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Abstract

Deep reinforcement learning (DRL) algorithms have successfully been demon-1

strated on a range of challenging decision making and control tasks. One dominant2

component of recent deep reinforcement learning algorithms is the target network3

which mitigates the divergence when learning the Q function. However, target4

networks can slow down the learning process due to delayed function updates. An-5

other dominant component especially in continuous domains is the policy gradient6

method which models and optimizes the policy directly. However, when Q func-7

tions are approximated with neural networks, their landscapes can be complex and8

therefore mislead the local gradient. In this work, we propose a self-regularized and9

self-guided actor-critic method. We introduce a self-regularization term within the10

TD-error minimization and remove the need for the target network. In addition, we11

propose a self-guided policy improvement method by combining policy-gradient12

with zero-order optimization such as the Cross Entropy Method. It helps to search13

for actions associated with higher Q-values in a broad neighborhood and is robust14

to local noise in the Q function approximation. These actions help to guide the15

updates of our actor network. We evaluate our method on the suite of OpenAI gym16

tasks, achieving or outperforming state of the art in every environment tested.17

1 Introduction18

Reinforcement learning (RL) studies decision-making with the goal of maximizing total discounted19

reward when interacting with an environment. Leveraging high-capacity function approximators such20

as neural networks, Deep reinforcement learning (DRL) algorithms have been successfully applied to21

a range of challenging domains, from video games [12] to robotic control [16].22

Actor-critic algorithms are among the most popular approaches in DRL, e.g. DDPG [11], TRPO [16],23

TD3 [6] and SAC [7]. These methods are based on policy iteration, which alternates between policy24

evaluation and policy improvement [17]. Actor-critic methods jointly optimize the value function25

(critic) and the policy (actor) as it is often impractical to run either of these to convergence [7].26

In DRL, both the actor and critic use deep neural networks as the function approximator. However,27

DRL is known to assign unrealistically high values to state-action pairs represented by the Q-function.28

This is detrimental to the quality of the greedy control policy derived from Q [21]. Mnih et al. [13]29

proposed to use a target network to mitigate divergence. A target network is a copy of the current Q30

function that is held fixed to serve as a stable target within the TD error update. The parameters of the31

target network are either infrequently copied [13] or obtained by Polyak averaging [11]. A limitation32

of using a target network is that it can slow down learning due to delayed function updates. We propose33

an approach that reduces the need for a target network in DRL while still ensuring stable learning34

and good performance in high-dimensional domains. We add a self-regularization term to encourage35

small changes to the target value while minimizing the Temporal Difference (TD)-error [17].36

Evolution Strategies (ES) are a family of black-box optimization algorithms which are typically very37

stable, but scale poorly in high-dimensional search spaces, (e.g. neural networks) [14]. Gradient-38
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based DRL methods are often sample efficient, particularly in the off-policy setting when, unlike39

evolutionary search methods, they can continue to sample previous experiences to improve value40

estimation. But these approaches can also be unstable and highly sensitive to hyper-parameter41

tuning [14]. We propose a novel policy improvement method which combines both approaches to42

get the best of both worlds. Specifically, after the actor network first outputs an initial action, we43

apply the Cross Entropy Method (CEM) [15] to search the neighborhood of the initial action to find a44

second action associated with a higher Q value. Then we leverage the second action in the policy45

improvement stage to speed up the learning process.46

To mitigate the overestimation issue in Q learning [18], Fujimoto et al. [6] proposed Clipped Double47

Q-Learning in which the authors learn two Q-functions and use the smaller one to form the targets48

in the TD-Learning process. This method may suffer from under-estimation. In practice, we also49

observe that the discrepancy between the two Q-functions can increase dramatically which hinders50

the learning process. We propose Max-min Double Q-Learning to address this discrepancy. Our51

method also provides a better approximation of the Bellman optimality operator [17].52

We propose a novel self-Guided and self-Regularized Actor Critic (GRAC) algorithm. GRAC uses53

self-regularized TD-Learning removing the need for a target network and utilizes a novel policy54

improvement method which combines policy-gradients and zero-order optimization to speed55

up learning. Following Clipped Double Q-Learning, we propose Max-min Double Q-learning to56

address underestimation and the discrepancy between the two Q functions. We evaluate GRAC on57

six continuous control domains from OpenAI gym [3], where we achieve or outperform state of the58

art result in every environment tested. We run our experiments across a large number of seeds with59

fair evaluation metrics [4], perform extensive ablation studies, and open source both our code and60

learning curves.61

2 Related Work62

The proposed algorithm incorporates three key ingredients within the actor-critic method: a self-63

regularized TD update, self-guided policy improvements based on evolution strategies, and Max-min64

double Q-Learning. In this section, we review prior work related to these ideas.65

Divergence in Deep Q-Learning In Deep Q-Learning, we use a nonlinear function approximator66

such as a neural network to approximate the Q-function that represents the value of each state-action67

pair. Learning the Q-function in this way is known to suffer from divergence issues [20] such as68

assigning unrealistically high values to state-action pairs [21]. This is detrimental to the quality of69

the greedy control policy derived from Q [21]. To mitigate the divergence issue, Mnih et al.[13]70

introduce a target network which is a copy of the estimated Q-function and is held fixed to serve as a71

stable target for some number of steps. However, target networks can slow down the learning process72

due to delayed function updates [10]. Durugkar et al. [5] propose Constrained Q-Learning, which73

uses a constraint to prevent the average target value from changing after an update. Achiam et al.[1]74

give a simple analysis based on a linear approximation of the Q function and develop a stable Deep Q-75

Learning algorithm for continuous control without target networks. However, their proposed method76

requires separately calculating backward passes for each state-action pair in the batch, and solving a77

system of equations at each timestep. The proposed GRAC algorithm adds a self-regularization term78

to the TD-Learning objective to keep the change of the state-action value small.79

Evolution Strategies in Deep Reinforcement Learning Evolution Strategies (ES) are a family80

of black-box optimization algorithms which are typically very stable, but scale poorly in high-81

dimensional search spaces [23]. Gradient-based deep RL methods, such as DDPG [11], are often82

sample efficient, particularly in the off-policy setting. These off-policy methods can continue to83

reuse previous experience to improve value estimations but can be unstable and highly sensitive to84

hyper-parameter tuning [14]. Researchers have proposed to combine these approaches to get the best85

of both worlds. Pourchot et al. [14] proposed CEM-RL to combine CEM with either DDPG [11]86

or TD3 [6]. However, CEM-RL applies CEM within the actor parameter space which is extremely87

high-dimensional, making the search not efficient. Kalashnikov et al. [9] introduce QT-Opt, which88

leverages CEM to search the landscape of the Q function, and enables Q-Learning in continuous89

action spaces without using an actor. However, as shown in [23], CEM does not scale well to90

high-dimensional action spaces, such as in the Humanoid task we used in this paper. A near-optimal91

actor is needed to initialize the CEM process in such tasks. Different from QT-Opt, we adopt the92
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actor-critic framework and leverage CEM in both Q-Learning and policy improvement. GRAC speeds93

up the learning process compared to popular actor-critic methods.94

Double-Q Learning Using function approximation, Q-learning [22] is known to suffer from95

overestimation [18]. To mitigate this problem, Hasselt et al. [8] proposed Double Q-learning which96

uses two Q functions with independent sets of weights. TD3 [6] proposed Clipped Double Q-learning97

to learn two Q-functions and uses the smaller of the two to form the targets in the TD-Learning98

process. However, TD3 [6] may lead to underestimation. Besides, the actor network in TD3 [6] is99

trained to select the action to maximize the first Q function throughout the training process which100

may make it very different from the second Q-function. A large discrepancy results in large TD-errors101

which in turn results in large gradients during the update of the actor and critic networks. This makes102

instability of the learning process more likely. We propose Max-min Double Q-Learning to balance103

the differences between the two Q functions and provide a better approximation of the Bellman104

optimality operator [17].105

3 Preliminaries106

In this section, we define the notation used in subsequent sections. Consider a Markov Decision107

Process (MDP), defined by the tuple (S,A,P, r, ρ0, γ), where S is a finite set of states, A is a finite108

set of actions, P : S ×A× S → R is the transition probability distribution, r : S ×A → R is the109

reward function, ρ0 : S → R is the distribution of the initial state s0, and γ ∈ (0, 1) is the discount110

factor. At each discrete time step t, with a given state st ∈ S, the agent selects an action at ∈ A,111

receiving a reward r and the new state st+1 of the environment.112

Let π denote the policy which maps a state to a probability distribution over the actions, π : S →113

P(A). The return from a state is defined as the sum of discounted reward Rt =
∑
i=t γ

i−tr(si, ai).114

In reinforcement learning, the objective is to find the optimal policy π∗, with parameters φ, which max-115

imizes the expected return J(φ) =
∑
t E(st,at)∼ρπ(st,at)[γ

tr(st, at)] where ρπ(st) and ρπ(st, at)116

denote the state and state-action marginals of the trajectory distribution induced by the policy π(at|st).117

We use the following standard definitions of the state-action value function Qπ. It describes the118

expected discounted reward after taking an action at in state st and thereafter following policy π:119

Qπ(st, at) = Eπ[Rt|st, at]. (1)

In this work we use CEM to find optimal actions with maximum Q values. CEM is a randomized120

zero-order optimization algorithm. To find the action a that maximizes Q(s, a), CEM is initialized121

with a paramaterized distribution over a, P (a;ψ). Then it iterates between the following two steps [2]:122

First generate a1, . . . , aN ∼ P (s;ψ). Retrieve their Q values Q(s, ai) and sort the actions to have123

decreasing Q values. Then keep the first K actions, and solve for an updated parameters ψ′:124

ψ′ = argmaxψ
1

K

K∑
i=1

log(P (ai;ψ))

In the following sections, we denote CEM(Q(s, ·), π(·|s)) as the action found by CEM to maximize125

Q(s, ·), when CEM is intiailized by the distribution predicted by the policy.126

4 Technical Approach127

4.1 Self-Regularized TD Learning128

Reinforcement learning is prone to instability and divergence when a nonlinear function approximator129

such as a neural network is used to represent the Q function [20]. Mnih et al.[13] identified several130

reasons for this. One is the correlation between the current action-values and the target value. Updates131

to Q(st, at) often also increase Q(st+1, a
∗
t+1) where a∗t+1 is the optimal next action. Hence, these132

updates also increase the target value yt which may lead to oscillations or the divergence of the policy.133

More formally, given transitions (st, at, rt, st+1) sampled from the replay buffer distribution B, the134

Q network can be trained by minimising the loss functions L(θi) at iteration i:135

L(θi) = E(st,at)∼B ‖(Q(st, at; θi)− yi)‖2 (2)
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Algorithm 1 GRAC
Initialize critic network Qθ1, Qθ2 and actor network πφ with random parameters θ1, θ2 and φ
Initialize replay buffer B, Set α < 1

1: for i = 1, . . . do
2: Select action a ∼ πφi(s) and observe reward r and new state s′
3: Store transition tuple (s, a, r, s′) in B
4: Sample mini-batch of N transitions (st, at, rt, st+1) from B
5: ât+1 ∼ πφi(st+1)
6: ãt+1 ← CEM(Q(st+1, ·; θ2), πφi(·|st+1))
7: y ← rt + γmax{minj=1,2Q(st+1, ãt+1; θj),minj=1,2Q(st+1, ât+1; θj)}
8: a† ← arg max{ã,â}{minj=1,2Q(st+1, ãt+1; θj),minj=1,2Q(st+1, ât+1; θj)}
9: y′1, y

′
2 ← Q(st+1, a

†; θ1), Q(st+1, a
†; θ2)

10: for k = 1 to K do
11: Lk = ‖y −Q(st, at; θ1)‖2 + ‖y −Q(st, at; θ2)‖2 + ‖y′1 −Q(st+1, a

†; θ1)‖2 + ‖y′2 −
Q(st+1, a

†; θ2)‖2
12: θ1← θ1− λ∇θ1Lk, θ2← θ2− λ∇θ2Lk
13: if k > 1 and Lk < αL2 then
14: Break
15: end if
16: end for
17: ât ∼ πφi(st)
18: Jπ(φ) = E(st,ât)[Q(st, ât; θ1)]
19: āt ← CEM(Q(st, ·; θ1), πφi(·|st))
20: φ← φ− λ∇φJπ(φ)− λE(st,ât)[Q(st, āt; θ1)−Q(st, ât; θ1)]+∇φ log π(āt|st;φ)
21: end for

where for now let us assume yi = rt+γmaxaQ(st+1, a; θi) to be the target for iteration i computed136

based on the current Q network parameters θi. a∗t+1 = arg maxaQ(st+1, a). If we update the137

parameter θi+1 to reduce the loss L(θi), it changes both Q(st, at; θi+1) and Q(st+1, a
∗
t+1; θi+1).138

Assuming an increase in both values, then the new target value yi+1 = rt + γQ(st+1, a
∗
t+1; θi+1) for139

the next iteration will also increase leading to an explosion of the Q function. We demonstrated this140

behavior in an ablation experiment with results in Fig. 2. We also show how maintaining a separate141

target network [13] with frozen parameters θ− to compute yi+1 = rt + γQ(st+1, a
∗
t+1; θ−) delays142

the update of the target and therefore leads to more stable learning of the Q function. However,143

delaying the function updates also comes with the price of slowing down the learning process.144

We propose a self-Regularized TD-learning approach to minimize the TD-error while also keeping145

the change of Q(st+1, a
∗
t+1) small. This regularization mitigates the divergence issue [20], and146

no longer requires a target network that would otherwise slow down the learning process. Let147

y′i = Q(st+1, a
∗
t+1; θi), and yi = rt + γy′i. We define the learning objective as148

min
θ
‖Q(st, at; θ)− yi)‖2 + ‖Q(st+1, a

∗
t+1; θ))− y′i‖2 (3)

where the first term is the original TD-Learning objective and the second term is the regularization149

term penalizing large updates to Q(st+1, a
∗
t+1). Note that when the current Q network updates its150

parameters θ, both Q(st, at) and Q(st+1, a
∗
t+1) change. Hence, the target value yi will also change151

which is different from the approach of keeping a frozen target network for a few iterations. We will152

demonstrate in our experiments that this self-regularized TD-Learning approach removes the delays153

in the update of the target value thereby achieves faster and stable learning.154

4.2 Self-Guided Policy Improvement with Evolution Strategies155

The policy, known as the actor, can be updated through a combination of two parts. The first part,156

which we call Q-loss policy update, improves the policy through local gradients of the current Q157

function, while the second part, which we call CEM policy update, finds a high-value action via158

CEM in a broader neighborhood of the Q function landscape, and update the action distribution to159

concentrate towards this high-value action. We describe the two parts formally below.160
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Given states st sampled from the replay buffer, the Q-loss policy update maximizes the objective161

Jπ(φ) = Est∼B,ât∼π[Q(st, ât)], (4)

where ât is sampled from the current policy π(·|st). The gradient is taken through the reparameter-162

ization trick. We reparameterize the policy using a neural network transformation as described in163

Haarnoja et al. [7],164

ât = fφ(εt|st) (5)
where εt is an input noise vector, sampled from a fixed distribution, such as a standard multivariate165

Normal distribution. Then the gradient of Jπ(φ) is:166

∇Jπ(φ) = Est∼B,εt∼N [
∂Q(st, fφ(εt|st))

∂f

∂fφ(εt|st)
∂φ

] (6)

For the CEM policy update, given a minibatch of states st, we first find a high-value action āt for167

each state by running CEM on the current Q function, āt = CEM(Q(st, ·), π(·|st)). Then the policy168

is updated to increase the probability of this high-value action. The guided update on the parameter φ169

of π at iteration i is170

Est∼B,ât∼π[Q(st, āt)−Q(st, ât)]+∇φ log πi(āt|st). (7)

We used Q(st, ât) as a baseline term, since its expectation over actions ât will give us the normal171

baseline V (st):172

Est∼B[Q(st, āt)− V (st)]∇φ log πi(āt|st) (8)

In our implementation, we only perform an update if the improvement on the Q function, Q(st, āt)−173

Q(st, ât), is non-negative, to guard against the occasional cases where CEM fails to find a better174

action.175

Combining both parts of updates, the final update rule on the parameter φi of policy πi is176

φi+1 = φi − λ∇φJπi(φi)− λEst∼B,ât∼πi [Q(st, āt)−Q(st, ât)]+∇φ log πi(āt|st)

where λ is the step size.177

We can prove that if the Q function has converged to Qπ , the state-action value function induced by178

the current policy, then both the Q-loss policy update and the CEM policy update will be guaranteed179

to improve the current policy. We formalize this result in Theorem 1 and Theorem 2, and prove them180

in Appendix 3.1 and 3.2.181

Theorem 1 Q-loss Policy Improvement Starting from the current policy π, we maximize the objec-182

tive Jπ = E(s,a)∼ρπ(s,a)Q
π(s, a). The maximization converges to a critical point denoted as πnew.183

Then the induced Q function, Qπnew , satisfies ∀(s, a), Qπnew(s, a) ≥ Qπ(s, a).184

Theorem 2 CEM Policy Improvement Assuming the CEM process is able to find the optimal185

action of the state-action value function, a∗(s) = arg maxaQ
π(s, a), where Qπ is the Q function186

induced by the current policy π. By iteratively applying the update E(s,a)∼ρπ(s,a)[Q(s, a∗) −187

Q(s, a)]+∇ log π(a∗|s), the policy converges to πnew. Then Qπnew satisfies ∀(s, a), Qπnew(s, a) ≥188

Qπ(s, a).189

4.3 Max-min Double Q-Learning190

Q-learning [22] is known to suffer from overestimation [18]. Hasselt et al. [8] proposed Double-Q191

learning which uses two Q functions with independent sets of weights to mitigate the overestimation192

problem. Fujimoto et al. [6] proposed Clipped Double Q-learning with two Q function denoted193

as Q(s, a; θ1) and Q(s, a; θ2), or Q1 and Q2 in short. Given a transition (st, at, rt, st+1), Clipped194

Double Q-learning uses the minimum between the two estimates of the Q functions when calculating195

the target value in TD-error [17]:196

y = rt + γ min
j=1,2

Q(st+1, ât+1; θj) (9)

where ât+1 is the predicted next action.197
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Fujimoto et al. [6] mentioned that such an update rule may induce an underestimation bias. In198

addition, ât+1 = πφ(st+1) is the prediction of the actor network. The actor network’s parameter199

φ is optimized according to the gradients of Q1. In other words, ât+1 tends be selected according200

to the Q1 network which consistently increases the discrepancy between the two Q-functions. In201

practice, we observe that the discrepancy between the two estimates of the Q-function, |Q1 −Q2|,202

can increase dramatically leading to an unstable learning process. An example is shown in Fig. 4203

where Q(st+1, ât+1; θ1) is always bigger than Q(st+1, ât+1; θ2).204

We introduce Max-min Double Q-Learning to reduce the discrepancy between the Q-functions. We205

first select ât+1 according to the actor network πφ(st+1). Then we run CEM to search the landscape206

of Q2 within a broad neighborhood of ât+1 to return a second action ãt+1. Note that CEM selects207

an action ãt+1 that maximises Q2 while the actor network selects an action ât+1 that maximises208

Q1. We gather four different Q-values: Q(st+1, ât+1; θ1), Q(st+1, ât+1; θ2), Q(st+1, ãt+1; θ1), and209

Q(st+1, ãt+1; θ2). We then run a max-min operation to compute the target value that cancels the210

biases induced by ât+1 and ãt+1.211

y = rt + γmax{min
j=1,2

Q(st+1, ât+1; θj), min
j=1,2

Q(st+1, ãt+1; θj)} (10)

The inner min-operation minj=1,2Q(st+1, ât+1; θj) is adopted from Eq. 9 and mitigates overestima-212

tion [18]. The outer max operation helps to reduce the difference between Q1 and Q2. In addition,213

the max operation provides a better approximation of the Bellman optimality operator [17]. We214

visualize Q1 and Q2 during the learning process in Fig. 4. The following theorem formalizes the215

convergence of the proposed Max-min Double Q-Learning approach in the finite MDP setting. We216

prove the theorem in Appendix 3.3.217

5 Experiments218

5.1 Comparative Evaluation219

We present GRAC, a self-guided and self-regularized actor-critic algorithm as summarized in Algo-220

rithm 1. To evaluate GRAC, we measure its performance on the suite of MuJoCo continuous control221

tasks [19], interfaced through OpenAI Gym [3]. We compare our method with DDPG [11], TD3 [6],222

TRPO [16], and SAC [7]. We use the source code released by the original authors and adopt the223

same hyperparameters reported in the original papers. Hyperparameters for all experiments are in224

Appendix 2.1. Results are shown in Figure 1. GRAC outperforms or performs comparably to all other225

algorithms in both final performance and learning speed across all tasks.226

5.2 Ablation Study227

In this section, we present ablation studies to understand the contribution of each proposed component:228

Self-Regularized TD-Learning (Section 4.1), Self-Guided Policy Improvment (Section 4.2), and229

Max-min Double Q-Learning (Section 4.3). We present our results in Fig. 3 in which we compare230

the performance of GRAC with alternatives, each removing one component from GRAC. Additional231

learning curves can be found in Appendix 2.2. We also run experiments to examine how sensitive232

GRAC is to some hyperparameters such as α and K listed in Alg. 1, and the results can be found in233

Appendix 2.4.234

Self-Regularized TD Learning To verify the effectiveness of the proposed self-regularized TD-235

learning method, we apply our method to DDPG (DDPG w/o target network w/ target regularization).236

We compare against two baselines: the original DDPG and DDPG without target networks for both237

actor and critic (DDPG w/o target network). We choose DDPG, because it does not have additional238

components such as Double Q-Learning, which may complicate the analysis of this comparison.239

In Fig. 2, we visualize the average returns, and average Q1 values over training batchs (y′1 in Alg.1).240

TheQ1 values of DDPG w/o target network changes dramatically which leads to poor average returns.241

DDPG maintains stable Q values but makes slow progress. Our proposed DDPG w/o target network242

w/ target regularization maintains stable Q values and learns considerably faster. This demonstrates243

the effectiveness of our method and its potentials to be applied to a wide range of DRL methods. Due244

to page limit, we only include results on Hopper-v2. The results on other tasks are in Appendix 2.3.245

All tasks exhibit a similar phenomenon.246
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Figure 1: Learning curves for the OpenAI gym continuous control tasks. For each task, we train 8 instances of
each algorithm, using 8 different seeds. Evaluations are performed every 5000 interactions with the environment.
Each evaluation reports the return (total reward), averaged over 10 episodes. For each training seed, we use a
different seed for evaluation, which results in different start states. The solid curves and shaded regions represent
the mean and standard deviation, respectively, of the average return over 8 seeds. All curves are smoothed
with window size 10 for visual clarity. GRAC (orange) learns faster than other methods across all tasks. GRAC
achieves comparable result to the state-of-the-art methods on the Ant-v2 task and outperforms prior methods on
the other five tasks including the complex high-dimensional Humanoid-v2.

Policy Improvement with Evolution Strategies The GRAC actor network uses a combination of247

two actor loss functions, denoted as QLoss and CEMLoss. QLoss refers to the unbiased gradient248

estimators which extends the DDPG-style policy gradients [11] to stochastic policies. CEMLoss249

represents the policy improvement guided by the action found with the zero-order optmization method250

CEM. We run another two ablation experiments on all six control tasks and compare it with our251

original policy training method denoted as GRAC. As seen in Fig.3, in general GRAC achieves a better252

performance compared to either using CEMLoss or QLoss. The significance of the improvements253

varies within the six control tasks. For example, CEMLoss plays a dominant role in Swimmer while254

QLoss has a major effect in HalfCheetah. It suggests that CEMLoss and QLoss are complementary.255

Max-min Double Q-Learning We additionally verify the effectiveness of the proposed Max-min256

Double Q-Learning method. We run an ablation experiment by replacing Max-min by Clipped257

Double Q-learing [6] denoted as GRAC w/o CriticCEM. In Fig. 4, we visualize the learning curves258

of the average return, Q1 (y′1 in Alg. 1), and Q1 − Q2 (y′1 − y′2 in Alg. 1). GRAC achieves high259
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Figure 2: Learning curves and average Q1 values (y′
1 in Alg. 1) on Hopper-v2. DDPG w/o target network

quickly diverges as seen by the unrealistically high Q values. DDPG is stable but progresses slowly. If we
remove the target network and add the proposed target regularization, we both maintain stability and achieve
faster learning than DDPG.
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Figure 3: Final average returns, normalized w.r.t GRAC for all tasks. For each task, we train each ablation setting
with 4 seeds, and average the last 10 evaluations of each seed (40 evaluations in total). Actor updates without
CEMLoss (GRAC w/o CEMLoss) and actor updates w.r.t minimum of both Q networks (GRAC w/o CriticCEM
w/ minQUpdate) achieves slightly better performance on Walker2d-v2 and Hopper-v2. GRAC achieves the
best performance on 4 out of 6 tasks, especially on more complicated tasks with higher-dimensional state and
action spaces (Humanoid-v2, Ant-v2, HalfCheetah-v2). This suggests that individual components of GRAC
complement each other.

performance while maintaining a smoothly increasing Q function. Note that the difference between Q260

functions, Q1 −Q2, remains around zero for GRAC. GRAC w/o CriticCEM shows high variance and261

drastic changes in the learned Q1 value. In addition, Q1 and Q2 do not always agree. Such unstable262

Q values result in a performance crash during the learning process. Instead of Max-min Double Q263

Learning, another way to address the gap between Q1 and Q2 is to perform actor updates on the264

minimum of Q1 and Q2 networks (as seen in SAC). Replacing Max-min Double Q Learning with265

this trick achieves lower performance than GRAC in more complicated tasks such as HalfCheetah-v2,266

Ant-v2, and Humanoid-v2 (See GRAC w/o CriticCEM w/ minQUpdate in Fig.3).267
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Figure 4: Learning curves (left), average Q1 values (middle), and average of the difference between Q1 and Q2

(right) on Ant-v2. Average Q values are computes as minibatch average of y′
1 and y′

2, defined in Alg. 1. GRAC
w/o CriticCEM represents replacing Max-min Double Q-Learning with Clipped Double Q-Learning. Without
Max-min double Q-Learning to balance the magnitude of Q1 and Q2, Q1 blows up significantly compared to
Q2, leading to divergence.

6 Conclusion268

Leveraging neural networks as function approximators, DRL has been successfully demonstrated on269

a range of decision-making and control tasks. However, the nonlinear function approximators also270

introduce issues such as divergence and overestimation. We proposed a self-regularized TD-learning271

method to address divergence without requiring a target network that may slow down learning272

progress. The proposed method is agnostic to the specific Q-learning method and can be added to273

any of them. We introduced Max-min Double Q-learning to mitigate over-estimation while reducing274

the discrepancy between the two Q functions and to provide a better approximation of the Bellman275

optimality operator. In addition, we propose self-guided policy improvement by combining policy-276

gradient with zero-order optimization such as the Cross Entropy Method. This helps to search for277

actions associated with higher Q-values in a broad neighborhood and is robust to local noise in the Q278

function approximation. Taken together, these three components define GRAC, a novel self-guided279

and self-regularized actor critic algorithm. We evaluate our method on the suite of OpenAI gym tasks,280

achieving or outperforming state of the art in every environment tested.281
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7 Broader Impact282

This work propose new methods to improve reinforcement learning in continuous control tasks. (1)283

DRL takes a lot of data, thus compute, to train. Our method speeds up training, thus reduces the284

necessary compute and the corresponding carbon footprint and energy consumption. (2) DRL’s285

successful application in robotics would have societal impacts. On the positive side, automating286

repetitive manual labour increases productivity and thus increases the wealth of the society. On287

the other hand, automation may lead to unemployment of workers who have previously performed288

this manual labour. New policies are required to ensure decent income and access to professional289

education, so the impacted workers can transition into newly created jobs.290
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