
- ALMA very important; spectra!

Will EVLA, ALMA, VLBI solve this problem?
The parsec Problem

- Bound within $\sim 10^6 m$
 - $r \sim M_7 pc$
- Can binaries harden?
 - Can stars do the job?
 - Dynamical friction
 - Evaculate core vs loss cone filling
 - Bars minor mergers
 - Can gas provide the friction?

Are there sufficient stars to provide dynamical friction?
Eccentricity and Multiplicity

- Three bodies can change orbits
 - Resonances
 - Ejection
- Dynamical friction can make eccentric
 - At apapse, large lever, small speed
 - Friction changes L (p) not E
- Gravitational radiation and gas likely to circularize

Graphs showing the reduction of binary separation and growth of the eccentricity over time.
The milliparsec Problem

• **Is GR correct?**
 – We know it is good to $\sim 10^{-5}$ in weak field limit
 – **Stationary strong field in Kerr metric**
 • Gas flow
 – **Dynamic strong field in mergers**
 • Gravitational radiation

• **How do AGN release most power?**
 – Disks?
 – Winds?
 – Jets?

29 xi 2012
Tucson
Velocity

- **Velocity Difference**
 - $z \sim 0.4, \Delta V \sim 3500 \text{km s}^{-1}, m \sim 10^7, 10^9 M_{\text{sun}}$ (Lauer, Boroson)

- **Velocity Change**
 - Acceleration (Eracleous)

- **May not be Binary**
 - Emission line region dynamics

What are standards of proof?

29 xi 2012

Tucson
Wages of Spin?

- Dual twin jets rare
 - eg 3C75

- Disk or spin; field or gas?
 - Magnetically-choked, accretion
 - Jets are efficient, robust and pliable

- Alignment with disk?
 - Bardeen-Petterson?
 - Magnetic torques more important?

29 xi 2012 Tucson

McKinney
Black Hole Imaging

- Sgr A* and M87
 - 4 million and 7 billion M_{\odot}
 - Same angular size m/d $\sim 5\mu$as!
 - Event Horizon Telescope
 - Submm VLBI (ALMA), space
 - SgrA* may vary too fast
 - Fringes from $\sim 5m!$ (Doeleman et al)

Can we convert hydro to mm images?

29 xi 2012

Tucson

McKinney
Pulsar Timing Arrays

- NanoGRAV, EPTA, PPTA, MeerKat, SKA... = IPTA!
- Background vs nearby strong sources
 - Sazhin, Rajagopal & Romani, Sesana....
- Best timers have 40 ns arrival times τ

$$\tau = \frac{1}{2} \int dzh \sim 3 - 10\text{ns}$$

Depends on angular momentum, L!

$$\tau(\tau) = \frac{L}{s}[C_+(d,s)D_+(e,\phi,\theta) + C_x(d,s)D_x(e,\phi,\theta)]$$

Will pulsar timing be the first to detect a binary black hole?

29 xi 2012

Tucson
Harbingers and Repercussions

- **LISA/eLISA/NGO…**
 - Test GR in strong field limit; Standard sirens
 - $2m_3^{-1}$ Hz at ISCO, sensitive to $10^5-10^7M_{\text{sun}}$
 - Probe galaxy/hole co-assembly at early time

- **GW signal and 1° field predicting merger**
 - Seek tiny fraction of c^5/G in ROX with GW phase
 - Identify galaxy and observe merger with all telescopes
 - Also for EMRI
 - At this point this seems a fantasy!

- **Peculiar X-ray signal as gas falls in after BH merger**
 - Could be years for small m (Phinney, Milos…)
 - Nice simulations (MacFadyen)

What are the capabilities of a realizable space mission?
Questions

• Can we calculate $R(m_1, m_2, z, \rho ...)$?
• How do we ask the right questions observationally?
• Double gas, disks, holes, NLR?
• Are there sufficient stars to provide dynamical friction?
• Will EVLA, ALMA, VLBI solve this problem?
• What are standards of proof?
• Can we convert hydro to mm images?
• Will pulsar timing be first to detect a binary black hole?
• What are the capabilities of a realizable space mission?