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2 NOTES BY CHAO LI, EVANGELIE ZACHOS

These are the notes of Or Hershkovits’ course on mean curvature flow taught at Stanford Uni-
versity in the Winter of 2016-2017. We would like to thank Or Hershkovits for an excellent class.
Please be aware that it is likely that we have introduced numerous typos and mistakes in our
compilation process, and would appreciate it if these are brought to our attention.

This course will focus on the theory of mean curvature flow and its applications. Topics covered
include curve shortening flows in R2, mean convex flows, mean curvature flows with surgery, and
their applications to various geometric and topological questions such as the Riemannian Penrose
inequality, and the path-connectedness of the space of all 2-convex embedded spheres. The course
will assume the reader to know basic submanifold geometry. Although some familiarity of heat
equation and the maximum principle will be helpful.

1. Introduction and overview

1.1. Geometric background.

Definition 1.1. Let Mn be a compact smooth manifold. A family of embeddings of Mn into Rn+1,
ϕ : M × [0, T ]→ Rn+1 is said to be evolved by mean curvature flow, if

dϕ

dt
= ~H(ϕ(x, t)),

where ~H is the mean curvature vector.

Remark 1.2. For a submanifold M ⊂ Rn+1, let us recall that

∇Rn+1

X Y = ∇MX Y +A(X,Y ), ∀X,Y ∈ TM.

Here A is the vector valued second fundamental form. The mean curvature vector is defined by
~H = trA =

∑n
i=1A(Ei, Ei), {Ei} is an orthonormal frame.

Remark 1.3. Let us view the mean curvature vector in a different way. By definition,

HessM ϕ(X,Y ) = XY ϕ− (∇MX Y )ϕ

= XY ϕ− (∇Rn+1

X Y )ϕ+A(X,Y )ϕ

= A(X,Y )ϕ

Therefore ~H = tr HessM ϕ = ∆ϕ. So the mean curvature flow can be written as:

dϕ

dt
= ∆g(t)ϕ.

Hence it is a geometric heat equation.

Remark 1.4. Another way to understand the mean curvature flow is as follows. Let X be a
compactly supported vector field in Rn+1, φs is the one-parameter family of diffeomorphisms it
generates. Then we may derive without much difficulty that

d

ds

∣∣∣∣
s=0

Vol(φs(M)) = −
ˆ
M

〈
~H,X

〉
dVolM .

Hence the mean curvature vector is the direction where the volume of the submanifold decreases
the fastest. In other words, the mean curvature flow is the gradient flow of the area functional.

The first question in the study of mean curvature flow is its existence. By the basic theory
of general heat equation, if the initial data is C3 then there exists smooth mean curvature flow
starting from it. In general, one may ask how rough can the initial surface be so that there is short
time existence, and what regularity properties the flow has. Let us mention some results in this
direction.
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The first result is due to Ecker and Huisken, who proved that if the initial surface is locally
Lipschitz, then the mean curvature flow has short time existence. Here we call a hypersurface
(R,C)- locally Lipschitz, if for any point p, M ∩B(p,R) is a Lipschitz graph over some hyperplane
with Lipschitz constant bounded by C. Their results also enable one to control the Lipschitz
constant of the short time solution by the Lipschitz constant of the initial data. Note that such a
gradient estimate does not hold for the usual heat equation. For instance, consider the parabolic
square P = [0, 1] × [0, T ). Let a C2 function u solves ut = ∆u in P with initial data u = 0 on
[0, 1]×{0}. Then at a given point (ξ, t) ∈ P , there is no control on |u′(ξ, t)|. For the mean curvature
flow, by Ecker and Huisken’s result, the Lipschitz constant on an open ball controls the Lipschitz
constant in short time on a smaller ball.

Another result worth mentioning here is due to Laver, who proved that for a continuous curve
γ : S1 → R2, such that the 2-Hausdorff measure of the image of γ is 0, there exists a unique mean
curvature flow starting from it. This shows that the initial data of a curve shortening flow can be
very rough (imagine a square-filling curve whose 2-Hausdorff measure is 0).

1.2. Useful tools. The first useful tool in the study of mean curvature is the avoidance principle.
It is an application of the maximum principle of the heat equation. Roughly speaking, if two
hypersurfaces do not touch initially, then under the mean curvature flow they won’t touch.

Theorem 1.5. Let {Mt}t∈[a,b] and {M ′t}t∈[a,b] be two family of embedded hypersurfaces evolved by
the mean curvature flows, and suppose Ma ∩M ′a = φ. Then Mt ∩M ′t = φ, for all t ∈ [a, b].

To get an immediate corollary, let us look the evolution of a sphere of radius R0. It is easy to see
that under the mean curvature flow, R′(t) = − n

R . Hence R(t) =
√
R2

0 − 2nt. Since any compact
embedded hypersurface is enclosed by a sphere, we conclude that the mean curvature flow extincts
in finite time (in other words, the flow becomes singular in finite time).

Another useful method that we will discuss is the blow-up analysis. To study the nature of
singularities of the mean curvature flow, let us distinguish two cases. Let T be the first singular
time of the mean curvature flow, A is the second fundamental form of the embedding.

• There is some constant C such that |A|(·, t) ≤ C√
T−t .

• maxMt

√
T − t|A| is unbounded.

In the first case, by rescaling the flow we are able to take a subsequencial limit to get a tangent
flow. Using Huisken’s monotonicity formula, we are able to get classification in some situations.

In the second case, by taking a different limit we may get a convex limit. Then using analytic
results specifically for convex flows, we are able to make conclusions.

As an example, we will see that for the curve shortening flow, by using the Hamilton-Li-Yau
Harnack inequality and the two-point maximum principle, we are going to argue that the second
case does not appear. And in the first case, the monotonicity formula for curves will give us a
complete classification of the tangent flow. Combining these ideas, we will prove:

Theorem 1.6 (Grayson). Let γ0 be a closed connected curve in R2. Then there exist x0 ∈ R2 and
T <∞, such that the mean curvature flow γt emenating from γ0 converges to a round point around
x0:

γt − x0√
T − t

→ S1(c).

Let us note here that in higher dimensions, other singularities may form. One of them is the
famous dumpbell hypersurface in Rn, n ≥ 3. We will see that the singularity it form will not be
round.

A third method to study the flow beyond singularity is through weak solutions- for instance, the
level set flow and the Brakke flow. The main issue here is the regularity of these weak solutions.
Toward that end we have the following theorem:
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Theorem 1.7 (Ilmanen). A generic embedded weak solution of the mean curvature flow of hyper-
surfaces in Rn+1 has a singular set with parabolic dimension less than n.

It is conjectured that the genericity is not necessary, and that the singular set should be at most
(n− 1) dimensional.

For the special case with mean convex initial hypersurfaces, we know a little bit more:

• The singularity is at most (n− 1) dimensional at all time, and
• The singularity is at most (n− 3) dimensional at almost all time.

2. The avoidance principle

In this section we discuss the maximum principle of parabolic equations.

Theorem 2.1. Suppose M is a compact manifold, g(t) is a time dependent family of metrics, X
is a time dependent vector field. Let F : R × [0, T ] → R, u : M × [0, T ] → R be two C2 functions,
satisfying

du

dt
≥ ∆g(t)u+

〈
∇g(t)u,X

〉
+ F (u(x, t), t).

Further, suppose that u(·, 0) ≥ α for some positive α.
Let h : [0, T ]→ R be a comparasion function which solves the ODE{

dh
dt = F (h(t), t)

h(0) = α.

Then u(x, t) ≥ h(t) for all t ∈ [0, T ], x ∈M .

Proof. Let ε > 0. Consider hε to be the solution to{
dhε

dt = F (hε(t), t)− ε
hε(0) = α− ε.

Claim: u(·, t) > hε(t).
If not, let t0 be the first time that the claim is contradicted. By assupmtion t0 > 0, and there

exists x0 such that u(x0, t0) = hε(t0). Further, u(x, t0) ≥ u(x0, t0) for all x ∈M . Therefore

∆g(t) ≥ 0, ∇g(t)u = 0.

Therefore
du

dt
(x0, t0) ≥ F (u(x0, t0)) = F (hε(t0), t0) =

dhε

dt
+ ε.

Contradiction. The claim is proved.
Since F is Lipschitz, hε → h as ε→ 0. Hence we conclude that u(x, t) ≥ h(t).

�

Proposition 2.2. Suppose that M is as above, F : M × [0, T ] → R is a smooth function, and let
ϕ(t) = minx∈M F (x, t). Then:

(1) ϕ is Lipschitz.
(2) Let t be a time where ϕ is differentiable, and let x ∈ M be such that F (x, t) = ϕ(t). Then

∂
∂tF (x, t) = d

dtϕ(t).

Proof. Choose x0 such that ϕ(t0) = F (x0, t0). Then for any t1,

ϕ(t1)− ϕ(t0) ≤ F (x0, t1)− F (x0, t0).

Therefore ϕ is Lipschitz.
Suppose further that t0 is a time of differentiability of ϕ. Let h > 0. Then

1

h
(ϕ(t0 + h)− ϕ(t0)) ≤ 1

h
(F (x0, t0 + h)− F (x0, t0)).
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Therefore
dϕ

dt

∣∣∣∣
t0

≤ ∂F

∂t
(x0, t0).

For similar reasons,
dϕ

dt

∣∣∣∣
t0

≥ ∂F

∂t
(x0, t0).

Therefore we conclude that they are equal. �

As a corollary, we prove the avoidance principle.

Corollary 2.3. Let {M1
t }, {M2

t }, t ∈ [a, b] be two family of compact embedded hypersurfaces evolv-
ing by the mean curvature flow. Suppose M1

a ∩M2
a = φ. Then

d

dt
dist(M1

t ,M
2
t ) ≥ 0

at points of differentiability. In particular, their distance is increasing.

Proof. Let t be a time of differentiability of the distance function. Consider the function F :
M1 ×M2 × [a, b]→ R+,

F (x1, x2, t) = dist(ξ1(x1, t), ξ
2(x2, t)).

Then F is a Lipschitz function. Suppose x1 ∈ M1, x2 ∈ M2 be the closest points. Then by the
previous proposition,

d

dt
dist(M1

t ,M
2
t ) =

d

dt
dist(x1, x2).

Since x1, x2 are the closest points, their tangent planes must be parallel. Let ν be the unit normal
vector.

Suppose, by contradiction, that d
dt dist(x1, x2) < 0.

Now since the surfaces evolve by the mean curvature flow, we have

d

dt
dist(x1, x2) =

〈
~H1 − ~H2, ν

〉
.

Let E1, . . . , En be an orthonormal frame of Tx1M
1. Then∑

i

〈A2(Ei, Ei)−A1(Ei, Ei), ν〉 < 0.

Therefore for some i we have 〈A1(Ei, Ei), ν〉 > 〈A2(Ei, Ei), ν〉. Hence along the unit speed geodesics
along Ei direction, the distance between M1 and M2 decreases, contradictory to the choice of
x1, x2. �

3. Evolution of geometric quantities

3.1. Submanifold geometry. Recall that ∇Rn+1

X Y = ∇MX Y + A(X,Y ). Let ϕ : Mn → Rn+1

be the embedding, ν be the outward unit normal vector. Denote hij = −
〈
A( ∂ϕ∂xi ,

∂ϕ
∂xj

), ν
〉

and

HessM ϕ(X,Y ) = A(X,Y ). Note that we have chosen the sign convention such that the second
fundamental form of the sphere is positive definite.

The Christoffel simbol Γkij is defined via

∂2ϕ

∂xi∂xj
− Γkij

∂ϕ

∂xk
= A(

∂ϕ

∂xi
,
∂ϕ

∂xj
) = −hijν.

Hence
∂2ϕ

∂xi∂xj
= Γkij

∂ϕ

∂xj
− hijν,
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∂ν

∂xi
,
∂ϕ

∂xj

〉
= −

〈
ν,

∂2ϕ

∂xi∂xj

〉
= hij .

And we define the Riemannian curvature tensor to be

〈R(X,Y )Z,W 〉 =
〈
∇2
X,Y Z −∇2

Y,XZ,W
〉
,

so that the Gauss equation becomes

〈R(X,Y )Z,W 〉 = A(X,W )A(Y, Z)−A(X,Z)A(Y,W ),

or in local coordinates, Rijkl = hilhjk − hikhjl.
The Codazzi equation for hypersurfaces in the Euclidean space is

∇khij = ∇ihkj ,

or ∇A is fully symmetric.
For a tensor T , commuting two covariant derivatives produces terms involves the curvature:

∇2
X,Y T (Z1, . . . , Zn)−∇2

Y,XT (Z1, . . . , Zn)

= −T (R(X,Y )Z1, . . . , Zn)− . . .− T (Z1, . . . , R(X,Y )Zn).

We are now ready to derive the Simons’ equations.

∇2
kkhij = ∇2

kihkj (by the Codazzi equation)

= ∇2
ikhkj −Rkiklhlj −Rkijlhlk

= ∇2
ijhkk − (hklhik − hkkhil)hlj − (hklhij − hkjhil)hlk (by the Gauss equation)

= ∇2
ijH +Hhilhlj − |A|2hij

3.2. Evolution of geometric quantities. Recall that ν is the outward unit normal vector of the
hypersurface. We first calculate the evolution of ν under the mean curvature flow.

〈
∂

∂t
ν,
∂ϕ

∂xi

〉
= −

〈
ν,

∂2ϕ

∂xi∂t

〉
= −

〈
ν,

∂

∂xi
(−Hν)

〉
=

〈
ν,
∂H

∂xi
ν

〉
=

∂

∂xi
H

Therefore ∂
∂tν = ∇H.

Next, the evolution of the metric gij =
〈
∂ϕ
∂xi
, ∂ϕ∂xj

〉
.

∂

∂t
gij =

〈
∂2ϕ

∂xi∂t
,
∂ϕ

∂xj

〉
+

〈
∂2ϕ

∂xj∂t
,
∂ϕ

∂xi

〉
=

〈
∂

∂xi
(−Hν),

∂ϕ

∂xj

〉
+

〈
∂

∂xj
(−Hν),

∂ϕ

∂xi

〉
= 2H

〈
ν,

∂2ϕ

∂xi∂xj

〉
= −2Hhij

Thus we conclude
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Proposition 3.1. Suppose Mn
t is a family of embedded hypersurfaces evolving by the mean curva-

ture flow. Then 
∂X
∂t = −Hν
∂
∂tν = ∇H
∂
∂tgij = −2Hhij .

Our goal in this section is to use the maximum principle to conclude things about how curvature
changes under MCF. To this end, we note

∂

∂t
hij = − ∂

∂t

〈
∂2φ

∂xixj
, ν

〉
=

〈
∂2

∂xixj
(Hν), ν

〉
−
〈
∂2φ

∂xixj
,∇H

〉
=

∂2

∂xixj
H +H

〈
∂2

∂xixj
ν, ν

〉
− Γkij

∂φ

∂xk

∂H

∂xj

= ∇2
ijH −H

〈
hkj

∂φ

∂xk
, hki

∂φ

∂xk

〉
= ∇2

ijH −Hhkjhki

where to go from the first to the second line, we used the fact that

∂2φ

∂xixj
= Γkij

∂φ

∂xk
− hijν

and repeatedly used the fact that ∇H = ∂
∂tν is tangential and. To go to the third line, we use that

H is normal and so ∇2
ijH = ∂2H

∂xixj
− Γkij

∂φ
∂xk

∂H
∂xj

.

We are almost done, once we use Simon’s equation

∆hij = ∇2
ijH + hi`h`jH − |A|2hij

to conclude that
∂

∂t
hij = ∆hij − 2hkjhki + |A|2hij

Note the similarity between this equation and the heat equation! We’re almost there. Now we
change perspective a little. We write things down in a coordinate invariant way, and then we
exploit the fact that we are using conormal coordinates at a point (so that gik(0) = δik).

∂

∂t
hij =

∂

∂t
(gikhkj) = −

(
∂

∂t
gik

)
hkj + gik

∂

∂t
hkj = 2Hhikhkj + ∆hij − 2Hhikhkj + |A|2hij

= ∆hij + |A|hij
Taking the trace of this formula gives us

∂

∂t
H = ∆H + |A|2H

Corollary 3.2. By the maximum principle, if H(0) > 0, then H(t) > 0 for all times t where the
flow is defined.

Remark 3.3. H = 〈A, I〉 =⇒ |H| ≤
√
n|A| =⇒
∂

∂t
H ≥ H3

n
+ ∆H

We can apply the maximum principle to this statement, which gives us a different way of seeing
that finite time blowup must occur if H(0) > 0. But . . . at what rate does blow-up occur? To
answer that question, we first see how the second fundamental form and its derivatives change with
time.

∂

∂t
|A|2 =

∂

∂t
(hijh

j
i ) = (∆hij + |A|2hij)h

j
i + hij(∆h

j
i + |A|2hji ) = 2|A|4 + ∆(|A|2)− 2|∇A|2
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The last, negative, term in this expression is especially useful, as we will see.

Now, ∂
∂t |A|

2
max ≤ 2|A|4max, so ∂

∂t

(
1

|A|2max

)
≥ −2. Therefore, if t1 < t2, we have

1

|A|2max(t2)
− 1

|A|2max(t1)
≥ 2(t1 − t2)

Suppose that the mean curvature flow (Mt)t∈[0,T ) (with Mt compact) has sup |A| unbounded. Then

there exist tk → T so that |A|max(tk)
k→∞−−−→∞, and that

0− 1

|A|2max(t1)
≥ 2(t1 − T ) ⇐⇒ |A|max(t) ≥ 1√

2(T − t)
Now, to move on to answering how derivatives of A change with time, we note that in normal

coordinates

∂

∂t
Γkij =

∂

∂t

(
gk`(∂igjk + ∂jgk` − ∂`gij)

)
= (

∂

∂t
gk`)(0) + gk`

(
∂

∂t
∂igj` +

∂

∂t
∂jgkl −

∂

∂t
∂`gij

)
But we don’t care too precisely what these remaining terms are. The point is that they are in
the class A×∇A, that is, you can write bounds on these quantities in terms of bounds on A and
bounds on the derivatives of A.

In general, given a tensor T

∂

∂t
(∇T ) = ∇

(
∂

∂t
T

)
+ Err, Err ∈ A×∇A× T

and, more specifically,

∂

∂t
|∇A|2 = ∆|∇A|2 − 2|∇2A|2 + Err, Err ∈ A×A×∇A×∇A

With that out of the way, we continue to “actually interesting things”:

Claim 3.4. Suppose that {Mt}t∈[0,T ) is a MCF and that |A| ≤ C for t ∈ [0, T ). Then, |∇A| ≤ C1

over
[
T
2 , T

]
.

Proof. We do a trick that allows for an easy application of the maximum principle, using the good
(negative) term from the expansion of ∂

∂t |∇A|
2 above. Define f(t) := α|A|2 +t|∇A|2 for some α > 0

to be determined. This function has several nice properties: for example, f(0) ∈ A×A. Also, the
real key, it behaves well under ∂

∂t −∆:(
∂

∂t
−∆

)
f =

(
∂

∂t
−∆

)
(α|A|2 + t|∇A|2) =

α
∂

∂t
|A|2 + |∇A|2 + t

∂

∂t
|∇A|2 − α∆(|A|2)− t∆|∇A|2 =

α
[
2|A|4 + ∆(|A|2)− 2|∇A|2

]
+ |∇A|2 + t∆|∇A|2 − 2t|∇2A|2 − α∆|A|2 − t∆|∇A|2 + t ErrA×A×∇A×∇A

= 2α|A|4 − 2α|∇A|2 + |∇A|2 − 2t|∇2A|2 + t ErrA×A×∇A×∇A

≤ 2αC4 − 2α|∇A|2 + |∇A|2 + TDC2|∇A|2

where in the last line transition we drop a negative term, multiple terms cancel, and D is a constant
representing the error. If α is large enough relative to T , D, and C, then −2α|∇A|2 dominates the
positive |∇A|2 terms, and them we have, for M := αC4,(

∂

∂t
−∆

)
f ≤M =⇒ (maximum principle) =⇒ f ≤ αC2 +MT
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This means that for t ≥ T/2,

|∇A| ≤
√
αC2 +MT

t
≤
√

2αC2 + 2MT√
T

≤ C1

�

Remark 3.5. Similar estimates with similar proofs hold for |∇kA|2.

Theorem 3.6. Let (Mt)t∈[0,T ) be a MCF defined on a maximal time interval of existence. Then

|A|(t) is unbounded, which, as we have shown, implies that |A|max(t) ≥ 1√
2(T−t)

.

Proof. Suppose |A| ≤ C, moving by MCF. Then for s < t,

|φ(x, t)− φ(x, s)| ≤
ˆ t

s
|H| ≤ C(t− s)

and we can pass to a continuous limit of φ as t → T , call it φT : M → Rn+1. We will show that
this limit is actually a smooth limit.

First pick v ∈ TxM nonzero and write it as v = vi ∂φ∂xi . Then

∂

∂t
log g(v, v) =

1

g(v, v)
(−2Hhijvivj) ≤ C

so that

log
gt(v, v)

gs(v, v)
≤ C(t− s) ⇐⇒ gt(v, v)

gs(v, v)
≤ ec(t−s) for s < t

and therefore we can take a continuous limit metric. Now, if |A| ≤ C, then as many derivatives as
we want are bounded for t ≥ T/2. Furthermore, this means that the time derivatives of Christoffel
symbols, which live in A×∇A, are also bounded for these times. So, then for any bounded tensors

T ,
∣∣∣ ∂∂xiT −∇iT ∣∣∣ is also bounded, meaning for example that ∂2φ

∂xixj
= Γkij

∂φ
∂xk
− hijν is also bounded

and so is ∂kφ, as high as you wish to go. We can then use Arzela Ascoli to get a sublimit that is
`-differentiable for any `. Then take a diagonal subsequence to show that the sublimit is smooth
and, by short time existence, we have a contradiction of the maximality of the time T . �

4. A simple proof that neckpinches can happen

This proof will be a clever application of the maximum principle. Let 0 ≤ β ≤ n and define
f : Rn+1

x1,...,xn+1
× Rt → R by

f(x, t) :=

n∑
i=1

x2
i − (n− 1− β)x2

n+1 + 2βt

Then, for a fixed y,

d

d t
f(φ(y), t) = 2 ~H · (x1, . . . , xn,−(n− 1− β)xn+1) + 2β

∆Mtf(φ(y), t) = 2 ~H · (x1, . . . , xn,−(n− 1− β)xn+1) + 2
n+1∑
i=1

|∇Mtxi|2 − 2(n− β)|∇Mtxn+1|2

so that
d

d t
f −∆Mtf = 2β − 2n+ 2(n− β)|∇Mtxn+1|2

But of course |∇Mtxn+1| ≤ 1, so ∂
∂tf − ∆Mtf ≤ 0 and by the maximum principle, fmax(t) is

decreasing, for any choice of β. What geometric conclusions can we draw from this fact?
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β = n:

f(x, t) =
n+1∑
i=1

x2
i + 2βt

f(x, 0) ≤ R2 ⇐⇒ M0 ⊆ B(0, R)

=⇒ f(x, t) ≤ R2 ⇐⇒ Mt ⊆ B(0,
√
R2 − 2nt)

β = n− 1:

f(x, t) =

n∑
i=1

x2
i + 2βt

f(x, 0) ≤ R2 ⇐⇒ M0 ⊆ the cylinder Dn(0, R)× R

=⇒ f(x, t) ≤ R2 ⇐⇒ M0 ⊆ Dn(0,
√
R− 2(n− 1)t)× R

0 < β < n− 1: As before, f(x, 0) ≤ R2 =⇒ f(x, t) ≤ R2 are equivalent to M0 and Mt,

respectively, being contained in very particular spaces. Here the maximal time is τ = R2

2β .

They are a bit harder to draw, but here are my sketched attempts, where M0 and Mτ

respectively, must be contained within

x3

x2

x1

x3

x2

x1

We can now construct a dumbbell which must pinch off in finite time. To do so, we pick a smooth
surface (pictured below in red), which is contained in a hyperboloid with radius at the origin R2,
and where each end contains a sphere of radius R1. We pick R2 small and R1 large so that the
function corresponding to 0 < β < n − 1 collapses before the R1-spheres disappear, ensuring that
a neckpinch singularity occurs in finite time.

x3

x2
x1
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5. A gradient estimate for MCF

If φ is a graph over Bn(0, R), so that we can locally express xn+1 = u(x1, . . . , xn), then we define
ν as the upward facing normal. Beware! This is different from our usual convention, and it will
hold only for this section. Because we are using a different convention, let us just rewrite here our
typical ingredients in terms of our new convention:

hij =

〈
∂2φ

∂xixj
, ν

〉
∂

∂t
ν = −∇H

∂

∂xi
ν = −hji

∂φ

∂xj

Now define v := 1
ν·en+1

and note that in the graphical region this is well-defined. Now,

∂φ

∂xi
= (0, . . . , 0, 1i, 0, . . . , 0,

∂u

∂xi
)

ν =

(
− ∂u
∂x1

, . . . ,− ∂u
∂xn

, 1
)

√
1 + |∇u|2

=⇒ v =
√

1 + |∇u|2

With v nicely defined, let’s observe that

∂

∂t
v =

−1

(ν · en+1)2
· ∂
∂t
ν · en+1 = −v2 〈−∇H, en+1〉 = v2〈∇H, en+1〉

∆v = −∆(ν · en+1)v2 + 2v3(∇ν · en+1)3

To evaluate this, we note that ∇i(ν · en+1) = −hij
〈
∂φ
∂xj

, en+1

〉
and thus

∆ 〈ν, en+1〉 = −(∇ihij)
〈
∂φ

∂xn
, en+1

〉
= −h2

ij〈ν, en+1〉 = −〈∇H, en+1〉 − |A|2
1

v

and we can plug this result into our earlier calculation to observe that

∆v = −∆(v · en+1)v2 + 2v3|∇(ven+1)|2 = −∆(ven+1)v2 +
2|∇v|2

v(
∂

∂t
−∆

)
v = v2〈∇H, en+1〉 − v2〈∇H, en+1〉 − |A|2v −

2|∇v|2

v
= −|A|2v − 2|∇v|2

v

In this final expression, the first term should remind you of the negative term we used to prove
Claim 3.4, but the second term is what we will use right now to prove the following:

Theorem 5.1 (Ecker-Huisken Gradient Estimate). Let (Mt)t>0 be a smooth embedded solution to

MCF. Let ρ > 0, x0 ∈ Rn+1. Then, so long as v is defined on B(x0,
√
ρ2 − 2nt),

sup
B(x0,
√
ρ2−2nt)∩Mt

(
1− |x− x0|2 + 2nt

ρ2

)
≤ sup

B(x0,ρ)∩M0

v(x)

Proof. We have ρ > 0 fixed. Define

µ(r) = (ρ2 − r)2

r(x, t) = |x|2 + 2nt

φ(x, t) = µ(r(x, t))
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Now, we want to know what
(
∂
∂t −∆

)
(φv2) is. We start by collecting some useful facts.

(1) (
∂

∂t
−∆

)
r(x, t) = 0

(2) (
∂

∂t
−∆

)
φ(x, t) = µ′(r)

([
∂

∂t
−∆

]
r

)
− µ′′(r) · |∇r|2 = −2|∇r|2

because µ′(r) = −2(ρ2 − r) and µ′′(r) = 2.

(3) ∇φ = −2(ρ2 − r)∇r

(4) Combining the previous two observations:(
∂

∂t
−∆

)
φ =

−1

2(ρ2 − r)2
|∇φ|2 =

−1

2φ
|∇φ|2

Now we are in a position to expand our actual goal:(
∂

∂t
−∆

)
(φv2) =

[(
∂

∂t
−∆

)
φ

]
v2 + φ

[(
∂

∂t
−∆

)
(v2)

]
+ cross-gradient terms

=
−|∇φ|2

2φ
v2 + φ

[
−|A|2v − 2|∇v|2

v

]
(2v) + φ

[
−2|∇v|2

]
− 2∇(φ) · ∇(v2)

The −φ|A|2(2v2) term is ≤ 0 and can be discarded, so that we are left with(
∂

∂t
−∆

)
(φv2) ≤ −|∇φ|

2

2φ
v2 − 6φ|∇v|2 − 2∇(φ) · ∇(v2)

We want to use the absorbing inequality (Cauchy-Schwarz) to rewrite this inequality to obtain
something of the form(

∂

∂t
−∆

)
(φv2) ≤ ∇[φv2] ·X = (∇φ)v2 ·X + 2vφ∇v ·X

so that we can apply the maximum principle to conclude that max(φv2) is nonincreasing with time.
We can see that the only term we have to worry about in the above expression is −2∇φ · ∇(v2),
because it could be positive. We could attempt to solve this issue by noting that

|4∇φ · v∇v| =
∣∣∣∣v∇φφ1/2

· 2∇vφ1/2

∣∣∣∣ ≤ |∇φ|2v2

2φ
+ 8|∇v|2φ

But this isn’t good enough, because 8|∇v|2φ− 6|∇v|2φ ≥ 0. Instead, we rewrite the inequality to
have terms of the form ∇[φv2] ·X, and we hope that the remaining stuff can be absorbed. First,
note that

−2∇(v2) · ∇(φ) = −3∇(v2) · ∇(φ) + 2∇(v2) · ∇(φ) = −6v∇v · ∇φ+
∇(v2φ) · ∇φ

φ
− v2|∇φ|2

φ

The inequality transforms into(
∂

∂t
−∆

)
(φv2) ≤ −|3∇φ|

2

2φ
v2 − 6φ|∇v|2 − 6v∇v · ∇φ+

∇(v2φ) · ∇φ
φ

The only bad term in the above inequality is the 6v∇v · ∇φ term because it could be positive and
doesn’t vanish at (v2φ)max. But we note that by Cauchy-Schwarz,

|6v∇v∇φ| =
∣∣∣∣(√3

v∇φ
φ1/2

)
·
(

2
√

3φ1/2∇v
)∣∣∣∣ ≤ 3

2

|v∇φ|2

φ
+ 6φ|∇v|2
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so that (
∂

∂t
−∆

)
(φv2) ≤ ∇(v2φ) · ∇φ

φ

as we desired.

Now we use the maximum principle to conclude that (φv2)max is nonincreasing on the ball B(0, ρ).
�

A side note to keep in mind is that this trick doesn’t work in the heat equation, so that here we
see one example of how mean curvature flow works better.

Remark 5.2. Recall that r(x) = |x|2 + 2nt and ϕ = (ρ2 − r(x, t))2, so ϕ is zero on the boundary

of the ball B(x0,
√
ρ2 − 2nt), and the maximum of ϕV 2 is attained inside the parabolic ball.

Theorem 5.3. For any V0, there exists some C0 such that, suppose (Mt)t∈[a,b] is an embedded,

proper mean curvature flow inside the parabolic ball P (x̄, r), and V ≤ V0 in P (x̄, r). Then |A| ≤ C0
r

in P (x̄, r/2).

The proof just uses the fact

(
∂

∂t
−∆)V = −2|∇V |2

V
− |A|2V,

together with the maximum principle. Keep in mind that |A| is behaves like the |V |. For the same
reason, we also have higher derivatives estimates.

Theorem 5.4 (Higher derivatives estimates). For any A0 ∈ R,m ∈ Z, there exists C0 such that if
|A| ≤ A0 in P (x̄, r) then |∇mA| ≤ C0 in P (x̄, r/2).

6. Integral estimates and the monotonicity formula

6.1. Integral estimates. We now derive the monotonicity formula and its various consequences.
Recall that under the mean curvature flow, the volume form evolves by

d

dt
Vol = −H2dVol .

Let f : Rn+1 × R → R be a compactly support C1,α function. Then under a smooth mean
curvature flow (Mt),

d

dt

ˆ
Mt

fdVol =

ˆ
(
∂f

∂t
+∇f · ~H − fH2)dVol

=

ˆ
(
df

dt
−H2f)dVol

=

ˆ
(
dt

df
±∆Mtf)−H2fdVol .

Where in the last equality we have used the fact
´

∆f = 0 for any smooth function f .
Define

ϕρ(x, t) =

(
1− |x|

2 + 2nt

ρ2

)3

+

.

Since ( ∂∂t −∆Mt)(
|x|2+2nt

ρ2
) = 0 we deduce that (taking minus sign in the above equality)

(
∂

∂t
−∆Mt)ϕ

ρ = −3

(
1− |x|

2 + 2nt

ρ2

)2

+

≤ 0.
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Therefore we conclude that d
dt

´
ϕρ ≤ 0. We are going to utilize this fact to recover some of the

results we got earlier with different approaches.

Example 6.1 (Avoidance of balls). Suppose M0 ∩ B(p, ρ) = φ. Then
´
M0

ϕρ = 0. Hence by

the monotonicity,
´
Mt
ϕρ = 0, and therefore 1 − |x|

2+2nt
ρ2

≤ 0 on Mt, or in other words, Mt ∩
B(0,

√
ρ2 − 2nt) = φ.

Example 6.2 (Volume control). Take ε small, we see thatˆ
Mερ2

ϕρ ≤
ˆ
M0

ϕρ ≤ Vol(M0 ∩B(0, ρ)).

Observe that ˆ
Mερ2

ϕρ ≥ 1

8
Vol(Mερ2 ∩B(0, ρ/2)),

for ε ≤ 1
8n . Therefore

1

8
Vol(M 1

8n
ρ2 ∩B(0, ρ/2)) ≤ Vol(M0 ∩B(0, ρ)).

We therefore have:

Corollary 6.3 (Polynomial growth is preserved under MCF). If M0 has polynomial volume growth,
that is, if Vol(M0 ∩B(p,R)) ≤ A0R

k for some A0, k and all R sufficiently large, then Mt also has
polynomial volume growth.

6.2. Huisken’s monotonicity formula. In this section we describe Huisken’s monotonicity for-
mula for the mean curvature flow. A key observation here is to plug the backwards heat kernel into
the general monotonicity formula obtained in the previous section.

For t < 0, x ∈ Rn+1, denote the backwards heat kernel

Φ(x, t) =
1

(−4πt)n/2
e|x|

2/4t.

And

Φx0,t0(x, t) =
1

(−4π(t− t0))n/2
e|x|

2/4(t−t0).

Take plus sign in the general formula, we have

d

dt

ˆ
Mt

Φ =

ˆ (
∂

∂t
+ ∆Mt

)
Φ−H2Φ.

Therefore we deduce

(
∂

∂t
+ ∆Mt)Φ−H2Φ

=
∂Φ

∂t
+ 2∇Φ · ~H + divMt ∇Φ−H2Φ.

Since

divMt ∇Φ = divMt ∇MtΦ + divMt(∇Φ⊥)

= ∆MtΦ + ~H · ∇Φ,

Above can be simplified as

∂Φ

∂t
+ divMt ∇Φ−| ~H − ∇

⊥Φ

Φ
|2Φ +

∇⊥Φ

Φ
.

Claim: (∗) = ∂Φ
∂t + divMt ∇Φ + ∇⊥Φ

Φ = 0.
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Proof. Note that u = 1√
−tΦ solves the backwards heat equation. Then

(
∂

∂t
+ ∆Rn+1)Φ = u · ∂

∂t

√
−t = u · −1

2
√
−t

=
Φ

2t
.

Therefore

(∗) =
Φ

2t
−Hess(Φ)(ν, ν) +

|∇⊥Φ|2

Φ

= Φ

[
1

2t
−Hess(log Φ)(ν, ν)

]
.

Since Φ is the heat kernel, we deduce that

Hess(log Φ) = Hess(
|x|2

4t
)(ν, ν) =

1

2t

Therefore (∗) = 0 and the claim is proved. �

Now we conclude that

(6.1)
∂

∂t

ˆ
Mt

Φ = −
ˆ
| ~H − ∇

⊥Φ

Φ
|2ΦdVol .

Let us look at various consequences of the monotonicity formula.

6.3. Rescaling and tangent flow. Let (Mt)t∈(a,b) be a mean curvature flow and let t0 ∈ (a, b),

x0 ∈ Rn+1. For λ > 0, define

M̃(x0,t0),s = λ(Mt0+sλ−2 − x0).

Then M̃ is also a mean curvature flow. Let

ψ(x, s) = λ[ϕ(x, t0 + λ−2s)− x0],

then
dψ

ds
= λ

dϕ

ds
=

1

λ
~Hϕ(x, , t0 + λ−2s) = ~Hψ(x, s).

Recall that

Φ(x0,t0)(x, t) =
1

[4π(t0 − t)n/2]
e−|x−x0|/4(t0−t)2

is the backwards heat kernel in Rn, and the monotonicity formula

d

dt

ˆ
Mt

Φx0,t0 = −
ˆ
| ~H − ∇

⊥Φ

Φ
|2dVol .

The fundamental property of the quantity
´
Mt

Φ(x0,t0) is that it is scaling invariant.

Proposition 6.4.
´
Mt

Φ(x0,t0) is invariant under parabolic scaling.

Proof. Let M̃(x0,t0),s be the rescaled flow defined above. For simplicity we suppose the density
function is taken at a point in space time (ρ, 0). Then we haveˆ

M̃s

Φ(ρ,0)dVolM̃s
=

ˆ
M̃s

1

(−4πs)n/2
e|x|

2/4sdVol

(set t0 + sλ−2 = t and x = λ(y − y0)) = λn
ˆ
Mt

1

[−4π(t− t0)λ2]n/2
e|λ(y−y0)|2/4(t−t0)λ2dVolMt

=

ˆ
Mt

1

4π(t0 − t)n/2
e−|y−y0|

2/4(t0−t)dVolMt .

This finishes the proof. �
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Recall that if we rescale a manifold locally by larger and larger scale, then the rescaled manifold
becomes its tangent plane. We are going to use rescaling to study the local property of a mean
curvature. To do so, let us first study the limit case, that is, a mean curvature flow that is invariant
under parabolic rescaling. Suppose (Mt)t∈[T,0) is a mean curvature flow that moves by scaling, that
is,

Mt =
√
−tM−1.

Since
´
Mt

Φ(0,0) is invariant under parabolic rescaling, we have that, by the monotonicity formula,

~H − ∇
⊥Φ

Φ
= 0.

Also,
∇⊥Φ

Φ
= ∇⊥(log Φ) = ∇⊥(

|x|2

4t
) =

1

2t
〈x, ν〉 ν.

Therefore we obtain that

H = − 1

2t
〈x, ν〉 .

Proposition 6.5. If at some time t0, Mt0 satisfies H = − 1
2t0
〈x, ν〉, then the mean curvature flow

emenating from Mt0 evolves by scalings, and satisfies H = − 1
2t 〈x, ν〉.

Proof. Since the condition H = − 1
2t 〈x, ν〉 is invariant under parabolic scaling, it suffices to check

the statement for t0 = −1.
Now define Mt =

√
−tM−1. Then we check that〈

∂X

∂t
, ν

〉
= − 1

2
√
−t
〈X−1, ν〉 = − 1√

−t
H(X−1) = −H(X−t).

By the uniqueness of the solution of the mean curvature flow with initial condition, (Mt) is the
unique mean curvature flow emenating from M−1. �

Definition 6.6. The Gaussian density pf a mean curvature flow (Mt)t ∈ [a, b) at a point (x0, t0),
where x ∈ Rn+1, t0 ∈ (a, b], is defined to be

Θ(M,x0, t0) = lim
t→t0

ˆ
Mt

Φ(x0,t0)dVol .

Fix (x0, t0) and take a sequence λk converging to infinity. For a mean curvature flow (Mt),
consider the rescaled flows

Mk
s = λk(Mt0+λ−2

k s − x0).

For a parabolic ball P (0, R), points in Mk
s ∩ P (0, R) come from points that are very close to

(x0, t0). Suppose one can take a smooth, multiplicity 1 limit Mk
s , that is,

Mk
s →Ms, in B(0, R)× [−R2,−R−2] ∩Mk

s smoothly graphically.

Then by the scaling invariance of the Gaussian density, we haveˆ
Mk
s

Φ−Θ(Mt0 , 0, 0) =

ˆ
M
λ−2
k

s

Φ(0,0)dVolM
λ−2
k

s
−Θ(Mt0,0,0)→ 0.

Therefore the limit flow M̃s satisfiesˆ
M̃s

Φ(0,0) = Θ(Mt, 0, 0), for any s

hence the flow M̃s moves by dilation, namely, M̃s =
√
−sM̃−1. Moreover, the flow M̃s is defined

on Rn+1 × (−∞, 0).
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Next we are going to see under which conditions the above limit flow construction works. Let us
point out here that the major difficulty is to guarantee that the convergence is of multiplicity 1.

Suppose (Mt)t∈[T,0) is a smooth embedded mean curvature flow and suppose also that (x0, t0) is

a singular point. Then supt→0 |A(t)| =∞, hence |A(t)| > C√
−t for some constant C.

Definition 6.7. A singular point (x0, t0) is called type I singualar point, if there is another constant

C1 such that |A(t)| ≤ C1√
−t .

Type I singularity is important, since it guarantees that the tangent flow at it is well-defined.
Namely, we have:

Theorem 6.8. If (x0, 0) is a type I singularity of a mean curvature flow (Mt)t∈[−T,0), then for any
sequence λk →∞, there is a subsequence λkn, such that

Mn
s = λknMλ−2

kn
s

converges smoothly with multiplicity 1 to a limit flow M̃s.

COMMENTS AT BEGINNING OF WEEK 4 LEFT OUT FOR NOW
In order to prove this theorem, we need one more definition.

Definition 6.9. Given a smooth, embedded MCF, a point x0 ∈ Rn+1 is said to be reached by the
flow at time T if there exist xtn ∈Mtn so that tn → t and xtn → x0.
Such an x0 is called singular if there exist such a sequence with |A(xtn)| → ∞.

Proof. By the monotonicity formula, it suffices to just prove the first part, that M̃k
s → M̃s smoothly

with multiplicity one. We pick s < 0 and we note that the type I condition implies that |Ak(s′)| ≤
C√
−s for s′ ≤ s. In fact, Furthermore, for small time interval ending at s, we have derivative bounds

|∇jAk(s′)| ≤ C√
−s as well. Now define dt to be the intrinsic distance in Mt. There exist ε, c so that

dt(x, y) ≤ ε
√
−t implies that

C−1 ≤ dt(x, y)

|x− y|
≤ C

Note that the condition we need for this comparability of distance is an upper bound of the form
ε 1

supA and the type I condition allows us to write this in terms of t. On the points where we have

this bound, we have smooth convergence with multiplicity one. What about other points?

Claim 6.10. Define the set Aε := {(x, y, t) where x, y ∈ Mt, dt(x, y) ≥ ε
√
−t}. Pick x, y to

minimize |x−y|√
−t over Aε at time t. Then either

(1) dt(x, y) = ε
√
−t or

(2) We have a picture that looks like the following: ADD PICTURE

�

Note that the above also gives a proof of the following nice fact: if you have a MCF starting
from an embedded hypersurface, up until the time of singularity, you stay embedded.

There is one more concern that we have: if x0 is obtained at a type I singularity, why is M̃s

nonempty? To show this, we need to compare the rate of convergence at a point and the scaling

rates. The point is that if x0 = 0 is obtained at time 0, then for all t < 0, Mt ∩ B(0,
√
−2nt)

is nonempty (this follows from the avoidance principle), and so there exists a point in M̃s ∩
B(0,

√
−2ns)
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6.4. Examples of shrinkers. Recall that the definition of shrinkers is that they solve the equation

H + 〈x,ν〉
2t = 0. We provide a list of shrinkers defined on the time interval (−∞, 0).

• the plane through the origin
• spheres of radius

√
−2nt

• cylinders Sk(
√
−2kt)× Rn−k

• the Argenent torus, a large but narrow torus

As an aside, the Argenent torus turns out to be very useful for comparision reasons – for example,
it can be used to provide an alternate proof that neckpinches exist.

6.5. Applications of monotonicity. First, observe that

∂

∂t

(ˆ
Mt

fΦ

)
=

ˆ
Mt

[
∂

∂t
fΦ + f

∂

∂t
Φ−H2fΦ

]
dvol

=

ˆ
Mt

(
∂

∂f
−∆Mtf

)
Φ +

(
∂

∂Φ
−∆MtΦ

)
f −H2fΦ dvol =: ?

Now if
(
∂
∂tf −∆Mtf

)
≤ 0, f > 0, then

? ≤
ˆ
Mt

(
∂

∂t
Φ + ∆MtΦ

)
f −H2fΦ = −

ˆ
Mt

∣∣∣∣ ~H +
∇⊥Φ

Φ

∣∣∣∣2 Φf dvol

Now, our favorite f are functions like

φ(x0,t0),R :=

(
1− |x− x0|2 + 2n(t− t0)

R2

)3

+

These functions let you show that densities on small balls are controlled by quantities at a fixed
earlier time. The main trick is to use the backwards heat kernel at (x0, t0) = (0, r2) to get something

like the density Vol(Mt∩B(0,r))
rn and then to pick the correct cut-off. The details are left as an exercise.

Here are some examples of what we can derive about densities:
First, suppose Mt is a MCF that does not reach 0 at time 0. What is Θ({Mt}, (0, 0))? For t

sufficiently small, Mt ∩ B(0,
√
−2nt) = ∅, so that in the scaling limit, we get 0. This density is

preserved under scaling, so that θ({Mt}, (0, 0)) = 0.
As another example, if x0 is a smooth point of flow at time 0, then θ({Mt}, (0, 0)) = 1. Again,

this is obtained by looking at the scaling limit, which is a plane. In both of these examples we are
using, in a critical way, that we have uniform control of densities.

As an (easy) exercise, consider a MCF which is smooth at times t1 < t2 and x2 ∈ Mt2 . What
can you say about

´
Mt1

Φ(x2, t2)? If the flow is not a shrinker, then it should be > 1.

To compute the density, it doesn’t matter how the flow looks away from the point. If f ∈
C∞c (Nε(x0, t)), then

lim
t→t0

ˆ
Mt

fΦ(x0,t0) = θ(M, (x0, t0))f(x0, t0)

Fact 6.11. θ is upper semicontinuous.

Proof. Let (xj , tj)→ (x0, t0) for a time t0. Thenˆ
Mt

Φ(xj ,tj)
j→∞−−−→

ˆ
Mt

Φ(x0,t0)

and then by monotonicity ˆ
Mt

Φ(xj ,tj) ≥ θ(M, (xj , tj))
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so that we can conclude that

lim sup
j→∞

θ(M, (xj , tj)) ≤
ˆ
Mt

Φ(x0,t0)

Taking the limit on the right hand side as t→ t0 gives us the desired inequality:

lim sup
j→∞

θ(M, (xj , tj)) ≤ θ(M, (x0, t0))

�

Corollary 6.12. For x0 obtained at time t0 where {Mt}t∈(T,t0), θ({Mt}, (x0, t0)) ≥ 1.

6.5.1. INCLUDE PICTURE

Lemma 6.13 (Clearing out Lemma). For all α < 1, there exists θ(n) so that if Mt reaches 0 = x0

at time 0,

Vol(M−αr2/2n ∩B(0, r))

rn
≥ θ

This lemma is often used in situations where the left hand side is < θ for some r, and thus 0 is
not reached by the flow.

6.5.2. Noncompact maximum principle.

Fact 6.14. If Mt is properly embedded, smooth, with polynomial growth and
(
∂
∂t −∆Mt

)
f ≤ 0,

then f(x, t) ≤ fmax(t = 0) = M .

Proof. We use monotonicity. By picking p > 2, (f − M)p+ is a C2 nonnegative function with
(f −M)p+ ≤ 0. Then

´
Mt

Φ(x0,t0)(f−M)p+ is nonincreasing which lets us conclude that (f−M)p+ ≡
0. �

6.5.3. Extinction estimates. If T is a singular time of the flow {Mt}[0,T ), and we pick regular points
(xn, tn)→ (x, T ), a singular point. Thenˆ

M0

1

(4πT )n/2
e|x−xn|

2/4T ≥ 1

implies that (4πT )n/2 ≤ Vol(M0) and thus

T ≤
(

Vol(M0)

4π

)2/n

Remark 6.15. We could also consider MCF in higher codimensions, and we would still have a
k-dimensional monotonicity formula.

Remark 6.16. This theorem is also true for weak flows, as Ilmanen showed when he constructed
the trackunder MCF, so S such that ∂S = Mk

0 and then noted that

Vol

(ˆ
[0,T )

)
≤ (Vol(M0))T 1/2

Vol(S) ≤ Vol(M0)2/n−1/(4π)1/n

This is much better than the isomperimetric inequality, 1√
4π

Vol(M0)k+1
k .
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6.6. Brian White’s Regularity for Type 1 Singular Flows. We return to our favorite func-
tions, where for a point X = (x0, t0) and ρ > 0,

φX,ρ =

(
1− |x− x0|2 + 2n(t− t0)

ρ2

)3

+

These functions, again, have the benefit that
(
∂
∂t −∆

)
φX,ρ ≤ 0 and φX,ρ ≥ 0. Then we define

θρ(M,X, r) =

ˆ
Mt−r2

ΦXφ
X,ρ

and as r → 0, the function decreases and converges to density, as we defined earlier.

Theorem 6.17 (Local Regularity Theorem, White 2005). There exist ε > 0, c > 0 so that for each
spacetime point X0 and ρ > 0, if Mt is a MCF in P (X0, 2nρ) and for some r < ρ,

sup
X∈P (X0,r)

θρ(M,X, r) < 1 + ε,

then
sup

P (X0,r/2)
|A| ≤ c

r

Proof. Suppose not. Then rescale so that r = 1 and X0 = (0, 0). Then there exist MCFs M j in
P (0, 2nρj) for ρj ≥ 2n so that supP (0,1) θ

ρj (M,X, r) < 1 + 1
j but there exists X ∈ P (0, 1

2) so that

|A| > j. It would be nice if we could pick a point with maximal |A| in P (0, 1
2), rescale so that

|A| → 1, and derive a contradiction, where we have a point with curvature on what must be a
plane. But we can’t finish the proof that easily – the “maximal” point might be on the boundary.
But if we a bit more careful, we can derive this contradiction with the following claim.

Claim 6.18 (Point Selection). We can pick points pj in P (0, 3
4) so that |A(pj)| ≥ j and |A(p)| ≤

2|A(pj)| for p ∈ P
(
pj , j

10|A|(pj)

)
.

Proof of Claim. Fix j. Look for q = pj . There exists q0 ∈ P (0, 1
2) so that |A|(q0) = Q0 > j. Maybe

q0 satisfies the other condition, in which case we are done. If q0 does not, then there exists some

q1 ∈ P
(
q0, j

10Q0

)
so that |A|(q1) = Q1 ≥ 2Q0 > 2j. If q1 satisfies the other condition, then we

stop. If not, then we find a q2 similarly and continue the process, and so on. If we must continue
the process until we find a qn, note that we have moved at most j

10Q0

[
1 + 1

2 + 1
4 + · · ·+ 1

2n

]
≤ 1

5 ,

and so we have found a point q ∈ P (0, 3
4). On the other hand, note that |Aj | is bounded on P (0, 3

4)
because we have a smooth compact flow, and so this process must halt. �

To use this claim, we move pj to the spacetime origin and rescale by Pj = |A|(pj). Then M̃ j is

defined in P (0, 2nρjPj) so that θρjPj (M̃ j , 0, Pj) < 1 + 1
j , |A| ≤ 2 on P (0, j10), and |A|(0) = 1. We

take the limit M̃ on Rn+1× (−∞, 0] so that
´
M̃t

Φ(0,0) = 1 and |A(0)| = 1 and |A| ≤ 2 always. This

provides a contradiction, as |A(0)| = 1 means that M̃ is not a plane, but using the monotonicity

formula we have that M̃−1 is a plane and therefore as M̃t =
√
−tM̃1 → M̃0 smoothly (because the

curvatures are bounded), M̃0 is a plane. �

Corollary 6.19. If {Mt}t∈[a,0) satisfies θ({Mt}, (0, 0)) = limt→0

´
Mt

Φ(0,0) = 1, then 0 is not a
singular point of the flow at time 0.

This corollary follows because for t0 < 0, with
´
Mt0

Φ(0,0) < 1 + ε
2 ,
´
Mt

Φ(x0,t0) < 1 + ε in some

neighborhood of (0, 0). By the local regularity theorem just proven, that means in a slightly smaller
neighborhood around (0, 0), the curvature is bounded.



258 - TOPICS IN DIFFERENTIAL GEOMETRY - LECTURE NOTES 21

7. Classification of singularities

In this section we derive some results for the classification of hypersurfaces evolved by the mean
curvature flow. The idea is to analyze the singularity of the flow, and hence the study of the tangent
flow at the singularity is most important. By White’s regularity theorem, the tangent flow at any
singular point cannot be a hyperplane. Therefore the question is two fold: one is to study when
type I singularity occurs, and the other is to classify all self shrinkers. As we will see, these can be
done under some special cases, namely for the curve shortening flow, and for mean convex initial
surfaces.

7.1. Classification of self shrinkers. For the curve shortening flow, the following theorem gives
a complete classification of the self shrinkers.

Theorem 7.1 (Gage-Hamilton). If γ is an embedded curve in R2 satisfying κ = H = 〈x, ν〉, then
γ is a circle or a line.

Proof. Let p0 ∈ γ and choose length parametrization γ(s). Now κ = 〈x, ν〉 and γ̈(s) = −κν, so

〈ν, ν〉 = 1 =⇒ 〈ν, νs〉 = 0

〈γ, γ̇(s)〉 = 0 =⇒ 〈νs, γ̇(s)〉 = κ(s)

so that νs = κ(s)γ̇(s), and we have the equations

κs = 〈γ̇(s), ν〉+ 〈γ(s), κγ̇(s)〉 = κ〈x, γ̇(s)〉

κss = κs〈x, γ̇(s)〉+ κ− κ〈x, κν〉 = κ〈x, γ̇(s)〉2 + κ− κ3.

From the equation for κs, we note that if κ = 0 at time t0, then κ = 0 at all times, by the uniqueness
of the solution of the ODE, and so we have a line through the origin. Assume that κ 6= 0 for all
times, say κ > 0. We want κ to be a closed curve.

∂s|x|2 = 2〈γ̇, x〉 = 2
κs
κ

= 2∂s log κ

The solution κ = ce|x|
2/2 lets us conclude that κ is bounded from above and below.

Now we take the Gauss map N : γ → S1 and its inverse θ : S1 → N . Note that ∂N
∂s = κ so that

∂s
∂θ = 1

κ . Then

κθ =
1

κ
· κs = 〈x, γ̇(s)〉

κθθ =
1

κ
[1− κ〈x, ν〉] =

1

κ
− κ

Then, if we multiply this last equation by 2κθ, it becomes

2
[
κθκθθ + κθκ−

κθ
κ

]
= ∂θ

[
κ2
θ + κ2 − 2 log κ

]
= ∂θ[E] = 0

Thus E(θ) is a conserved quantity along the curve. Now, notice that κ2 − log(κ2) ≥ 1 (which can
be seen by looking at the Taylor series), and κ2 − 2 log κ = 1 iff κ = 1. If E = 1 somewhere, then
E = 1 always by this equation. But E(θ) = 1 implies that κ(θ) = 1, and κ ≡ 1 implies that γ is a
circle.

For the remainder of the proof, let us assume that E > 1, meaning that κ varies. κθθ = 1
κ − κ.

Note that all critical points are nondegenerate, as a degenerate critical point would simply that
1
κ = κ and thus that κ = 1 and E = 1, putting us in the previous case. At the minimum points,
κθθ > 0 and so κ < 1. At the maximum points, κθθ < 0 and κ > 1. The equation also tells us that
all critical points are global maxima or minima. However, we do not know how many there are.
To that end, we use the following elementary geometry theorem (which we will not prove):
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Theorem 7.2 (Four Vertices Theorem). For a convex curve γ ⊂ R2, its curvature k has at least 4
critical points.

By moving the θ parameter is necessary, let us assume that k attains its maximum at θ = 0.
Let T/2 > 0 be the first time where k attains its minimum. If we reflect the graph of k in [0, T/2]
accross the line θ = T/2, then the second derivative of k is unchanged at T/2, and the first
derivative at T/2 vanishes. Therefore the reflected graph gives an extension of the solution to the
ODE kθθ = 1/k − k. By the uniqueness of the solution of ODE, this solution must coincide with
the original one. Therefore we have proved that k is periodic with period T . Denote T = 2π

m , where
m is the number of periods in [0, 2π].

According to the four vertices theorem, m has to be at least 2, since in each period there are
only 2 critical points. The trick is to calculate (k2)θθθ. We have:

(k · k)θθθ = 2kkθθθ + 6kθkθθ

= 2k(
1

k
− k)θ + 6kθ(

1

k
− k)

= −4(k2)θ − 4
kθ
k
.

Integrate against sin(2θ) from 0 to T/2, and use that kθ
k < 0 for θ ∈ [0, T/2], we get:

4

ˆ T/2

0
sin(2θ)

k0

k
=

ˆ T/2

0
[(k2)θθθ + 4(k2)θ] sin(2θ)

= (k2)θθ(T/2) sinT

= sinT · (2kkθθ(T/2))

= sinT · 2(1− k2
min)

That’s a contradiction, since kθ
k < 0 and kmin < 1.

�

For mean curvature flows in general dimension, we have:

Theorem 7.3 (Huisken). If M ⊂ Rn+1 is properly embedded with polynomial volume growth,
H = 〈X, ν〉 and |A| is bounded, then it is a plane, a sphere of a cylinder.

Remark 7.4. Note that by previous results, M is the tangent flow of a mean curvature flow with
mean convex, embedded and compact initial hypersurface.

Proof. First observe that the mean curvature flow Mt =
√
−2tM− 1

2
, t < 0, satisfies H(t) =

1√
−2tH(− 1

2
)
, and ∂H

∂t = 1
(
√
−2t)3

H(−1
2), and therefore ∂H

∂t |− 1
2

= H.

On the other hand, for a mean curvature flow, we have

∂H

∂t
= ∆H + |A|2H.

We want to conclude that H = ∆H+|A|2H. This is not entirely correct, since moving by homothety
by scale

√
−2t is not moving in the normal direction, hence we need to modify the evolution

equation in accordance to the extra tangential diffeomorphism. In fact, let X be the time dependent
tangential vector field given by the homothety. Then

∂H

∂t
= ∆H + |A|2H − 〈X,∇H〉 .
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Therefore H = ∆H + |A|2H − 〈X,∇H〉, or

∇H = (1− |A|2) + 〈X,∇H〉 .
And similarly, we have

∇|A| = (1− |A|2)|A|+ 〈X,∇|A|〉+
|∇A|2 − |∇||A||2

|A|
.

Note by Kato’s inequality, the last term above is always nonnegative.
By the strong maximum principle if H is zero somewhere, then H is identically zero, and hence

the surface is a hyperplane. From now on we assume H > 0 everywhere.
We calculate

∆|A|H − |A|∆H = 〈X,∇|A|〉H +
|∇A|2 − |∇|A||2

|A|
− 〈X,∇H〉 |A|.

Note that

div(∇|A| ·He−|X|2/2) = ∆|A|He|X|2/2 +∇|A| · ∇He−|X|2/2 − 〈X,∇|A|〉He−|X|2/2.
Therefore above gives

div(∇|A|He−|X|2/2)− div(∇H|A|e−|X|2/2) =
|∇A|2 − |∇|A||2

|A|
.

Let r be a radius such that ∂B(0, r)∩M is a codimensional 2 submanifold. Note that such r are
almost everythere. Denote ρ to be the outward unit conormal vector of ∂B(0, r) in M . Integrate
the above equality in B(0, r) and use Stokes’ formula, we obtain that

ˆ
∂B(0,r)

〈∇|A|H −∇H|A|, ρ〉 e−|X|2/2 =

ˆ
B(0,r)∩M

|∇A|2 − |∇|A||2

|A|
e−|X|

2/2.

Note that by Kato’s inequality, the right hand side is always nonnegative, but the left hand
side converges to zero, as the hypersurface has Euclidean volume growth. Therefore we conclude
|∇A| = |∇|A|| on the whole hypersurface. We will deal with this rigidity case separately.

�

To continue the proof of Huisken’s theorem, we recall that we had subdivided into two cases. If
H = 0 somewhere, then M is a plane. The remaining case is when H > 0 everywhere, in which
case |∇A| = ∇|A|. This is possible iff ∇kA = ck(x)A. This case must include the cases both where
M is a sphere and where M is a cylinder. To separate these two cases out, we define Null(A)x as
those v ∈ TxM for which A(v, w) = 0 for all w ∈ TxM and then we note:

Claim 7.5. If v ∈ Null(A)x, then M splits off a line in the direction v. In other words, there eists
an orthogonal transformation O so that O(Mn) = Nn−1 × R and O∗(v) = en+1.

Proof. Let γ be a unit speed geodesic with initial point and direction (x, v). Then the equation
∇γ̇A(γ̇, γ̇) = ck(γ(s))A(γ̇, γ̇) gives a linear ODE for A(γ̇, γ̇). A(γ̇(0), γ̇(0)) = 0 by the choice of v,
and so by the uniqueness of solutions for linear ODEs, A(γ̇(s), γ̇(s)) = 0 for any time s. So γ(s) is
a straight line. In order to see that this straight line is really a full factor that can be split off, let
y be another point and µ(s) be a unit speed from x to y. Given v, w ∈ TxM , let v(s) and w(s) by
the parallel transport of these vectors along µ(s). Then ∇µ̇A(v(s), w(s)) = ck(µ(s))A(v(s), w(s))
which implies that v(s) ∈ Null(A)µ(s). Then

∇Rn+1

µ̇ v(s) = ∇Mµ̇ v(s) +A(µ̇, v(s)) = 0

which implies that v = v(s) for any s as vectors in Rn+1. Thus there is an R-factor that we can
split off. �
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This claim means that, once we have split off all factors, we have reduced our last case to the
situation where A has no null space and Nk ⊂ Rk+1. Either k = 1, in which case we have a curve
in R2, which we have already proven is a circle, or k > 1. In this scenario, ∇`hij = c`(x)hij , so

that ∇`H = c`(x)H or, put differently, c`(x) = ∇`H
H . Then using the Codazzi equation, we have

∇`H
H

hij = ∇`hij = ∇ihj` =
∇iH
H

hj`

For a sphere, ∇H = 0. Suppose that at a point x, ∇xH 6= 0. Pick an orthonormal frame at x:
e1, . . . , en so that e1 = ∇H

|∇H| . Then

0 = |∇`hij −∇jhi`|2 =

∣∣∣∣∇`HH hij −
∇iH
H

hj`

∣∣∣∣2 = 0 +
∑

i 6=1,`=1

|∇H|2

H2
h2
ij +

∑
i=1,`6=1

|∇H|2

H2
hj`2

= 2
∑

1≤j≤n,2≤i≤n

|∇H|2

H2
h2
ij

This means that for i 6= 1 and any j, hij = 0 and so rank(A)x = 1. But this is impossible if k ≥ 2
and Null(A)x = 0. Thus we know that ∇H = 0 and ∇A = 0 at all points.

Now we are almost done. We note that H = 〈x, ν〉 so

∇iH = 〈x, hijej〉 = 0

and so

∇`iH = hi` + 〈x, hij(−hj`ν)〉 = 0

implying that hi` = Hhijhj`, in other words, A = HA2. We diagonalize A with eigenvalues

λ1, . . . , λn, and then the above equation implies that A = 1
H Id. However, because H = tr(A),

H = n
H so that H =

√
n and A = 1√

n
Id. By Myer’s Theorem, M is compact and furthermore

∆|x|2 = 2n+ 2〈∇x, x〉 = 2n− 2H〈x, ν〉 = 2n− 2H2 = 0

so that |x|2 is harmonic on the compact manifold M . But then |x|2 is constant, and so M is a
sphere.

7.2. Type II singularities. Type II singularities are those for which sup |A(t)| ·
√
T − t t→T−−−→

∞. Type II singularities do not happen for curves in R2 but they do happen to MCF in higher
dimensions. One example is as follows: when we constructed the neckpinch, we chose the radius
r of the neck small enough, compared to the size of the spherical ends, so that the neck pinches
off before the ends shrink. If r is large enough, then the entire manifold is convex. Somewhere in
the middle there is a transition radius, r0. With this radius, the singularity will be “cylindrical”
compared to spherical. We will discuss this more thoroughly in the proof.

7.2.1. Hamilton’s blowup. For every k, pick a spacetime point (pk, tk) so that

|A(pk, tk)|2
(
T − 1

k
− tk

)
= sup

0≤t≤T− 1
k
,x∈Mt

|A(x, t)|2
(
T − 1

k
− t
)

so that |A(pk, tk)|2
(
T − 1

k − tk
) k→∞−−−→∞. SetQk := |A(pk, tk)| and consider the flowsQkMtk+sQ−2

k
=:

Mk
s defined on the interval 0 < tk + sQ−2

k < T . As we increase k, the interval for s, (−tkQ2
k, (T −

tk)Q
2
k) goes to (−∞,∞). Note how different this behavior is compared to type I singularities.
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Fix s and example |Ak(x, s)|. |Ak(x, s)|2 = Q−2
k |A(x, tk + sQ−2

k )|2. Then

|A(x, tk + sQ−2
k )|2

(
T − 1

k
−
[
tk + sQ−2

k

])
≤ |A(pk, tk)|2

[
T − 1

k
− tk

]
If we choose pk so that tk + sQ−2

k < T − 1
k , i.e. s <

(
T − 1

k − tk
)
Q2
k → ∞, so that this holds

for every k beyond kmin(s). Then |Ak(x, s)|2 ≤ T− 1
k
−tk

T− 1
k
−tk−sQ−2

k

→ 1. Therefore Mk
s has uniform

curvature bounds on times (−s, s) for all s > 0. This implies higher derivative bounds as well, and
we can pass to a limit, once we show embeddedness. (This is similar to showing multiplicity 1 in

the type I case.) The properties of the limit include that |A| ≤ 1 and |A| = 1 at (0, 0). Mk
s → M̃s,

an eternal solution of bounded curvature.
Let us give an example of type two singularity.

Example 7.6. An example of type II singularity of the mean curvature flow is provided by Altschuler-
Angenent-Giga, described as following.

Let us consider a transition stage of the dumbbell. The construction should have two properties:

• The two big spheres are not too far to each other so that the surface converges, under the
mean curvature flow, to the origin.
• They are not too close to each other so that the tangent flow of the origin is a cylinder.

We’ll not go into details of this construction. However, after assuming the existence of a dumbbell
with the above two properties, we can argue that the orgin is a type II singularity of the mean
curvature flow. Indeed, suppose the origin is a type I singularity. Then we have |A(t)| ≤ C√

T−t ,

here T is the extinction time. Integrating this with respect to t, we obtain that diamMt ≤ C
√
T − t.

Therefore 1√
T−tMt is compact. This contradicts to the fact that the tangent cone at the origin is

cylindrical.

For a hypersurface of arbitraty dimension, it is hard to say when it develops a type II singularity
in general. Suppose that Mt develops a type II singularity at time T . Then by Hamilton’s blowup
procedure, there exists an eternal flow M̃s∈(−∞,∞), along which |A| ≤ 1 and |A(0, 0)| = 0. We could
use this fact to prove that when Mn, n ≥ 2 is convex, then no type II singularity will appear. In
fact, we have:

Theorem 7.7. Suppose n ≥ 2 and Mn is convex. Then the mean curvature flow starting from Mn

disappears at a round point.

In fact, convexity is equivalent to A ≥ λg for some positive constant λ- which, by the maximum
principle, is a condition that is preserved under the mean curvature.

Note that the condition A ≥ λg is also scaling invariant, hence is also satisfied by the eternal flow
M̃s. However, any hypersurface satisfying A ≥ λg must be compact, and thus cannot be satisfied
by an eternal flow. Hence we conclude that:

Proposition 7.8. Any convex hypersurface does not develop type II singularity.

In the next section we will study the special case when the hypersurface is of dimension 1, namely
the case of a curve shortening flow.

8. Curvature shortening flow

In this section we prove that type II singularity never occur for the curve shortening clow.
Suppose γ is a compact curve developing a type II singularity at time T . Let γ̃s be its Hamilton
blowup at time T .
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Let s be the arclength parameter. We first calculate that

d

dt

ˆ
γt

|k|ds =
d

dt

∑
Pi

ˆ
kds−

∑
Ni

ˆ
kds

 ,

here Pi’s and Ni’s are all the intervals on which k is positive and negative, respectively. Use the
general fact that d

dtdVol = −H2dVol, one calculates that above is

=
∑
Pi

ˆ
(kss +K3)ds−

∑
Ni

ˆ
(kss + k3)ds−

∑
Pi

kssds+
∑
Ni

ˆ
kssds

=
∑
Pi

ˆ
kssds−

∑
Ni

kssds

= −2
∑

{x:k(x)=0}

|ks|.

Observe that the total curvature
´
|k|ds is scaling invariant. Therefore on the limit flow γ̃s, we

conclude that −2
∑
{x:k(x)=0} |ks| = 0 for almost every time. That is, for almost every t, k = 0

implies ks = 0.

Proposition 8.1. γ̃s is convex, namely k 6= 0.

Sketch. This statement uses essentially that the flow is one dimensional. We will only illustrate the
idea by proving the counterpart for the heat equation. Consider a heat equation ut = uxx. Suppose
at (0, 0), u = ut = uxx = 0 but uxxx 6= 0. Then utx = 1. Therefore

u(t, x) =
x3

3!
+ xt+ higher order terms.

Now view u(t, ·) as a function of x. Then when t < 0 it has 3 distinct roots. When t = 0 is has a
multiplicity 3 solution. When t > 0 it has only 1 real solution. For almost every ε > t > 0, at the
roots of u(t, ·) the derivative in x is not zero, contradiction.

A rigirous proof uses the implicit function theorem. We’ll not include it here. �

Now that the limit curve is convex, we use a version of the Harnack inequality, namely the
Hamilton Li-Yau differential Harnack inequality.

8.1. The Hamilton Li-Yau Harnack inequality. Let Mt ⊂ Rn+1, t ∈ [0, T ) be a convex
solution of the mean curvature flow with bounded curvature. Let X be a time dependent vector
field. Then we have

Theorem 8.2. • ∂H
∂t + H

2t + 2 〈∇H,X〉+A(X,X) ≥ 0,
• If H attains a space time maximum, then the flow is a translation soliton.

Remark 8.3. The usual Harnack inequality can be obtained by integrating the differential Harnack
inequality:
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Suppose (x1, t1), (x2, t2) are two points in the space time, t1 < t2. Let (η(t), t) be a curve
connecting them. Then

log

(
H(x1, t1)

H(x2, t2)

)
=

ˆ t2

t1

∂
∂tH(η(t), t)

H(η(t), t)

=

ˆ t2

t1

∂H
∂t + 〈∇H, η(t)〉

H

≥ −
ˆ t2

t1

1

2t
+

1

4

A(η′, η′)

H

≥ −
ˆ t2

t1

1

2t
+ |η′|2.

Choose η to be a geodesic in the space time metric, we obtain the usual Harnack inequality.

Remark 8.4. The usual Li-Yau Harnack inequality for the heat equation is the following. Suppose
on a n dimensional compact manifold with nonnegative Ricci curvature, u is a positive solution of
the heat equation ut = ∆u. Then

ut
u
− |∇u|

2

u2
≥ − n

2t
.

The idea is to define f = log u and consider the quantity

t[|∇f |2 − ft].
We are going to consider a similar quantity and derive a differential inequality of it.

Remark 8.5. Recall that a mean curvature flow is called a translating soliton (or translator), if

ϕ(x, t) = X + tV , and 〈V, ν〉 =
〈
∂ϕ
∂t , ν

〉
= −H.

In R2 the only translator is called the grim-reaper, defined by

x = − log cos(y), y ∈ (−π
2
,
π

2
).

We will only prove the Hamilton Li-Yau Harnack inequality for curves in R2 and for a specific
vector field X = −∇HH , or

kt
k
− k2

s

k2
+

1

2t
≥ 0.

8.2. Huisken’s two-point function.

Theorem 8.6. R(t) is decreasing along the curve shortening flow.

Proof. Let us suppose the contrary. Then there exsits t1 < t2 such that R(t2) > r > R(t1), here
r > 1 is any real number between R(t1) and R(t2). Consider the function

Z(x, y, t) = r|x− y| − L(t)

π
sin(

πdt(x, y)

L(t)
).

Then Z(x, y, t1) > 0 for any x, y ∈ γ, and Z(x2, y2, t2) < 0 for some x2, y2 ∈ γ.
Let t0 ∈ [t1, t2] and x0, y0 be such that Z(x, y, t) ≥ 0 for every x, y and for all t ∈ [t1, t0], and

Z(x0, y0, t0) = 0. Since the function R is scaling invariant, we may also suppose that L(t0) = 2π.
Pick arclength parameter of γ and pick the orientation correctly, such that

d

dx
dt(x, y) = −1,

d

dy
dt(x, y) = 1.

Now we are going to apply the maximum principle to the function Z. Unless otherwise indicated,
all the above calculations will be derivatives at the point (x0, y0, t). Since at (x0, y0, t) is a spatial
local minimum, we have
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0 =
∂Z

∂y
= r

1

2|x− y|
· 2
〈
γ′(x), x− y

〉
− 2 cos(

d(x, y)

2
) · −1

2

= r

〈
T (x),

x− y
|x− y|

〉
+ cos(

d(x, y)

2
).

here we use T (x), T (y) to denote γ′(x), γ′(y), respectively.
Similarly,

0 =
Z

y
= r

〈
T (y),

y − x
|x− y|

〉
− cos(

d(x, y)

2
).

Denote V = y−x
|x−y| . Then the above shows that

0 = −r 〈T (x), V 〉+ cos(
d(x, y)

2
), 0 = r 〈T (y), V 〉 − cos(

d(x, y)

2
).

Therefore we obtain 〈T (x), V 〉 = 〈T (y), V 〉 = cosα. Here α is the signed angle between T (y)

and V . Note that r cosα = cos(d(x,y)
2 ), and r > 1. Therefore we see α > d(x, y)/2.

Next, we calculate the t-derivative of Z. Since we are at the first time when Z hits 0, we have

0 ≥ ∂Z

∂t

= r
1

2|x− y|
2 〈−k(x)ν(x) + k(y)ν(y), x− y〉+

´ 2π
0

π
sin(d(x, y)/2)

− 2 cos(d(x, y)/2)

[
1

2
(−
ˆ y

x
k2ds) +

πdt(x, y)

(2π)2

ˆ 2π

0
k2ds

]
.

Denote β to be the signed angle between T (x) and T (y). Then by Cauchy-Schwartz, we have´ y
x k

2 ≥ (
´ y
x k)2/d(x, y) = β2

d(x,y) . Also note that since T (x), T (y) have the same angle α with the

vector V , β is either 0 or 2α. By the above, we conclude that

0 ≥ r 〈k(x)ν(x)− k(y)ν(y), V 〉+ cos(d(x, y)/2)
β2

d(x, y)

+
1

π

ˆ 2π

0
k2ds ·

[
sin(

d(x, y)

2
)− d

2
cos(

d

2
)

]
.

Since d ≤ π, we have tan(d/2) ≥ d/2. Therefore the last term in the above equation is always
nonnegative. We conclude that

(8.1) 0 ≥ r 〈k(x)ν(x)− k(y)ν(y), V 〉+ cos(
d(x, y)

2

β2

d(x, y)
) =F.

Now we calculate the second derivative of Z. We have

0 ≤ ∂2Z

∂x2
= r 〈k(x)ν(x), V 〉+

r

|x− y|
− 1

2
r

1

|x− y|3
〈T (x), x− y〉2 − sin(

d(x, y)

2
) · (−1

2
)

= r 〈k(x)ν(x), V 〉+
r

|x− y|
[1− 〈T (x), V 〉2] +

1

2
sin(

d(x, y)

2
).

Similarly,

0 ≤ ∂2Z

∂y2
= −r 〈k(y)ν(y), V 〉+

r

|x− y|
[1− 〈T (y), V 〉2] +

1

2
sin(

d(x, y)

2
).

To arrive at a contradiction, we will also need to calculate the mixed derivative.
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∂2Z

∂x∂y
=

r

|x− y|
〈T (x),−T (y)〉+ r 〈T (x), V 〉 〈T (y), V 〉 (−1

2
) sin(

d(x, y)

2
).

Combine equation 8.1, we see that

0 ≥F =
∂2Z

∂x2
+
∂2Z

∂y2
+ 2

∂2Z

∂x∂y
− r

|x− y|
[2− 4 cos2 α+ 2 〈T (x), T (y)〉] + cos(

d(x, y)

2
)

β2

d(x, y)
.

By the maximum principle, we conclude that ∂2Z
∂x2

+ ∂2Z
∂y2

+ 2 ∂2Z
∂x∂y ≥ 0, since it is the second

derivative in direction x+ y. Now if β = 2α, then

2− 4 cos2 α+ 2 〈T (x), T (y)〉 = 2− 4 cosα +2 cosβ = 0,

and cos(d(x, y)/2) β2

d(x,y) ≥ 0, contradiction.

�

9. Mean convex mean curvature flow

In this section we study the mean curvature flow with mean convex initial data. Recall the
evolution equation for H and |A|:

∂H

∂t
= ∆H + |A|2H, ∂|A|

∂t
= ∆|A| − |∇A|

2 − |∇|A||2

|A|+ |A|3
.

Hence by the maximum principle H > 0 is preveserved under the mean curvature flow. Moreover,
we have:

Proposition 9.1. |A|H is decreasing along the mean curvature flow of compact hypersurfaces.

Proof.

∂

∂t

(
|A|
H

)
−∆

(
|A|
H

)
=

(∂t −∆)|A|
H

− |A|(∂t −∆)H

H2

− 2
|∇H|2|A|2

H3
+ 2
∇|A| · ∇H

H2

≤ −2|∇H|2|A|
H3

+
2∇|A| · ∇H

H2

=
2

H

〈
∇(
|A|
H

),∇H
〉
.

Hence by the maximum principle |A|H is decreasing. �

The new idea in the study of mean convex mean curvature flow is splitting theorem and Hamil-
ton’s strong maximum principle for tensors. As an analogue, let us recall Cheeger-Gromoll splitting
theorem: if a manifold has nonnegative Ricci curvature and it contains a geodesic line, then it splits,
namely, it is M ×R as Riemannian manifold. In our case we are going to prove a strong maximum
principle for tensors, such that if an interior maximum is attained, then the manifold splits.

9.1. A strong maximum principle for tensors. Let Ω be a domain. Suppose on Ω × [0, T ],
there is a family of metrics g(t) and ∂

∂tg = h. Then for any time dependent vector field V , we have

d

dt
g(V, V ) =

d

dt
(gijV

iV j) = hijV
iV j + gij(

∂

∂t
V i)V j + gijV

i ∂

∂t
V j .

If we choose V carefully so that ∂
∂tV

i = −1
2g
ikhkjV

j , then the above is

= hijV
iV j − 1

2
hjlV

lV j − 1

2
hilV

lV i = 0.

Hence we have the following
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Definition 9.2. A time dependent vector field V is called time-parallel, if

∂

∂t
V i = −1

2
gikhklV

l.

Note that by basic theory of ODE, time-parallel vector exists for any Lipschitz initial value.

Theorem 9.3 (The strong maximum principle for tensors). Suppose on Ω × [0, T ], a family of
metrics g(t) satisfies ∂tg = h, and M is a time dependent 2-tensor, such that for any time-parallel
vector field V ,

∂

∂t
M(V, V ) ≥ (∆M)(V, V ).

Let λ1(M) be its smallest eigenvalue. Then λ1 is non-decreasing. If λ1(M) attains space time
minimum at some point (x, t), t > 0, then λ1(M) is constant on Ω× [0, T ].

Moreover, in the above case, (∆M)(V, V ) = 0, for any eigenvector of λ1.

Proof. Let (x, t) be a point where λ1 attains its space time minimum, and V is a unit eigenvector
of λ1. We first extend V via parallel transport to a neighborhood of x, and thus (∆M)(V, V ) =
∆M(V, V ). Next we extend V to be a time-parallel vector field.

Then since λ1 is the smallest eigenvalue and (x, t) attains its space time minimum, we conclude
that at a time t where λ1 is smooth,

∂

∂t
λ1 ≥

∂

∂t
M(V, V ) ≥ ∆M(V, V ) ≥ ∆λ1 ≥ 0.

Hence λ1 is non-decreasing, and whenever it attains a space time minimum, it must be constant
by the maximum principle. Also in this case, ∆M(V, V ) = 0.

In general λ1 may only be Lipschitz. Then the above inequality is understood in the viscosity
sence. The maximum principle also works in the viscosity sense. We will elaborate this point below.

�

Definition 9.4. A Lipschitz function f is said to satisfy ∂
∂tf ≥ ∆f in the viscosity sense, if for

every C2 function ϕ in a backwards neighborhood of any point (x, t), such that ϕ ≥ f in the
neighborhood and ϕ = f at (x, t), we have ∂

∂tϕ ≥ ∆ϕ.

The maximum principle also holds for viscosity solutions. Indeed, if (x0, t0) is a point of f
where f attains its space time minimum, then by definition, for any other C2 function ϕ, ϕ ≥ f
in a neighborhood and ϕ(x0, t0) = f(x0, t0), we see that ϕ attains its space time minimum also at
(x0, t0). Therefore

∂

∂t
ϕ ≥ ∂

∂t
f ≥ ∆f ≥ ∆ϕ, at (x0, t0).

But ∂
∂tϕ ≤ 0, ∆ϕ ≥ 0. Then use a standard perturbation argument we conclude that this cannot

happen unless f is a constant function.
We are know ready to state and prove the splitting theorem.

Theorem 9.5. Under the same assumption as before, suppose the space time minimum is attained.
Then Ω splits locally to Ω = P ×Q, such that V is tangent to P if and only if M(V, V ) = λ1g(V, V ).

Proof. We will use the Frobenius theorem to produce a local splitting. Without loss of generality
let us assume that λ1 = 0, otherwise just consider M − λ1I instead.

Let x be a point where the space time minimum is attained. Take a normal coordinate {Ei}
around x. Then for any vector field V , ∇Ei(∇EiM(V, V )) = ∆M(V, V ).

Take V to be an arbitrary section of the null space of M around x. Then we see that

0 = M(V, V ) = ∇Ei(∇EiM(V, V ))

= ∇Ei ((∇EiM)(V, V ) + 2M(∇EiV, V ))

= (∆M)(V, V ) + 2(∇EiM)(∇EiV, V ).
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By the previous theorem, since V is λ1-eigensection, we have (∆M)(V, V ) = 0. Therefore

0 = (∇EiM)(∇EiV, V )

= ∇EiM(∇EiV, V )−M(∇EiV,∇EiV )−M(∇Ei∇EiV, V )

= −M(∇EiV,∇EiV ).

Since M ≥ 0, we conclude that ∇EiV is in the null space of M . Therefore we conclude that
Null(M) is a integrable distribution.

For any vectorW ∈ Null(M)⊥, we prove∇EiW ∈ Null(M)⊥. In fact, for any vector V ∈ Null(M)
and any vector field X, we have

0 = X(W · V ) = (∇XW ) · V +W · ∇XV.
Since ∇XV = 0, we conclude that ∇XW · V = 0. That is, ∇XW ∈ Null(M)⊥.

By the Frobenius theorem, both Null(M) and Null(M)⊥ are integrable distributions. Let P,Q
be the submanifolds they define. We have, as differentiable manifolds, M = P × Q locally. It
remains to prove this splitting is also in the sence of Riamannian manifold, i.e., the metric is also
a product metric locally.

�

9.2. Local curvature estimate. In this section we derive a local curvature estimate from α-
noncollapsedness of the mean curvarure flow.

Definition 9.6. A smooth α-noncollapsed flow on an open set U ⊂ Rn+1 is a family of closed sets
Kt ⊂ U such that ∂Kt is mean convex and flows by the mean curvature flow, and is α-noncollapsed.

Theorem 9.7. For any α > 0, there exists a ρ = ρ(α) and Ci = Ci(α), i = 0, 1, . . . such that if
K is an α-noncollapsed flow in the parabolic ball P (p, t, r) centered at p ∈ ∂Kt with H(p, t) ≤ r−1,
then

sup
P (p,t,ρr)

|∇iA| ≤ Cir−(1+i).

Proof. By the standard curvature estimate we only need to prove the statement for |A|, namely
i = 0. We argue by contradiction. Suppose the contrary. Then by rescaling at the point where the
curvature is maximized, we may assume that we can take a sequence of closed sets representing
the mean curvature flow, Kj , defined on P (0, 0, j) such that H(0, 0) ≤ j−1 and supP (0,0,1) |A| ≥ j.
Assume ν(0, 0) = en+1.

We first prove the following property of the rescaled surfaces Kj : Kj converges in the strong
Hausdorff sense to the static half space 〈en+1, X〉 ≤ 0. Namely, Kj converges in Hausdorff sense to
〈en+1, X〉 ≤ 0 and the complement of Kj converges to 〈en+1, X〉 > 0.

First let us prove that Kj converges in the Hausdorff sense to the lower half space. Since Kj is
α-noncollapsed and H(0, 0) = j−1, Kj contains a ball of radius αj in the lower half space which is
tangent at (0, 0) to the en+1 = 0 coordinate plane. Also since the surfaces involves as mean convex

mean curvature, for t2 < t1, Kj
t1
⊂ Kj

t2
. Therefore every point in the lower half space is contained

in Kj
t , as t→ 0 and j →∞.

Now let us prove that the complement of Kj converges in the Hausdorff sense to the upper
half space. Pick a sequence of real numbers Rj → ∞ and dj → 0 such that Rd → ∞. Let
BR,d = B(−Ren+1, R + d). Its mean curvature is H = 1

R+d . Under the mean curvature flow,

the time for BR,d to leave the upper half space is T = (R + d)d. By the avoidance principle, for

t ∈ [−Rd, 0], Kj
t cannot contain BR,d (otherwise Kj

t will contain an open set of the upper half
space, contradicting to the fact that they converge to the lower half space).

Take the largest possible d′ such that BR,d′ and Kj
t have a contact point. Let pj be the contact

point. We observe that pj must satisfy the following three properties:
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(1) 〈pj , en+1〉 ≤ d.
(2) lim infj→∞ 〈pj , en+1〉 ≥ 0.

(3) ‖pj‖ ≤ 2
√

2Rd.

Property 1 follows easily from the choice of d′. Property 2 follows from the fact that Kj
t converges

to the lower half space (otherwise there will be an open set of the lower half space that is not

contained in every Kj
t .) We now elaborate on property 3. At the point pj , K

j
t has a tangent ball of

radius R. Therefore the mean curvature at pj is at most n
R . By the nocollapsing condition, there

exists an exterior tangent ball of radius at least α
nR at pj . Now that dist(pj , 0) ≤

√
Rd and pj is

on ∂B(R, d), the tangent plane at of kjt at pj is sufficiently close to the coordinate plane en+1 = 0.
Therefore the ball of radius α

nR tangent to pj converges to the upper half space as j → ∞. This

proves that the complement of Kj
t converges in Hausdorff sense to the upper half space.

Now we finish the proof of the theorem under the extra assumption that ∀R > 0, Kj
t contains

B(0, R), for j sufficiently large and t = t(j). To do so, we first observe the following

Lemma 9.8 (One-sided minimization). For t2 > t1, and any open subset V such that Kt2 ⊂ V ⊂
Kt1, Vol(∂Kt2) ≤ Vol(∂V ).

The proof of lemma is a calibration argument. The mean curvature flow from time t1 to t2
creates a foliation of Kt1 −Kt2 by mean convex hypersurfaces. Define the following vector field v
in Kt1 − Kt2 : for x ∈ ∂Kt, let v(x) = ν∂Kt(x), t ∈ [t1, t2]. Then by the Stokes’ formula and the
mean convexity of each leaf of the foliation,

0 ≤
ˆ
V

div(v) =

ˆ
∂V
〈v, νV 〉 −

ˆ
∂Kt2

〈
v, ν∂Kt2

〉
≤ Vol(∂V )−Vol(∂Kt2),

the lemma is proved.

To finish the proof, we see that as j approaches infinity, Kj
t is contained in an arbitrarily thin

layer near the coordinate plane en+1 = 0. Use the above lemma, we see that for any ε > 0,

Vol(B(p,R) ∩ ∂Kj
t ) ≤ (1 + ε)ωnR

n,

for sufficiently large j. Therefore by B. White’s epsilon regularity theorem, we conclude the local

curvature estimate supB(p,R/2) |A| is uniformly bounded. Therefore, the flow Kj
t converges smoothly

to its limite, contradicting supP (0,0,1) ≤ j.
Finally we are going to remove the extra assumption that B(0, R) ⊂ Kj

t for large j, t = t(j).

Claim 9.9. There exists µ such that if the flow is defined on P (p, t, µr) and H ≤ r−1, then
sup |A| ≤ C0r

−1 on P (p, t, ρr).

Assuming the claim, the theorem is proved with a different ρ. Now let us prove the claim.
If the statement of the claim is not true, there exist counter examples for µj = j. Then we can

assume:

(1) Kj is defined on P (0, 0, j) and ν(0, 0) = en+1.
(2) H(0, 0)→ H∞ ≤ 1.
(3) sup |A| > C0 in P (0, 0, ρ).

(4) If for (p, t) ∈ P (0, 0, j5) we have H(p, r) ≤ r−1 for r ≤ 1
2 , then supP (p,t,ρr) ≤ C0r

−1.

Note that property (4) is similar to the point selection process we have seen earlier. It naturally
appeared because we only assume that the flow is defined in an open ball. We separate two cases.

Case 1 H∞ = 0. We know that Kj converges in strong Hausdorff sense to the lower half space.
Use property (4) and cover the whole flow by balls of radius 1

2 , we see that |A| is uniformly
bounded for the entire flow. Therefore the flow has to converge smoothly to its limit.
Therefore the limit has to be a plane, contradicting property (3).
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Case 2 H∞ > 0. In this case, there is some neighborhood of fixed size around (0, 0) in which
H ≤ H∞

2 . Therefore, there exist r0, t1 such that B(0, r0) ⊂ Kt1 . By the avoidance principle,
we deduce that for any radius R, there is some t2 such that B(0, R) ⊂ Kt2 .

Pick a point pt to be a point on ∂Kj
t such that |pt| = dist(∂Kt, 0). We prove that

H(pt, t) ≥ C
|t| , C = C(α, r0) is some constant. Otherwise if H ≤ C

|t| , by α-noncollapsing

there exists an inscribed ball of radius comparable to |t|. But for |t| large, such a ball
cannot reach the origin at time 0. (Note that a ball of radius R becomes a ball of radius√
R2 − 2ns after time s under the mean curvature flow. Hence after time |t|, the radius |t|

becomes
√
t2 − 2n|t|, which is positive for |t| large)

Note that dist(∂Kt, 0) is a Lipschitz function of t, and at a point (pt, t) where the function
is differentiable, its derivative is given by H(pt, t). By above we see that d

dt dist(∂Kt, 0) ≥
C
|t| for some constant C. Since

´
C
|t|dt diverges, we deduce that dist(∂Kt, 0) → ∞ as t

approaches to 0. That is, Kj
t contains a ball of arbitrarily large radius. The theorem

follows.

�
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