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Abstract
Recently, there has been a great deal of research
attention on understanding the convergence be-
havior of first-order methods. One line of this
research focuses on analyzing the convergence be-
havior of first-order methods using tools from con-
tinuous dynamical systems such as ordinary differ-
ential equations and differential inclusions. These
research results shed lights on better understand-
ing first-order methods from a non-optimization
point of view. The alternating direction method
of multipliers (ADMM) is a widely used first-
order method for solving optimization problems
arising from machine learning and statistics, and
it is important to investigate its behavior using
these new techniques from dynamical systems.
Existing works along this line have been mainly
focusing on problems with smooth objective func-
tions, which exclude many important applications
that are traditionally solved by ADMM variants.
In this paper, we analyze some well-known and
widely used ADMM variants for nonsmooth opti-
mization problems using tools of differential in-
clusions. In particular, we analyze the conver-
gence behavior of linearized ADMM, gradient-
based ADMM, generalized ADMM and acceler-
ated generalized ADMM for nonsmooth problems
and show their connections with dynamical sys-
tems. We anticipate that these results will provide
new insights on understanding ADMM for solv-
ing nonsmooth problems.

1. Introduction
Recently, there has been tremendous interests in using
continuous-time dynamical system tools to analyze first-
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order optimization algorithms such as Nesterov’s acceler-
ated gradient method (AGM) (Nesterov, 1983) and its vari-
ants. In the seminal work Su et al. (2016), the authors
designed a differential equation for modeling AGM, and
analyzed the connection between the solution of the dif-
ferential equation and the continuous limit of the iterates
of AGM. Their work provided new insights on understand-
ing the convergence behavior of AGM. Later investigations
along this line mainly focused on analyzing AGM and its
variants such as FISTA and heavy ball method using the
tools of ordinary differential equations, differential inclu-
sions, and more generally, continuous dynamical systems
(see, e.g., Shi et al. (2018); Wibisono et al. (2016); Wil-
son et al. (2016); Krichene et al. (2015); An et al. (2018);
Zhou et al. (2017)). Very recently, França et al. (2018a;b)
made a significant step towards understanding the alter-
nating direction method of multipliers (ADMM) using the
tools from continuous dynamical systems. ADMM is now
a widely used algorithm for solving problems with sep-
arable structures, which include a lot of important appli-
cations arising from image processing, signal processing,
machine learning, statistics, etc. It has a close connection
with some classical operator-splitting methods in numer-
ical PDEs such as Douglas-Rachford (Douglas & Rach-
ford, 1956) and Peaceman-Rachford (Peaceman & Rach-
ford, 1955) operator-splitting methods that dated back to the
1950s. These operator-splitting methods were later studied
in Gabay & Mercier (1975); Glowinski & Marroco (1975);
Gabay (1983); Fortin & Glowinski (1983); Glowinski &
Le Tallec (1989); Eckstein & Bertsekas (1992). But the re-
naissance of ADMM was due to several works in 2007-2008
that introduced this algorithm to solving signal process-
ing and image processing problems (Combettes & Pesquet,
2007; Goldstein & Osher, 2009; Wang et al., 2008; Mardani
et al., 2018). Since then, ADMM was successfully used for
solving important applications in many areas in science and
engineering. The popularity and importance of ADMM has
been partly demonstrated by the recognition of the highly
influential survey paper Boyd et al. (2011). As a result,
the works of França et.al. (França et al., 2018a;b) are very
timely and important as they provided new tools for further
understanding the convergence behavior of this influential
algorithm.
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However, one major drawback of França et al. (2018a;b)
is that they assume that the objective function is smooth,
which in fact rules out most of the applications solved by
ADMM and its variants. More specifically, França et al.
(2018a;b) consider the following problem:

minimize
x∈Rd

f(x) + g(Ax), (1)

where A ∈ Rm×d, f : Rd → R ∪ {+∞}, g : Rm →
R ∪ {+∞}, and both f and g are convex and differentiable.
We need to point out that under such assumptions, there
exist many other efficient algorithms for solving (1) and
ADMM may not be a good choice.

In this paper, we allow f and g to be nonsmooth functions in
(1). To apply ADMM, one standard technique is to rewrite
(1) as

minimize
x∈Rd,z∈Rm

f(x) + g(z)

subject to Ax− z = 0.
(2)

Note that the classical setting of linear constraint Ax +
Bz = c can be reformulated as z = Ax by a simple linear
transformation operation.

One typical iteration of ADMM for solving (2) is

xk+1 := argmin
x

[
f(x) +

ρ

2
‖Ax− zk + uk‖22

]
, (3a)

zk+1 := argmin
z

[
g(z) +

ρ

2
‖Axk+1 − z + uk‖22

]
, (3b)

uk+1 := uk +Axk+1 − zk+1, (3c)

where u is the (scaled) Lagrange multiplier and ρ > 0 is a
penalty parameter in the augmented Lagrangian function:

Lρ(x, z, u) = f(x)+g(z)+ρu>(Ax−z)+
ρ

2
‖Ax−z‖22.

(4)
Throughout this paper, we assume that both f and g are
proper closed convex functions.

1.1. Our Contributions

We extend the analysis of França et al. (2018a;b) to nons-
mooth cases using a completely different tool: differential
inclusion, which is motivated by the analysis of FISTA by
Vassilis et al. (2018). More specifically, we analyze the
convergence rate of continuous limit of two widely used
ADMM variants and two generalizations for nonsmooth
problems: linearized ADMM, gradient-based ADMM, gen-
eralized ADMM and accelerated generalized ADMM. We
anticipate that these results will provide new insights on
understanding ADMM for solving nonsmooth problems.

1.2. Notations

Let F, f, g : Rd → R ∪ {+∞} be function mappings
from Rd to the extended real space R ∪ {+∞}. Let xk ∈

Rd, {zk, uk, ẑk, ûk} ∈ Rm be solution sequences of the
ADMM iterates, while the capital letters X(t), Z(t), U(t)
denote the solutions of the continuous dynamical systems.
Let 〈·, ·〉 be the inner product, and let ‖ · ‖2 and ‖ · ‖1 be the
L2 and L1 norms, respectively. Let τL and τG be parame-
ters controlling the quadratic penalties in the linearized and
gradient-based cases, respectively. We use k to denote the
discrete timestep and t denotes the continuous time. Other
notations will be explained at their first entrances.

2. Continuous Limit of Linearized ADMM
and Gradient-Based ADMM

We need to point out that the ADMM given in (3) is rarely
used in practice, because for most applications, the x-
subproblem does not have closed-form solutions and an
iterative solver is still needed to solve it. Note that although
the z-subproblem in (3) corresponds to the proximal map-
ping of function g, the x-subproblem does not correspond to
the proximal mapping of f because of the presence of matrix
A. Moreover, it is possible that in some applications, f does
not have an easy proximal mapping. Two most commonly
used nonsmooth ADMM variants in practice are linearized
ADMM and gradient-based ADMM, and they are suitable
for the following two cases, which cover most applications
of ADMM:

• Case (i): Linearized ADMM is suitable for the case
where f is nonsmooth with easy proximal mappings;
one representative application in this case is the Lasso
problem where f(x) = ‖x‖1 and g(z) = 1

2‖z − b‖
2
2

(Tibshirani, 1996).1

• Case (ii): Gradient-based ADMM is suitable for the
case where g is nonsmooth with easy proximal map-
ping, f is differentiable but does not have an easy prox-
imal mapping; one representative application in this
case is the sparse logistic regression problem where
g is the `1 norm and f is the logistic loss function
(Liu et al., 2009). Note that A = I in this particular
application.

We now provide more details about the applicability of
linearized ADMM and gradient-based ADMM.

In Case (i), where both f and g are nonsmooth with easy
proximal mappings, the z-subproblem (3b) corresponds
to the proximal mapping of g and is thus easy to solve;
however the presence of matrix A brings difficulty to
solving the x-subproblem (3a). Linearized ADMM ad-
dresses this issue by adding a suitably chosen proximal

1Both f and g can be nonsmooth in this case, so we could also
write f = 1

2
‖ · −b‖22 and g = ‖ · ‖1. We represent f and g the

other way around to follow the notations in Yang & Zhang (2011)
as an illustration.
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term 1
2‖x−xk‖τLI−ρA>A to the objective function of (3a),2

which results in the following subproblem whose solution
corresponds to the proximal mapping of f :

minimize
x∈Rd

f(x)+
τL
2

∥∥∥∥x− (
xk −

ρ

τL
A>(Axk − zk + uk)

)∥∥∥∥2

2

,

where 1/τL can be viewed as the step size of the gradient
step of the quadratic penalty. Notice that by the above
equation we are making a first-order Taylor approximation
to the second term of (3a) to avoid trouble caused by matrix
A. Combining this subproblem with (3b) and (3c) yields
the linearized ADMM. Here we consider a slightly more
general version of linearized ADMM by adding a relaxation
term to the intermediate residual Axk+1 − zk, which is
summarized in (5):

xk+1 = argmin
x

{
f(x)

+
τL
2

∥∥∥∥x− (xk − ρ

τL
A>(Axk − zk + uk)

)∥∥∥∥2
2

}
,

(5a)

zk+1 = argmin
z

{
g(z)

+
ρ

2
‖αAxk+1 + (1− α)zk − z + uk‖22

}
,

(5b)

uk+1 = uk + (αAxk+1 + (1− α)zk − zk+1), (5c)

where α ∈ (0, 2) is a relaxation parameter, and when
α = 1, it reduces to the classical linearized ADMM. As a
widely used nonsmooth ADMM variant, linearized ADMM
has been studied by many researchers, (see, e.g., Chen &
Teboulle (1994); Eckstein (1994); He et al. (2002); Zhang
et al. (2010); Yang & Zhang (2011); Lin et al. (2011); Ma
(2016); Xu (2015); Yang & Yuan (2013); Ouyang et al.
(2015)). The difference between (3b)-(3c) and (5b)-(5c) is
that Axk+1 is replaced by αAxk+1 + (1 − α)zk. This is
called relaxation, which has been suggested in many papers
(see, e.g., Eckstein & Bertsekas (1992)) to provide more
flexibility and potentially improve the convergence speed of
the algorithm.

We now use the total variation minimization problem (Rudin
et al., 1992) as an example to show how (5) works for a par-
ticular problem. The total variation minimization problem
can be casted as the following form after variable splitting,

minimize
x,z

1

2
‖x− b‖22 + λ‖z‖1

subject to z = Dx,

(6)

which is in the form of (1) with A = D, f(·) = 1
2‖ · −b‖

2
2

and g(·) = λ‖ · ‖1. When linearized ADMM (5) is applied
to solve (6), the two subproblems (5a) and (5b) respectively

2The norm ‖x‖τLI−ρATA is defined as x>(τLI − ρATA)x.

correspond to the proximal mappings of ‖·‖1 and 1
2‖·−b‖

2
2,

which are both very easy to compute.

In Case (ii), gradient-based ADMM is suitable for the case
where f does not have an easy proximal mapping. In this
case, the linearized ADMM (5) is not a good choice, because
the x-subproblem (5a) is still not easy to solve. As a result,
the gradient-based ADMM is proposed to address this issue.
A typical iteration of gradient-based ADMM is as follows:

xk+1 = xk −
1

τG

(
∇f(xk) + ρA>(Axk − zk + uk)

)
, (7a)

zk+1 = argmin
z

{
g(z) +

ρ

2
‖αAxk+1

+ (1− α)zk − z + uk‖22
}
,

(7b)

uk+1 = uk + (αAxk+1 + (1− α)zk − zk+1), (7c)

where we again used a relaxation term to make the algo-
rithm more general, and 1/τG is the step size of the nega-
tive gradient step taken on the augmented Lagrangian func-
tion Lρ(xk, zk, uk). Note that since we assume that f is
differentiable in this case, the objective function of the x-
subproblem in (3a) becomes a differentiable function. As a
result, gradient-based ADMM suggests that a gradient step
is taken instead of minimizing the augmented Lagrangian
function directly, which results in the new x-subproblem in
(7a). This gradient-based ADMM has been studied in the
literature extensively, (see, e.g., Condat (2013); Vu (2013);
Davis & Yin (2017); Lin et al. (2017)).

We now use sparse logistic regression (Koh et al., 2007) as
an example to show how (7) works for a particular problem.
The sparse logistic regression problem can be casted as

minimize
x

1

N

N∑
i=1

log(1 + exp(−bi(a>i x+ v))) + λ‖x‖1,

(8)
which is in the form of (1) with f being the logistic loss
function, g being the `1 norm and A = I . Note that the
logistic loss function f does not adopt an easy proximal
mapping, but it is differentiable and thus a gradient step can
be taken for the x-subproblem. When the gradient-based
ADMM (7) is applied to solve (8), the two subproblems (7a)
and (7b) are both easy to be implemented.

2.1. Main Results

In this subsection, we present the main results on the con-
vergence of the continuous limit of the iterates of linearized
ADMM (5) and gradient-based ADMM (7). We focus
on the continuous approximation results when t = ρ−1k
and ρ → ∞, where t denotes the time and k is the itera-
tion counter. The following definitions and assumption are
needed for our results.
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Definition 1. (Nesterov, 2004). A vector v is called a
subgradient of the function f at a point x0 satisfying
f(x0) <∞ if for any y satisfying f(y) <∞, we have

f(y) ≥ f(x0) + v>(y − x0).

The set of all subgradients of f at x0, ∂f(x0), is called the
subdifferential of the function f at the point x0.

Definition 2. A function f defined on Rd and taking values
in R ∪ {+∞} is called closed, if its epigraph

{(x, t) ∈ Rd × R | f(x) ≤ t}

is a closed set in Rd × R.

Definition 3. A function f defined on Rd and taking values
in R ∪ {+∞} is called convex, if for every x, y ∈ Rd and
θ ∈ (0, 1),

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

Assumption 4. We assume that f and g are closed convex
functions taking values in R ∪ {+∞} and properly defined
over Rd (in the sense that f(x) < +∞ for at least one
x), and F (x) := f(x) + g(Ax) has a global minimum.
We assume further that matrix A has full column rank and
singular values σ1 ≥ · · · ≥ σd > 0.

Assumption 4 implies that f, g, F are proper, lower semi-
continuous and subdifferentiable. (Nesterov, 2004)

For linearized ADMM, we have the following approxima-
tion theorem.

Theorem 5. Let Assumption 4 hold, and the relaxation pa-
rameter α ∈ (0, 2). Rescaling the time by setting t = ρ−1k,
the continuous-time limit of the iterates {xk} of linearized
ADMM (5) as ρ→∞ and τL/ρ→ c ∈ (0,∞) is given by
the differential inclusion

0 ∈ ∂F (X(t)) +

(
cI +

1− α
α

A>A

)
Ẋ(t), (9)

with initial value X(0) = x0.

Similarly, we have the following Theorem 6 for the continu-
ous limit of iterates of gradient-based ADMM (7).

Theorem 6. Let Assumption 4 hold, and the relaxation pa-
rameter α ∈ (0, 2). In addition, we assume that f is smooth.
Rescaling the time by setting t = ρ−1k, the continuous-time
limit of the iterates {xk} of gradient-based ADMM (7) as
ρ → ∞ and τG/ρ → c ∈ (0,∞) is given by the same
differential inclusion (9) in Theorem 5 with initial value
X(0) = x0.

Remark 7. Here we assume mildly that the solution of the
differential inclusion (9) exists and is unique. The existence
and uniqueness of a solution are usually dealt with classical

monotone theory (Vassilis et al., 2018). However in some
cases, the uniqueness of a solution does not necessarily
hold. Theorem 1 in Aubin (1984) provides an additional
assumption that can ensure the uniqueness of a solution
within the context of this work.3

The next theorem shows the convergence rate of the
continuous-time limit of the iterates {xk} generated by lin-
earized ADMM (5) and gradient-based ADMM (7) in the
convex case. We use x∗ to denote an arbitrary minimizer
of F . We recall that σ1 is the largest singular value of A
and σd is the smallest singular value of A, and assume that
cI+ 1−α

α A>A is a well defined positive definite matrix. For
simplicity of notations, we define κ1 and κd the largest and
smallest singular value of cI + 1−α

α ATA, respectively.

Theorem 8. Let Assumption 4 hold. Assume that c and α
are chosen such that the matrix (cI + 1−α

α A>A) is positive
definite, with largest and smallest eigenvalues being κ21, κ

2
d

(κ1, κd > 0). Let X(t) be any shock solution4 of the differ-
ential inclusion (9) with convex objective function F and
initial value X(0) = x0. ThenX(t) has bounded trajectory
and the function value gap has O(t−1) convergence rate
almost everywhere, i.e., for a minimizer x∗ and a.e. t > 0 it
holds that ‖X(t)− x∗‖2 ≤ κ1

κd
‖x0 − x∗‖2, and

F (X(t))− F (x∗) ≤ κ21‖x0 − x∗‖22
2t

.

Moreover, we have∫ +∞

0

[F (X(t))− F (x∗)] ≤ κ21
2
‖x0 − x∗‖22,

and ∫ +∞

0

t‖Ẋ(t)‖22 ≤
κ21
2κ2d
‖x0 − x∗‖22.

The convergence rate of O(t−1) in the continuous case is
the same as the O(k−1) rate in the discrete case. We notice
that the rate depends heavily on α: when 0 < α ≤ 1,

κ1 =
√
c+ 1−α

α σ2
1 and κd =

√
c+ 1−α

α σ2
d, and when

1 < α < 2, κ1 =
√
c+ 1−α

α σ2
d and κd =

√
c+ 1−α

α σ2
1 ,

where σ1, σd are singular value of matrix A.

3. Continuous Limit of Generalized ADMM
In this section, we study the continuous limit of the general-
ized ADMM (G-ADMM) proposed by Eckstein & Bertsekas

3 For conditions that guarantee the existence and uniqueness of
the solution to differential inclusion, we refer the readers to Adly
et al. (2006); Attouch et al. (2002); Paoli (2000).

4The concept of shock solution is given in Attouch et al. (2002);
Paoli (2000); Vassilis et al. (2018). Since the goal of this paper is
to illustrate the main idea, we include its definition and existence
result in Appendix A for completeness.
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(1992). We point out that this has been studied by França
et al. (2018a;b) for the cases where f and g are both smooth.
We now extend the analysis to problems with nonsmooth
f and g. G-ADMM allows more flexibility of ADMM by
introducing a new relaxation parameter α ∈ (0, 2), and it
updates the iterates as

xk+1 = argmin
x

{
f(x) +

ρ

2
‖Ax− zk + uk‖22

}
, (10a)

zk+1 = argmin
z

{
g(z) +

ρ

2

∥∥∥∥αAxk+1

+ (1− α)zk − z + uk

∥∥∥∥2
2

}
,

(10b)

uk+1 = uk + (αAxk+1 + (1− α)zk − zk+1). (10c)

3.1. Differential Inclusion for G-ADMM

Following França et al. (2018a), we rescale the time by a
factor of ρ−1, i.e. let t = ρ−1k, and obtain the continuous-
time approximation. One can see from (10a) that larger
parameter ρ > 0 results in smaller-pace updates of xk. We
study the limit of updates in the regime ρ → ∞. Our
main result on the differential inclusion approximation of
G-ADMM is as follows:
Theorem 9. Let Assumption 4 hold, and the relaxation
parameter α ∈ (0, 2). Rescale the time by setting t = ρ−1k.
The continuous limit of iterates of {xk} in Algorithm (14)
as ρ→∞ is given by the following differential inclusion:

1

α
(A>A)Ẋ(t) + ∂F (X(t)) 3 0, (11)

with X(0) = x0.

We move forward and analyze the convergence property of
differential inclusion (11). Recall that σ1 and σd are the
largest and smallest singular values of A, respectively.
Theorem 10. When the Assumption 4 holds, the shock solu-
tion X(t) of differential inclusion (11) has bounded trajec-
tory and O(t−1) convergence rate almost everywhere, i.e.,
for a.e. t ≥ 0, ‖X(t)− x∗‖2 ≤ σ1

σd
‖x0 − x∗‖2 , and

F (X(t))− F (x∗) ≤ σ2
1‖x0 − x∗‖22

2αt
.

Moreover,∫ +∞

0

[F (X(t))− F (x∗)]dt ≤ σ2
1

2α
‖x0 − x∗‖22,∫ +∞

0

t‖Ẋ(t)‖22dt ≤ σ2
1

2σ2
d

‖x0 − x∗‖22.

Here, the key idea of the convergence analysis of differen-
tial inclusion (11) is to use a sequence of approximating
differential equations (ADE) that approaches the differential
inclusion.

3.2. Differential Inclusion for Accelerated G-ADMM

Goldstein et al. (2014) proposed an accelerated ADMM
by incorporating Nesterov’s extrapolation technique. (Nes-
terov, 1983) This method is generalized by França et al.
(2018a;b) which jointly consider relaxation and accelera-
tion. The accelerated G-ADMM considered in França et al.
(2018a;b) uses γk+1 = k

k+r as the momentum coefficient
(r being a positive constant), and is described as follows:

xk+1 = argmin
x

{
f(x) +

ρ

2
‖Ax− ẑk + ûk‖22

}
, (12a)

zk+1 = argmin
z

{
g(z) +

ρ

2
‖αAxk+1

+ (1− α)ẑk − z + ûk‖22
}
,

(12b)

uk+1 = ûk + (αAxk+1 + (1− α)ẑk − zk+1), (12c)

ûk+1 = uk+1 + γk+1(uk+1 − uk), (12d)

ẑk+1 = zk+1 + γk+1(zk+1 − zk), (12e)

Here we extend the results in França et al. (2018a;b) to the
case where f and g are nonsmooth functions. We present
our first main result in the following theorem:

Theorem 11. Let Assumption 4 hold, and let the relax-
ation parameter α ∈ (0, 2). Rescale the time by setting
t = ρ−1/2k, the continuous-time approximation of Algo-
rithm (12) iteration as ρ → ∞ is given by the differential
inclusion

1

α
(A>A)

(
Ẍ(t) +

r

t
Ẋ(t)

)
+ ∂F (X(t)) 3 0, (13)

with X(t0) = x0 and Ẋ(t0) = 0. Here t0 is an arbitrary
positive starting time.

Unlike all previous time rescaling scheme where k = ρt,
for accelerated G-ADMM the time rescaling is k = ρ1/2t,
which is in accordance with the idea of acceleration. r/t
is the damping ratio of differential inclusion (13). We refer
to the case r ≥ 3 as high friction case, 0 < r < 3 as low
friction case and provide two separate convergence theorems
under these two cases. Moreover, we specifically point out
that the convergence rate can be sharper when r > 3.

In the following, we define ∆2
0 = max{t20(F (x0) −

F (x∗)), ‖x0 − x∗‖22}. We also remark that all the factors
C used later are functions of the constant r, the relaxation
parameter α, and singular values σ1 and σd.

Firstly, we show that X(t) has almost surely bounded tra-
jectory for t ≥ t0, and the convergence rate is O(t−2) in
terms of both F (X(t))− F (x∗) and ‖Ẋ(t)‖22.

Theorem 12 (High Friction). When r ≥ 3, the shock solu-
tion X(t) of Differential Inclusion (13) has bounded trajec-
tory and O(t−2) convergence rate almost everywhere, i.e.
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there exists positive factors C1, C2, C3 depending on r, α
such that, for a.e. t ≥ t0, ‖X(t)− x∗‖2 ≤ C1∆0, and

F (X(t))− F (x∗) ≤ C2∆2
0

t2
, ‖Ẋ(t)‖2 ≤

C3∆0

t
.

When r > 3, there exist positive factors C4, C5 depending
on r, α such that∫ ∞

t0

t(F (X(t))− F (x∗))dt ≤ C4∆2
0,∫ ∞

t0

t‖Ẋ(t)‖22dt ≤ C5∆2
0.

Using the bounded integration result in Theorem 12, we
could show that, when r > 3, the convergence rate is actu-
ally o(t−2):
Remark 13. The convergence rate in Theorem 12 is not
sharp when r > 3, in the sense that F (X(t)) − F (x∗) =
o(t−2) and ‖Ẋ(t)‖2 = o(t−1) as t→∞, i.e. for all r > 3,

lim
t→∞

t2(F (X(t))− F (x∗)) = 0, lim
t→∞

t‖Ẋ(t)‖2 = 0.

The constant r has the so-called magic number 3, as dis-
cussed in details by Su et al. (2016), in the sense that an
O(t−2) convergence rate could be guaranteed for AGM in
high friction case r ≥ 3, but not for the low friction case
0 < r < 3. The follow-up works Attouch et al. (2017),
Attouch et al. (2018), Vassilis et al. (2018), França et al.
(2018a) derive the O(t−2r/3) convergence rate for AGM
under low friction case and extendO(t−2) convergence rate
from AGM to accelerated G-ADMM in high friction case,
respectively.

For nonsmooth and low friction case, we show a O(t−2r/3)
convergence rate for F (X(t))− F (x∗), and for ‖Ẋ(t)‖22 if
the trajectory is almost surely bounded.
Theorem 14 (Low Friction). When 0 < r < 3, the shock
solution X(t) of Differential Inclusion (13) has O(t−2r/3)
convergence rate almost everywhere, i.e. there exists posi-
tive factor C6 depending on r, α such that, for a.e. t ≥ t0,

F (X(t))− F (x∗) ≤ C6t
−2(3−r)/3
0 ∆2

0

t2r/3
.

If in addition the trajectory {X(t)}t≥t0 is bounded almost
everywhere for t ≥ t0, then there also exists some positive
factor C7 depending on r, α such that for a.e. t ≥ t0,

‖Ẋ(t)‖2 ≤
C7t
−(3−r)/3
0 ∆0

tr/3
.

Theorems 12 and 14 provide convergence results for ac-
celerated G-ADMM in continuous-time scheme with the
second-order differential inclusion and accompanying tools,
which sheds light on the discrete-time algorithm (Su et al.,
2016).

4. Numerical Experiments
According to the convergence theorems in previous sections,
both the linearized ADMM and the gradient ADMM share
the same differential inclusion (9). In the following two
examples, we show that for ρ = 10 the trajectory of the
linearized or gradient-based ADMM algorithm is very close
to the trajectory of the corresponding differential inclusion.

To plot the trajectory of the differential inclusion numer-
ically, we use entropic approximation Teboulle (1992) of
the nonsmooth objective to compute the trajectory of the
differential inclusion, we remark that entropic approxima-
tion is parrellel in theory to Moreau-Yosida approximation,
which use quadratic approximation. Entropic approximation
would provide a smooth approximation of the sub-gradient
for ‖z‖1 as tanhβz, where we choose β = 106 in the fol-
lowing experiments, so that the numerical approximation
error is of the order 10−6.

4.1. Total Variation Minimization with Linearized
ADMM

Consider the total variation minimization problem (6), see
Rudin et al. (1992). Using variable splitting, we can write
the problem as

minimize
x,z

1

2
‖x− b‖22 + λ‖z‖1

subject to z = Dx,

where D is the finite difference matrix, x, z ∈ Rn. This
problem fits to the general framework of ADMM with
A = D, f(x) = 1

2‖x − b‖22 and g(z) = λ‖z‖1, since
f is quadratic with easy proximal and g is nonsmooth with
easy proximal, namely, its proximal operator is the soft
thresholding operator Sλ(z) = sign(z)(|z|−λ)+, we could
use linearized ADMM to solve this problem.

We generated a problem instance, where the true signal
xtrue is a piece-wise constant signal, the observation is
b = xtrue + n, n ∼ N (0, I). We solve the total variantion
minimization with λ = 0.01 to recover the true signal xtrue

from b, following the MATLAB examples of the paper Boyd
et al. (2011).

In the following, we run both the linearized ADMM al-
gorithm with ρ = 10 and the differential inclusion. We
demonstrate the trajetory of linearized ADMM algorithm
and the differential inclusion for different parameter con-
figuration α and c. First of all, we fix c = 10, and vary α
from 2−3 to 2; then, we fix α = 1.6, and vary c from 1 to
32. Figures 1 are the trajectory of linearized ADMM with
ρ = 10 and the corresponding differential inclusion, with
the x axis being the iteration count, the y axis being the rel-
ative error F (xk)−F (x∗)

F (x0)−F (x∗) , where F (x∗) is the function value
at optimal solution, F (x0) is the function value at initializa-
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Figure 1. On total variation minimization problem, the plots are the trajectory of linearized ADMM with ρ = 10 and the corresponding
differential inclusion, the first plot is for different α from 2−3 to 2 when c = 10, second plot is for different c from 1 to 32 when α = 1.6.

Figure 2. On sparse logistic regression, the plots are gradient ADMM and the differential inclusion when ρ = 10, first plot is for different
α from 2−3 to 2 when c = 10, second plot is for different c from 1 to 32 when α = 1.6.

Figure 3. On Lasso problem, the plots are the trajectory of G-
ADMM with ρ = 50 and the corresponding differential inclusion.

tion. We can see that the differential inclusion matches the
trajectory of the linearized ADMM algorithm very closely
for all parameter settings.

4.2. Sparse Logistic Regression with Gradient ADMM

Consider the sparse logistic regression problem (8)(see Koh
et al. (2007) for more details). Using variable splitting, we
can write the problem as

minimize
x,z

1

N

N∑
i=1

log(1 + exp(−bi(a>i x+ v)) + λ‖z‖1

subject to z = x,

with variable x ∈ Rd−1, v ∈ R.

This problem fits to the general framework with variable
x̄ = (x, v), A = I , f(x̄) = log(1 + exp(−bi(a>i x + v))
and g(x̄) = λ‖x̄1:n‖1, since f is differentiable but does not

have an easy proximal mapping and g is nonsmooth with
easy proximal, we could use gradient ADMM to solve this
problem.

We generated a problem instance following the MATLAB
examples of the paper Boyd et al. (2011). More specifically,
we chose a true weight vector xtrue sampled from Bernoulli-
Gaussian distribution with mean 0, variance 1 and sparsity
level 0.1, along with the true intercept vtrue sampled from
standard normal. Each feature vector ai was generated
from Bernoulli-Gaussian distribution at sparsity level 0.2.
The labels were then generated using bi = sign(a>i x

true +
vtrue + νi), where νi ∼ N (0, 0.1). The regularization
parameter is set to λ = 0.1λmax according to Koh et al.
(2007), where λmax = ‖A>b̃‖∞ is the critical value above
which the solution of the problem is x = 0, where b̃ is
defined in page 93 of Boyd et al. (2011).

We run both the gradient ADMM algorithm with ρ = 10
and the differential inclusion. We demonstrate the trajetory
of gradient ADMM algorithm and the differential inclusion
for different parameter configuration α and c. First of all,
we fix c = 10, and vary α from 2−3 to 2; then, we fix
α = 1.6, and vary c from 1 to 32. Figures 2 are the trajectory
of gradient ADMM with ρ = 10 and the corresponding
differential inclusion, with the x axis being the iteration
count, the y axis being the relative error F (xk)−F (x∗)

F (x0)−F (x∗) , where
F (x∗) is the function value at optimal solution, F (x0) is
the function value at initialization. We can see that the
differential inclusion matches the trajectory of the gradient
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ADMM algorithm very closely for all parameter settings.

4.3. Lasso with G-ADMM

Additionally, we show that the trajectory of G-ADMM al-
gorithm with different α is close to the trajectory of the
differential inclusion in Lasso example Tibshirani (1996).

The Lasso problem can be casted as

minimize
x,z

1

2
‖Ax− b‖22 + λ‖z‖1

subject to z = x,

which fits to the general framework with f(·) = 1
2‖A ·−b‖

2
2

and g(·) = λ‖ · ‖1. When G-ADMM (14) is applied to
solve this problem, the two subproblems (10a) and (10b)
respectively correspond to the proximal mappings of 1

2‖A ·
−b‖22 and ‖ · ‖1, which are both very easy to compute.

We generated a problem instance following the MATLAB
examples of the paper Boyd et al. (2011). Specifically,
we sample true sparse signal x0 from Bernoulli-Gaussian
distribution with mean 0, variance 1 and sparsity level 0.05,
A is sampled from Gaussian random matrix of size 100 by
400 with columns norm normalized to one, b = Ax0 + v,
where v ∼ N (0, 0.001). The regularization parameter is
set to λ = 0.1λmax according to Koh et al. (2007), where
λmax = ‖A>b‖∞ is the critical value above which the
solution of the problem is x = 0.

We run both the G-ADMM algorithm with ρ = 50 and
the differential inclusion. We vary α from 1 to 1.8 as the
range that people typically use for G-ADMM(Boyd et al.,
2011). Figure 3 is the trajectory of G-ADMM with ρ = 50
and the corresponding differential inclusion, with the x axis
being the iteration count, the y axis being the relative error
F (xk)−F (x∗)
F (x0)−F (x∗) , where F (x∗) is the function value at optimal
solution, F (x0) is the function value at initialization. We
can see that the differential inclusion matches the trajec-
tory of the linearized ADMM algorithm very closely for all
parameter settings.

5. Conclusions
In this paper, we analyzed the convergence behavior of the
continuous limits of some widely used nonsmooth ADMM
variants: linearized ADMM, gradient-based ADMM, as
well as G-ADMM and its Nesterov’s acceleration. Such
continuous limits are characterized by the tool of differen-
tial inclusion and promote understandings of these ADMM
variants from the angles of dynamical systems. Our novel
continuous-time convergence theorems characterize these
ADMM variants, which is further supported by experimental
results. The differential inclusion for linearized and gradient
ADMM variants suggests that we could choose the algo-

rithmic parameters via a principled approach that uses the
condition number of the matrix, which serves as a practical
guidance learned from theoretical insights.
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