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1 Introduction

The special linear group SLn(F ) where F is a field is the group of n × n matrices with entries in F
that have determinant 1. We define the projective special linear group PSLn(F ) to be the quotient of
the special linear group with its center, that is SLn(F )/Z(SLn(F )). It turns out that, as Galois claimed
without proof in 1831, PSLn(Fp) is simple for all n ≥ 2 and primes p, except n = 2 and p = 2 or 3, in
which case PSL2(F2) ∼= S3 and PSL2(F3) ∼= A4, both of which are solvable. In this paper, we will prove
the simplicity of PSL2(F ) for fields F with |F | > 3 (not necessarily of prime order). In fact, this holds
in general: PSLn(F ) is simple for n ≥ 2 unless n = 2 and F = F2 or F3.

2 Commutator Subgroups

Let G be a group. We define the commutator of g, h ∈ G to be g−1h−1gh, and denote it [g, h]. The
commutator arises as a natural way to determine how far from being abelian a group G is. For example,
if G is abelian then g−1h−1gh = e so the only commutator in G is e. We then define the commutator
subgroup of G to be the subgroup generated by all the commutators of G, and we denote it [G,G]. In
fact, this subgroup is normal in G.
Proposition [G,G] is a normal subgroup of G.
Proof : Let [g, h] = g−1h−1gh ∈ [G,G], and let k ∈ G. Then k[g, h]k−1 = kg−1h−1ghk−1. We can add
kk−1 and k−1k between terms to get (kg−1k−1)(kh−1k−1)(kgk−1)(khk−1) = (kgk−1)−1(khk−1)−1(kgk−1)(khk−1).
Note that this is [kgk−1, khk−1] ∈ [G,G], and therefore [G,G] is normal in G.
We can then use G/[G,G] as a measure of how ”abelian” a group G is. If G is abelian, then [G,G] = {e}
as noted above, so G/{e} ∼= G is abelian. We note that the converse is also true: if the commutator of
any g, h ∈ G is the identity, then G is abelian. This is immediate since if [g, h] = e then g−1h−1gh = e,
which implies gh = hg for all g, h ∈ G. We also have the nice property that G/[G,G] is always abelian.
Proposition G/[G,G] is abelian.
Proof : Let g[G,G], h[G,G] ∈ G/[G,G] be elements of this group. Then (g[G,G])−1(h[G,G])−1(g[G,G])(h[G,G]) =
(g−1h−1gh)[G,G] = [G,G] since g−1h−1gh = [g, h] ∈ [G,G]. Thus, the commutator of any g[G,G], h[G,G] ∈
G/[G,G] is [G,G] = eG/[G,G]. By the above note, G/[G,G] is abelian.
We can now formalize how G/[G,G] is a measure of how ”abelian” a group is.
Theorem Let N be a normal subgroup of G. Then G/N is abelian if and only if [G,G] ≤ N .
Proof : Assume G/N is abelian, that is for gN, hN ∈ G/N we have (gN)(hN) = (hN)(gN) or (gh)N =
(hg)N . Then (g−1h−1gh)N = N , which implies g−1h−1gh = [g, h] ∈ N for all g, h ∈ G. Thus,
[G,G] ≤ N . For the converse, assume [G,G] ≤ N . Then for all g, h ∈ G, we have (g−1h−1gh) ∈ N ,
which implies (g−1h−1gh)N = N . Then (gh)N = (hg)N , which implies (gN)(hN) = (hN)(gN) or that
G/N is abelian.
Intuitively, [G,G] creates the smallest abelian quotient group G/N by modding out non-abelian elements.
If [G,G] = G, then G/G ∼= {e} is the ”smallest” abelian quotient group. That is, if N is normal in G
then G/N is non-abelian unless N = G. If [G,G] = G, we say G is perfect. Intuitively speaking, perfect
groups are ”anti-abelian”.

3 Doubly-Transitive Actions

Recall that we call a group action of G on a set X transitive if for every x ∈ X, there is some g ∈ G such
that g · x = x. We call a group action doubly-transitive if for every two ordered pairs (x1, x2), (y1, y2) ∈
X × X with x1 6= x2 and y1 6= y2, there is some g ∈ G such that g · x1 = y1 and g · x2 = y2. That
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is, doubly-transitive actions have group elements that take any distinct pair of points in X ×X to any
other distinct pair of points in X × X. As an example, consider the action of A4 on {1, 2, 3, 4}. Pick
a, b ∈ {1, 2, 3, 4} with a 6= b and c, d ∈ {1, 2, 3, 4} with c 6= d. If a = c and b = d, then the identity
permutation e ∈ A4 sends e · a = a = c and e · b = b = d. If without loss of generality a = c and b 6= d,
then let σ = (b d)(d e) where e is whatever element is left in {1, 2, 3, 4} that is not a, b, or d. Then
σ ∈ A4 since it is the product of two odd permutations, and σ · a = a = c and σ · b = d. If a 6= c and
b 6= d, then let σ = (a c)(b d) such that σ ∈ A4 and σ · a = c and σ · b = d. Thus, the action of A4 on
{1, 2, 3, 4} is doubly-transitive. We also have the following theorem on doubly-transitive actions.
Theorem Let G act doubly-transitively on a set X, and let x ∈ X. Then StabG(x) is a maximal
subgroup of G.
Proof : Recall that a maximal subgroup ofG is a proper subgroup such that no other proper subgroup ofG
contains it. Let Hx = StabG(x). We will first show that for each g 6∈ Hx, we must have G = Hx∪HxgHx.
Let g′ ∈ G such that g′ 6∈ Hx. We will show g′ ∈ HxgHx. Since g, g′ 6∈ Hx = StabG(x), we have g · x
and g′ · x are not x. Therefore, g−1 · x and g′−1 · x are not x, so by double-transitivity with (x, g−1 · x)
and (x, g′−1 · x) there exists some h ∈ G such that h · x = x and h · (g−1 · x) = g′−1 · x. Since h · x = x,
we have h ∈ Hx. Thus, since (hg−1) · x = g′−1 · x, we also have that (g′hg−1) · x = x, or g′hg−1 ∈ Hx.
Therefore, g′ ∈ Hxgh ⊂ HxgHx, so G = Hx ∪HxgHx and we are done.
Now we know that Hx 6= G since |X| ≥ 2 implies there exists y ∈ X with x 6= y such that g · x = y =⇒
g 6∈ Hx. Let Hx ( K ⊂ G, and choose g ∈ K −Hx. Then g 6∈ Hx, so G = Hx ∪HxgHx. Since Hx ⊂ K
and g ∈ K, by closure we have HxgHx ⊂ K, so Hx ∪ HxgHx = G ⊂ K. Therefore, K = G or Hx is
maximal.
Theorem Suppose G acts on a set X doubly-transitively. Then any normal subgroup N /G acts on X
either trivially or transitively.
Proof : Suppose N does not act on X trivially. Then for x ∈ X, there is some n ∈ N such that n ·x 6= x.
Now let y, y′ ∈ X with y 6= y′. Then by double-transitivity, there is some g ∈ G such that g · x = y and
g · (n · x) = y′. Using the first equation, x = g−1 · y, so g · (n · x) = g · (n · (g−1 · y)) = (gng−1) · y = y′.
Since N / G, gng−1 ∈ N so for any y, y′ ∈ X we have that there is some n ∈ N such that n · y = y′.
Thus, N acts transitively on X.
We now have the necessary tools to discuss simplicity of groups in an abstract sense, without explicitly
having to look at group orders and use Sylow Theorems and various tricks to deduce simplicity. Namely,
we prove a powerful criterion for simplicity due to Iwasawa.

4 Iwasawa’s Criterion

This is the main result used in the proof of the simplicity of PSL2(F ).
Theorem (Iwasawa) Let G act doubly-transitively on a set X, and let K be the kernel of this group
action. Assume the following two conditions:

1. For some x ∈ X, StabG(x) has an abelian normal subgroup whose conjugates generate G.

2. [G,G] = G

Then G/K is simple.
Proof : Recall that the kernel K of G acting on X is the set of g ∈ G such that g · x = x for all x ∈ X,
i.e. the set of g that act trivially on X. To show G/K is simple, by the fourth isomorphism theorem it
suffices to show that the only normal subgroup of G containing K is G. Suppose K ⊂ N ⊂ G with N /G,
and let x ∈ X be the element such that StabG(x) has an abelian normal subgroup whose conjugates
generate G. Let H = StabG(x) such that H is a maximal subgroup of G. Since N is normal, NH is a
subgroup of G by the second isomorphism theorem. Since H ⊂ NH and H is maximal, either NH = H
or NH = G.
If NH = H, then N ⊂ H so N fixes x. Since N / G, it acts trivially or transitively. But N fixes x, so
N acts trivially on X. Therefore, N ⊂ K, and since K ⊂ N by hypothesis this implies N = K.
Suppose instead that NH = G, and let U be the abelian normal subgroup of H whose conjugates generate
G. Since U /H, we have NU /NH = G. Then for every g ∈ G, gUg−1 ⊂ g(NU)g−1 = NU since NU /G
as we just showed. Thus, since the conjugates of U generate G and NU contains all conjugates of U ,
NU = G. Then by the second isomorphism theorem, G/N = (NU)/N ∼= U/N ∩ U . Since U is abelian,
U/N ∩ U is abelian. By the isomorphism, this implies G/N is abelian, so [G,G] ≤ N . By our second
assumption, [G,G] = G, so N = G. Therefore, any normal subgroup containing K is either K or G, so
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by the fourth isomorphism theorem the only normal subgroups of G/K are K/K = {eG/K} and G/K.
By definition, G/K is simple.
As an example application, we can use this theorem to demonstrate the simplicity of A5. Consider the
action of A5 on {1, 2, 3, 4, 5}. Using the same construction as for A4 acting on {1, 2, 3, 4}, this action
is doubly-transitive. Note that the kernel of this action is the set of σ ∈ A5 such that σ(n) = n for
n = 1, . . . , 5. By definition, σ = e, so the kernel of this action K = {e} is trivial. Let x = 5 such that
StabA5(x) ∼= A4, which has the abelian normal subgroup

U = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}

U abelian is immediate from the fact that |U | = 4. Also note that U is a Sylow 2-subgroup of A4, so
since n4 | 3 and n4 ≡ 1 (mod 4), n4 = 1 so U / A4. To see that the conjugates of U generate A5, note
that the conjugates of U are exactly [(1 2)(3 4)] in A5, that is all (2, 2)-cycles of the form (1 2)(3 4).
Then (1 2)(3 4)(2 3)(4 5) = (1 2 4 5 3) is a 5-cycle in the group generated by the g-conjugates of U ,
and (1 2)(3 4)(1 2)(4 5) = (3 4 5) is a 3-cycle in this group. Thus, the order of the group is at least
lcm(2, 3, 5) = 2 ∗ 3 ∗ 5 = 30. Since U is in this group, 4 divides its order. Thus, the order of the group
generated by the g-conjugates of U has order 60, and therefore the g-conjugates of U generate A5.
Further, let (a b)(c d) be a (2, 2)-cycle in A5 with a 6= b 6= c 6= d. Then

(a b)(c d) = (a b c)(a b d)(a c b)(a d b) = (a b c)(a b d)(a b c)−1(a b d)−1 ∈ [A5, A5]

Thus, every (2, 2)-cycle is in [A5, A5], and since these (2, 2)-cycles generate A5 as we have just shown,
this implies [A5, A5] = A5. By Iwasawa’s Criterion, A5/{e} ∼= A5 is simple.

5 The Simplicity of PSL2(F )

Consider F 2 as a vector space over F . Recall that a linear subspace of F 2 is a subspace of F 2 as a
vector space. Since F 2 has dimension 2, a linear subspace has dimension 0, 1, or 2. If it has dimension
2, then the linear subspace is the whole space F 2. If it has dimension zero then it is just the zero vector
(0, 0). Otherwise, if it has dimension one, then it has a basis {v} where v ∈ F 2. Then the subspace is
{sv | s ∈ F}, which we will denote Fv; intuitively, Fv is all scalar multiples of v.
Further recall that all linear transformations of a finite dimensional vector space arise as matrices, so
linear transformations of F 2 are 2 × 2 matrices over F . In a specific case, we will consider the action
of SL2(F ) on 1-dimensional linear subspaces of F 2 by linear transformation. From now on, we will just
call these linear subspaces, assuming the fact that they are 1-dimensional. Then if A ∈ SL2(F ) and Fv
is a linear subspace, A · Fv = F (Av) (this just takes the basis {v} for the linear subspace Fv to {Av},
and F (Av) is the linear subspace spanned by this basis).
Theorem The action of SL2(F ) on the linear subspaces of F 2 is doubly-transitive.
Proof : We will show that for any v, w ∈ F 2 with v 6= w, there is an A ∈ SL2(F ) such that A ·F

(1
0
)

= Fv

and A · F
(0

1
)

= Fw. This suffices since if v′, w′ ∈ F 2 with v′ 6= w′, then there is some B ∈ SL2(F )
such that B · F

(1
0
)

= Fv′ and B · F
(0

1
)

= Fw′. This implies B−1 · Fv′ = F
(1

0
)

and B−1 · Fw′ = F
(0

1
)
,

so (AB−1) · Fv′ = Fv and (AB−1) · Fw′ = Fw. Let v =
(
v1
v2

)
and w =

(
w1
w2

)
. Since Fv 6= Fw, v and

w are linearly independent. Thus, D = v1w2 − v2w1 is nonzero, since if it was 0 then v1w2 − v2w1 =
v1w2 + v1w1 − v1w1 − v2w1 = v1(w1 + w2) − w1(v1 + v2) = 0 implies w1 + w2 = 0 and v1 + v2 = 0 or
F

(
w1
w2

)
= F

(
w1
−w1

)
= F

(
v1
−v1

)
= F

(
v1
v2

)
, a contradiction. Let

A =
(
v1 w1/D
v2 w2/D

)
Such that det(A) = (v1w2 − v2w1)/D = D/D = 1 and A ∈ SL2(F ). Then A

(1
0
)

=
(
v1
v2

)
= v and

A
(0

1
)

=
(
w1/D
w2/D

)
= (1/D)w. Thus, A · F

(1
0
)

= Fv and A · F
(0

1
)

= F (1/D)w = Fw. This concludes the
proof that this action is doubly transitive.
Theorem The kernel of this action is Z(SL2(F )).
Proof : Let

A =
(
a b
c d

)
∈ SL2(F )
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be in the kernel of this action. Then A · F
(1

0
)

= F
(1

0
)
, so A

(1
0
)

=
(
a
c

)
=

(
λ
0
)

for λ ∈ F . Thus, c = 0.
Similarly, A · F

(0
1
)

= F
(0

1
)
, so A

(0
1
)

=
(
b
d

)
=

(0
λ

)
for λ ∈ F , implying b = 0. Thus,

A =
(
a 0
0 d

)
Since det(A) = ad = 1, we have d = 1/a. Moreover, since A · F

(1
1
)

= F
(1

1
)
, we have A

(1
1
)

=
(
a

1/a
)

=
(
λ
λ

)
so a = 1/a = λ =⇒ a2 = 1 =⇒ a = ±1. Thus, the kernel is the matrices ±

(
1 0
0 1

)
which both fix all

linear subspaces.
We will check that this is in fact the center of SL2(F ). Let A =

(
a b
c d

)
∈ Z(SL2(F )). Then

(
1 1
0 1

)(
a b
c d

)
=(

a b
c d

)(
1 1
0 1

)
implies that

(
a+c b+d
c d

)
=

(
a a+b
c c+d

)
. Since a+c = a, c = 0, and since a+b = b+d we have a = d.

We also have that
(

1 0
1 1

)(
a b
c d

)
=

(
a b
c d

)(
1 0
1 1

)
implies

(
a b
a+c b+d

)
=

(
a+b b
c+d d

)
, so a = a+b implies b = 0 as well.

Thus, A =
(
a 0
0 a

)
, and since A ∈ SL2(F ) we have a2 = 1 or a = ±1. Therefore, Z(SL2(F )) = ±

(
1 0
0 1

)
,

and the kernel of this action is the center of SL2(F ).
Let x = F

(1
0
)

and consider StabSL2(F )(F
(1

0
)
). Then A =

(
a b
c d

)
∈ StabSL2(F )(F

(1
0
)
) if A

(1
0
)

=
(
λ
0
)

for
λ ∈ F . This implies c = 0, and det(A) = ad− bc = 1 implies then that d = 1/a. Thus,

StabSL2(F )

(
F

(
1
0

))
=

{ (
a b
0 1/a

)
∈ SL2(F )

}
Consider the subgroup

U =
{ (

1 λ
0 1

) ∣∣∣∣ λ ∈ F}
This subgroup is normal in StabSL2(F )(F

(1
0
)
) since

(
a b
0 1/a

)(
1 λ
0 1

)( 1/a −b
0 a

)
=

(
1 λa2

0 1
)
∈ U and is abelian

since
(

1 λ
0 1

)( 1 µ
0 1

)
=

( 1 λ+µ
0 1

)
Theorem The conjugates of U generate SL2(F ).
Proof : Consider

( 0 −1
1 0

)
∈ SL2(F ) and

( 0 −1
1 0

)(
1 λ
0 1

)( 0 1
−1 0

)
=

( 1 0
−λ 1

)
, so lower triangular matrices are in

the group generated by conjugates of U . Consider the matrix
(
a b
c d

)
∈ SL2(F ). If b 6= 0, then(

a b
c d

)
=

(
1 0

(d− 1)/b 1

) (
1 b
0 1

) (
1 0

(a− 1)/b 1

)
If c 6= 0 then (

a b
c d

)
=

(
1 (a− 1)/c
0 1

) (
1 0
c 1

) (
1 (d− 1)/c
0 1

)
If b = c = 0 then this matrix is

(
a 0
0 1/a

)
, and(

a 0
0 1/a

)
=

(
1 0

(1− a)/a 1

) (
1 1
0 1

) (
1 0

a− 1 1

) (
1 −1/a
0 1

)
So all matrices in SL2(F ) are in the group generated by conjugates of U .
Theorem If |F | ≥ 4 then [SL2(F ),SL2(F )] = SL2(F ).
Proof : Consider the following commutator in [SL2(F ),SL2(F )].(
a 0
0 1/a

) (
1 b
0 1

) (
a 0
0 1/a

)−1 (
1 b
0 1

)−1
=

(
a 0
0 1/a

) (
1 b
0 1

) (
1/a 0
0 a

) (
1 −b
0 1

)
=

(
1 b(a2 − 1)
0 1

)
Since |F | ≥ 4, there is an a 6= 0, 1,−1 such that

(
a 0
0 1/a

)
exists and a2 − 1 6= 0. Note that this is true

because a = ±1 are the only solutions to a2 − 1 = 0 in a field, as a2 − 1 = (a− 1)(a+ 1) = 0 and since
every nonzero element is a unit, F has no zero divisors, which implies either a − 1 = 0 or a + 1 = 0.
Letting b run over F , we have that U ∈ [SL2(F ),SL2(F )]. Since [SL2(F ),SL2(F )] is normal in SL2(F ),
all the conjugates of U are in [SL2(F ),SL2(F )]. But these conjugates generate the whole group, so
[SL2(F ),SL2(F )] = SL2(F ).
Theorem For |F | ≥ 4, the group PSL2(F ) is simple.
Proof : We have that SL2(F ) acts doubly-transitively on the set of linear subspaces of F 2. The kernel
of this action is Z(SL2(F )). Further, there is a linear subspace Fv such that StabSL2(F )(Fv) contains
an abelian normal subgroup whose conjugates generate SL2(F ), and [SL2(F ),SL2(F )] = SL2(F ). By
Iwasawa’s Criterion, SL2(F )/Z(SL2(F )) = PSL2(F ) is simple.
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