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1 Outline

ε-nets refer to a number of similar mathematical structures that are useful for approximating sets
of points, and more specifically, metric spaces.

Plan:

• Probabilistic notion of approximation

• Geometric notion of approximation

– A framework for approximation algorithms

– Net-Trees

These notes follow Ch. 12 of [Har06] closely, and then draw from [HM14,HR15].

2 Glossary of definitions

Definition 2.1 (Range Space). A range space (X,R) consists of a set of points X and a family
R of subsets of X.

Definition 2.2 (Projection). For a subset A ⊆ X, we say that the projection of a range space
(X,R) onto A is PR(A) =

{
r ∩A

∣∣r ∈ R}.

Definition 2.3 (Shattering). A set of points A ⊆ X is shattered by a set of ranges R, if PA(R)
contains all subsets of A. If A is finite, then this is equivalent to |PA(R)| = 2|A|.

Definition 2.4 (VC-Dimension). The VC-Dimension of a range space (X,R) is the maximum
cardinality subset of X that is shattered by R. If arbitrarily large finite subsets of X can be shattered
by R, then the VC-dim is ∞.

Definition 2.5 (Doubling Dimension). The doubling constant c2 of a metric space M is the
maximum, over all balls b of radius r, of the number of balls of radius r/2 needed to cover b. The
doubling dimension d2 = log c2.
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3 Probabilistic ε-nets

First, we present the weakest notion of an ε-net.

Definition 3.1 (Probabilistic ε-Net). Let (X,R) be a range space and A ⊆ X be finite. We say
that N ⊆ A is an ε-net for A if for all ranges r ∈ R,

|r ∩A| ≥ ε |A| =⇒ |r ∩N | ≥ 1.

That is, an ε-net N mimics A in terms of existence of points on highly-occupied ranges of A.

Useful for algorithmic applications as well as analysis:

• Sampling – select representative points where exact identity is not important

• Union bounding – transfer argument on continuous space to representative finite net

Theorem 3.1 (ε-net Theorem). Let (X,R) be a range space of VC-dim d and A ⊆ X be finite.
For 0 < ε, δ < 1, construct N ⊆ A by sampling mε,δ points independently uniformly at random
from A. N is an ε-net for A with probability ≥ 1− δ provided

mε,δ ≥ O
(

1

ε
log

1

δ
+
d

ε
log

d

ε

)
.

Proof Idea:
Let N,M be sets of m points randomly subsampled from A as in the theorem statement.

• Define the event E∅ = {∃r ∈ R : |r ∩A| ≥ ε |A| ∧ r ∩N = ∅}

• Define the event E∅,1/2 =
{
∃r ∈ R : |r ∩A| ≥ ε |A| ∧ r ∩N = ∅ ∧ |r ∩M | ≥ εm

2

}
Claim: Pr[E∅,1/2] ≤ Pr[E∅] ≤ 2 Pr[E∅,1/2].
(First, obvious; Second, by Chebyshev’s Inequality to bound Pr[E∅,1/2

∣∣E∅] ≤ 1/2.)

Key simplification: Ignore A.

• Define the event E0 =
{
∃r ∈ R : r ∩N = ∅ ∧ |r ∩M | ≥ εm

2

}
Sample 2m points Z, look at the probability that a random equipartition results in E0. Let
k = |r ∩ (N ∪M)|.

Pr[E0] ≤ |PZ(R)| ·Pr[r ∩N = ∅
∣∣k ≥ εm

2
] ≤ |PZ(R)|

(
2m−k
m

)(
2m
m

) ≤ |PZ(R)| · 2εm/2

Using Sauer’s Lemma to bound |PZ(R)| ≤ |R| ≤
∑d

i=0

(
2m
i

)
and plugging in the asserted values for

mε,δ, we obtain the theorem.
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4 Geometric ε-nets

For geometric applications, a more geometric concept is useful.

Definition 4.1 (Geometric ε-net). Let (X, d) be a metric space and ε > 0. We say that N ⊆ X is
an ε-net of X if

(i) Packing – for all x 6= y ∈ N , d(x, y) ≥ ε, and

(ii) Covering – for all x ∈ X, miny∈N d(x, y) < ε.

Simple Construction for ε-net for finite metrics:

• Initialize all x ∈ X to be unmarked

• N ← ∅

• While there is some xu ∈ X that remains unmarked:

– N ← N ∪ {xu}
– mark xu and all x′ where d(xu, x

′) < ε

Fact: Using hasing and geometric tricks, this construction can be performed in linear time in the
size of the point set.

4.1 Approximate Optimization By “Net-and-Prune” Framework

[HR15] gives a general framework for constructing linear-time approximation algorithms for geo-
metric problems. We will consider the k-center problem as a case study.

k-Center Problem: Let X be a set of points in RD and k > 0 be some integer. Compute a subset
K ⊆ X where |K| = k according to the following objective:

f(X, k) = max
x∈X

min
c∈K

d(x, c)

where d : RD → R is the Euclidean distance over RD. We denote the optimal solution as

f∗(X, k) , min
K⊆X
|K|=k

max
x∈X

min
c∈K

d(x, c).

The k-center problem exhibits three important properties that makes it a candidate for the net-
and-prune framework.

• c-Approximate Decider: There exists a linear-time decider that, given (X, k) and some ε > 0
decides whether: (i) f∗(X, k) ∈ [α, cα] for some α ∈ R, (ii) f∗(X, k) < ε, or (iii) f∗(X, r) > ε.

• Lipschitz: Suppose X∆ is a ∆-drift of X (that is, there is mapping q : X → X∆, such that
for all x ∈ X, d(x, q(x)) ≤ ∆). Then |f∗(X, k)− f∗(X∆, k)| ≤ 2∆.
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• Invariant under Pruning: Let X<ε ⊆ X be the set of points, whose nearest neighbor in X is
closer than ε. If f∗(X, k) < ε, then f∗(X, k) = f∗(X<ε, k<ε) where k<ε = k − |X \X<ε|.

These properties are not difficult to verify; we call the framework “net-and-prune” because the
c-approximate decider can frequently be implemented using an ε-net.

Claim: Let N be an ε-net for X.

• If |N | ≤ k, then f∗(X, k) < ε. (implied by definition of ε-net)

• If |N | > k, then f∗(X, k) ≥ ε/2. (consider k + 1 points, all separated by ε)

Description of (4 + δ)-Approximate Decider:
Given (X, k) and ε, construct an ε-net N for X.

• If |N | ≤ k, then return f∗(X, k) ≤ ε.

Construct a (2 + δ/2)ε-net N ′ for X.

• If |N ′| ≤ k, then return f∗(X, k) ∈ [ε/2, (2 + δ/2)ε].

• Else, return f∗(X, k) > ε.

Lipschitz: The distance between two points can increase by at most 2∆ in a ∆-drift of the original
point set.

Invariant under Pruning: If f∗(X, k) < ε, then any points whose nearest-neighbor is ≥ ε must be
a center of its own.

Algorithm:
k-center(X, k):

• Randomly sample x ∈ X

• ε← miny 6=x∈X d(x, y)

• Run decider for 〈(X, k), ε〉 and 〈(X, k), c0ε〉 (for some sufficiently large constant c0 > 37)

• if either run of the decider finds a range such that f∗(X, k) ∈ [x, y], return f∗(X, k) ∈ [x/2, 2y]

• else if ε < f∗(X, k) < c0ε, then return f∗(X, k) ∈ [ε/2, 2c0ε]

• else if f∗(X, k) < ε, (prune) return k-center(X<ε, k<ε)

• else if f∗(X, k) > c0ε, (net) compute a 3ε-net N of X and return k-center(N, k)

Proof Idea:
Runtime: In every recursive call, we throw away a constant fraction of the input in expectation.
Correctness: Either we prune (and the objective is not changed), or we net. The main crux of the
proof is showing that the net radius is always significantly smaller than the objective value, and
thus, the quality of approximation does not degrade rapidly.

Using a gridding technique and a standard greedy algorithm, one can turn any c-approximate
solution to the k-center problem to a 2-approximate solution (see [Har04], Lemma 6.5).
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4.2 Hierarchical Nets for Doubling Metrics

For a given metric space (X, d), we use br(x) to denote the ball of radius r according to d surrounding
some x ∈ X; that is br(x) =

{
x′ ∈ X

∣∣d(x, x′) ≤ r
}

.

In this section, we will discuss the following extension of ε-nets.

Definition 4.2 (Net-tree). Let (X, d) be a metric space and let P ⊆ X be finite. A net-tree of P
is a tree T whose leaves represent P . For each internal node v ∈ T , we associate the following:

• Pv ⊆ P – the set of leaves in P of the subtree rooted at v

• pv – the parent of v in T (not defined for the root)

• repv – some v ∈ Pv

• `v – the level of v in the tree, satisfying `v < `pv ; `x for x ∈ P defined to be −∞.

For sufficiently large τ = 11, we require the following properties to be maintained:

(i) Packing – for every non-root v ∈ T :

b(repv,∆p) ∩ P ⊆ Pv

for ∆p = τ−5
2(τ−1) · τ

`pv−1

(ii) Covering – for every v ∈ T :
Pv ⊆ b(repv,∆c)

for ∆c = 2τ
τ−1 · τ

`v

(iii) Inheritance – for every non-leaf v ∈ T , there exists some u ∈ T such that v = pu and
repv = repu.

Constructing net-trees: Consider the following greedy process: choose an arbitrary point x1 to
start; add it to the list of centers C. Then, choose xi+1 to be

xi+1 ← argmax
x∈X\C

min
c∈C

d(x, c).

We define rk = min1≤i,j≤k+1 d(xi, xj).

In this order, we process the points xk ∈ P . Given the tree consisting of the first k − 1 points,
T (k−1), we add xk as a leaf.

• Let ` = dlogτ rk−1e

• Let x(∗) be the nearest-neighbor of xk such that `x(∗) > `. Let u = px(∗) .

• If `u > `, create a new internal node v such that repv = x(∗). Make x(∗) and xk children of v
and v a child of u.

• Else, add xk as a child of u.

Claim: The above process returns a net-tree.
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4.2.1 Approximate Nearest Neighbor Search

We will design two different weak ANN structures that can be used in combination to yield a
(1 + ε)-ANN structure.

Low-spread: Suppose we’re given a net-tree T of P , a query q ∈ X, and some u ∈ T such that

d(repu, q) ≤ 5 · τ `, OR x(∗) ∈ Pu, where x(∗) is the nearest-neighbor of q in P .

Algorithm:

• Construct A` ←
{
v ∈ T

∣∣`(v) ≤ `(u) ≤ `(pv) ∧ d(repu, repv) ≤ 13τ `(u)
}

• Construct Ai−1 from Ai as follow:

– Compute d0 ← minw∈Ai d(repw, q)

– Replace all vertices in Ai with their children, but only keep a vertex v ∈ T if d(repv, q) ≤
d0 + 2τ

τ−1τ
i−1

Low-quality BST: Suppose we just want to find a 2n-ANN. We proceed by building a BST, where
the left search tree is constructed for P ∩ brv(pv) and left search tree is constructed for P \ brv(pv)
for some specially selected v.

Combination:

• Use the 2n-ANN structure to find a close point x0

• Find an ancestor of x0 in net-tree T that is at an appropriate level

• Run the search on the net-tree, knowing that the spread is sufficiently bounded
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