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ABSTRACT
Researchers regularly use instrumental variables to resolve con-
cerns about regressor endogeneity. The existing literature has
correctly emphasized that the choice of instrumental variables
matter for the resulting estimates. This paper shows that re-
searchers should also be concerned that the functional form of
the instrument matters as well for the resulting estimates. For
example, simply changing an instrumental variable from the level
to the logarithm can change estimates directly. This article docu-
ments the problem, suggests why the problem occurs and suggests
different approaches to the problem.
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1
Introduction

Many social scientists work with linear regression models in which some
or all of the regressors are thought to be correlated with the regression
error. Although in this case ordinary least squares (OLS) delivers the
best linear predictor of the dependent variable given the right hand
side regressors, this predictor differs from the best linear predictor one
would obtain if there were no correlation between the regressors and the
regression error. Researchers often are more interested in this second
model because they see its coefficients as revealing “causal” effects.
That is, they see the coefficients as suggesting how much the dependent
variable would change if the corresponding right hand side variable
changed by one unit and nothing else changed. Of course, the true
causal model may not be linear. However, many researchers nevertheless
believe that linear regressions still can reveal the signs and magnitudes
of causal relations.

Instrumental variable (IV) methods are the primary means by which
social scientists estimate regression models with endogenous regressors.
IV methods require the researcher to identify auxiliary variables that
minimally are uncorrelated with the regression error (e.g., exogeneous)
and yet correlated with the right hand side endogenous regressors (i.e.,
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206 Introduction

relevant).1 Under standard assumptions, these instruments can be used
to construct consistent estimates of the coefficients. Although the use of
valid IVs produces consistent estimates, it is well known that the finite
and large sample distributions of the IV estimator are impacted by the
choice of instruments.2 Further, it is known that when the instruments
only slightly violate the exogeneity and relevance conditions, there
can be dramatic, adverse consequences for the estimator’s small and
large sample distribution. Violations of concern include: having too few
relevant instruments; using instruments that are correlated with the
regression error; and, relying on instruments that are weakly correlated
with the endogenous regressors.3

This paper documents another issue that has received little or no
attention – that seemingly irrelevant changes in the functional forms of
the same instruments can lead to vastly different IV estimates. This is
not just a sampling issue, it is present in a given sample. This potential
sensitivity should be concerning. Two (or more) researchers could be
on solid ground arguing that their IV estimates are consistent, and
yet their estimates might differ dramatically. Indeed, their estimates
may differ in sign! Section 2 provides such an example. Ultimately this
difference in the IV estimates prompts the difficult question of which
estimate(s) to report. Alternatively, how might a researcher make others
aware of any sensitivity?

These issues are illustrated and addressed in what follows. Section 2
shows that an instrument’s functional form can matter. It relates the
sensitivity of IV estimates to an instrument relevance condition. Sec-
tion 3 discusses possible approaches to the problem based on existing
relevance and weak instrument diagnostics. These approaches include
reporting sensitivity analyses or measures of the local variation in the
estimated coefficients. Section 4 discusses possible “efficient” instrument
approaches to the problem. Section 5 illustrates the problem is general.
Section 6 concludes.

1While the term “instruments” refers to both the exogenous variables in the
equation of interest and the excluded auxiliary variables, I will primarily use it to
refer to the auxilary variables.

2See for example Phillips (1983).
3See for example Bound et al. (1995) and Murray (2006).



2
A Motivating Example

Social science researchers routinely posit linear regression relations
between outcome variables y and regressorsX. Sometimes these relations
are motivated by theoretical models, but more often the specifications
are ad hoc.

This section focuses on a regression model based on economic theory.
This is done to have a clear motivation for the choice of instrument(s).
The model is the simple log-log homogeneous product demand model:

ln q = β0 + βp ln p+ βI ln y + βb ln pb + ε. (2.1)

where q is the quantity consumed, p is the product price, I is consumer
income, and pb is the price of a substitute product. Here we focus on
estimating βp, which represents the (constant) elasticity of product
demand, or the constant percentage by which quantity will fall with
a one percent increase in price holding all other variables constant.
The problem encountered with using ordinary least squares (OLS) to
estimate βp is that ln p and the error term ε are potentially correlated.4

4The usual explanation as to why is that prices and quantities are simultaneous
determined. This means that unobservables that affect quantity demand also will
impact the prices at which the market clears.
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208 A Motivating Example

This correlation will lead OLS to produce a biased and inconsistent
estimate of the conceptual quantity of interest – the elasticity of demand,
βp.5

Besides ln y and ln pb, which we assume are uncorrelated with the
demand error, we need one or more other variables to construct a
consistent estimate of βp. These extra instrumental variables minimally
must be: excluded from the demand equation, uncorrelated with the
demand error ε, and correlated with the right hand side endogenous
variables (here the natural logarithm of product price ln p). Economic
theory suggests that we can find such variables by considering the
supply side of the market. Suppliers are usually thought to respond to
at least some variables that do not enter consumer demands. Common
candidates include the prices of production inputs.

Most demand studies proceed by identifying instruments, such as
input prices, and then using them to construct strike a instrumental
variable estimates of the demand parameters. But one can reasonably
ask what functional form is appropriate for the instruments. For example,
should one use the logarithm of the input price or the level? If one
assumes that E(ε | Input Price ) = 0, then in theory the choice should not
matter for the consistency of the IV estimator. But the zero conditional
mean assumption is much stronger than is presumed by many textbooks.
Typically they propose assuming that the instrument (here, the level of
the input price) is uncorrelated with the structural error. This weaker
assumption does not imply that the logarithms of input prices are
necessarily uncorrelated with the demand error. But how does the
researcher know the level versus the logarithm is uncorrelated with the
demand error? When the researcher has a strong prior that only one
functional form satisfies the exogeneity and relevance conditions, then
that argues for using that functional form. In most cases, the researcher
does not have a strong prior, and therefore should be aware that the
choice could matter for the estimate(s) that they will report.

5Of course if the researcher is only interested in predicting quantity given these
variables, then OLS will under conventional assumptions yield the best linear predictor
of quantity.
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To illustrate the potential sensitivity of IV estimates, we use data
from Epple and McCallum (2006) to estimate the demand model (2.1).
Epple and McCallum use their data to illustrate, among other things,
how to model the endogenous determination of demand and supply.
The data set contains annual prices and quantities of broiler chickens
sold in the US from 1950 to 2001. Although Epple and McCallum
consider a variety of demand and supply specifications, one is the log-
log specification (2.1). Specifically, in their demand specification ln qc
is the log of the per capita quantity of chicken consumed (in pounds),
ln p the log of the real price of broilers, ln y the log of real per capita
income, and ln pb the log of the real price of beef (a protein substitute).
In some of their specifications, Epple and McCallum treat the natural
logarithm of the price of chickens, ln p, as endogenous. Included in their
data is the price of corn, an input into the production of chickens. In
what follows, we explore use of the real corn price, pc.

To illustrate how the instrumental variables estimates depend on
the form of the instrument used, we hold the demand equation (2.1) and
the data fixed and vary the functional form of the corn price instrument
in the first stage regression. A convenient way to vary the instrument’s
functional form is to use the Box-Cox transformation

pc(λ) =


pλc − 1
λ

λ 6= 0

ln pc λ = 0
(2.2)

where λ controls the functional form; e.g., it nests the real price of corn
(λ = 1); the natural logarithm of the real price (λ = 0); the square root
(λ = 0.5); and the inverse of the real price (λ = −1).

In practice we can construct instrumental variable estimates of
βp in two regressions (or “steps”). The first stage uses ordinary least
squares to regresses the endogenous price of chicken on the exogenous
instruments:

ln p = π0 + π1 ln pc(λ) + π2 ln y + π3 ln pb + η. (2.3)

where pc(λ) denotes the Box-Cox transformation of the corn price pc.
The predicted values from these different first stages are then substituted
for the price of chicken in the demand equation regression (the “second”
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stage). The second stage regressions produce the different demand
elasticity estimates, βp(λ).6

Figure 2.1: IV estimates of the price elasticity of demand versus the Box-Cox
parameter. Associated 95% confidence intervals as dotted gray lines.

Figure 2.1 plots the resulting instrumental variable estimates. The
dark line charts the instrumental variable estimate of βp(λ). The gray
lines correspond to the upper and lower limits of a 95% confidence
interval for the price elasticity estimates. What is striking about the
figure is that by varying the functional form of the instrument (i.e., λ),
we can get just about any value for the price elasticity. Indeed, while
economic theory would predict it to be negative, there is a considerable
range of transformations of the corn input price that would yield a

6Of course the other coefficients in the demand equation will vary with λ. Here
the coefficients on log income and the substitute price exhibit similar patterns to
that seen in Figure 2.1.
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positive estimate.7 Again, observe that these different estimates all are
estimates of the same underlying population price elasticity.

The three large dots in the figure, β̂(−1), β̂(0), and β̂(1), correspond
to the IV estimates one would obtain by using three common functional
forms, respectively: the inverse real price of corn; the natural logarithm
of the real price; or the real price of corn as instruments. Using the
inverse would result in an estimated elasticity of 1.707, versus estimates
of −1.711 and −0.615 for the logarithmic and linear specifications. Even
restricting attention to the negative estimates, there is considerable and
meaningful economic variation in the estimates. Thus, for this model
and these data, the functional form of the instrument really does matter!

The functional form of the instrument is not usually something
most researchers consider when using instrumental variable estimators.
Instead, the focus is typically on which instrumental variables to use. For
example, in the broiler demand model they might consider using rainfall
totals or lagged consumption instead of the real price of corn. What
this example demonstrates is even if one settles on specific instruments
(e.g., rainfall or the real price of corn), there is still an issue of what
functional form to use for that instrument in the first stage. One’s choice
can have a large impact on the estimated coefficient. A natural question
to ask at this point is – Is this always the case? And, if it is, how might
we use the data to narrow down the range of acceptable IV estimates?
These questions are addressed in the remaining sections.

7Notice that in general λ < 0 does not cause the sign of the coefficient to change.
Even when λ < 0 the instrument is increasing in the corn price.



3
Why So Sensitive?

Figure 2.1 provides a first clue as to how a researcher might go about
diagnosing the sensitivity of the instrumental variable estimate to the
functional form of the instrument. Specifically, it shows that the width
of the estimated 95% confidence intervals for the price elasticity differ
considerably with λ. The confidence intervals are widest for values of λ
where the elasticity changes sign and tend to be smallest for values of λ
between 2 and 4. To understand why this is so, it is useful to re-examine
conditions that impact the consistency and finite sample distribution of
the instrumental variable estimator.

Consider the generic linear regression model:

Y = X1β1 +X2β2 + ε = Xβ + ε. (3.1)

where X = [X1 X2 ] is a N ×K = N × (K1 +K2) matrix of regressors,
ε is a N × 1 vector of errors and β = [ β′1 β′2 ]′ is a K × 1 vector of
unknown coefficients. The coefficient vector β is not identified absent
further assumptions about the data generating process. Most researchers
are interested in a world where X can be manipulated independently
of the other factors that determine Y . In this world, β is identified by
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adding the following K moment restrictions to (3.1)

E(X ′iεi)︸ ︷︷ ︸
K×1

= 0 i = 1, . . . , N. (3.2)

These moment restrictions, along with other sampling assumptions
about the regressors and errors, are sufficient to prove that ordinary
least squares will yield a consistent estimate of β.

As a practical matter, the only way social scientists can guarantee
that E(X ′iεi) = 0 holds is if they perform experiments in which they
manipulate X independently of all other factors that determine Y .
Since social scientists are rarely in this position, and instead must
rely on observational data, questions often arise as to whether the
assumption E(X ′iεi) = 0 is valid. Typical concerns include the possibility
of omitted variables correlated with X, simultaneity between X and
Y , and measurement errors in X. There is now a large literature that
explores how to test whether regressors are exogenous when the model
is overidentified.8

Following the literature on instrumental variables, suppose that only
theX1 variables inX are suspect (i.e., potentially endogenous). Without
loss of generality, we can remove the exogenous X2’s from consideration
by multiplying both sides of (3.1) by the N × N projection matrix
P̄X2 = I −X2(X ′2X2)−1X ′2. This allows us to focus just on estimating
β1 in the second stage regression9

Y = X1β1 + ε. (3.3)

The instrumental variables approach presumes the existence of
L ≥ K1 (instrumental) variables Z that do not enter equation (3.3), are
correlated with X1 and yet also are uncorrelated with ε. This absence
of correlation can be expressed as

E(Z ′iεi) = 0.
8See, for example, Davidson and MacKinnon (1993). It also has been noted

that these tests are not invariant to the choice of overidentifying restrictions. A
comparable point here is that they also are not invariant to the functional form of
those overidentifying restrictions.

9Here we use the same Y and X1 notation as in equation (3.1), however they
represent Ỹ = P̄X2Y and X̃1 = P̄X2X1. This transformation does not change the
points that follow and considerably simplifies the exposition.
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Besides this condition, we require that the instruments be relevant, or
in other words correlated with the right hand side endogenous variables
(the X1).10 In the independent and identically distributed data case,
this condition can be expressed as

rank (E [X ′1iZi] ) = K1 ≤ L. (3.4)

The equivalent asymptotic condition is11

rank
[
plim

∑N
i=1X

′
1iZi

N

]
= K1 ≤ L.

In practice, the researcher does not know for sure whether these
relevance conditions are satisfied. However, Anderson (1984), Cragg and
Donald (1993), Kleibergen and Paap (2006) and others have proposed
tests for instrument relevance based on the rank of a matrix. For example,
Anderson’s test tests the null hypothesis that the minimum canonical
correlation between X1 and Z (given X2) is zero (which would cause
the relevance rank condition to fail). Under the null, the test statistic is
asymptotically distributed central chi-squared with L−K1 + 1 degrees
of freedom.

In the exactly identified demand model discussed in the previous
section, Anderson’s test equals the sample size times the R2 from the
first-stage regression12

X1 = Zπ + η.

The top panel of Figure 3.1 reports how Anderson’s test varies as the
(Box-Cox) functional form of the instrument changes. The bottom panel
reproduces Figure 2.1 for comparison. Figure 3.1 shows that Anderson’s
test for the relevance of the instrument is highly related to the behavior
of the IV estimate. In particular, Anderson’s test has a minimum at the
point where the instrumental variable estimate switches sign.

10Recall that we have removed any correlation of X1. Analogously we presume
that we have done the same with Z. In this case, the relevance condition amounts to
an assertion that the matrix of partial correlations of X1 and Z (given X2) is of full
rank.

11Here X1i and Zi are row vectors corresponding to the ith observation.
12Again, recall that X1 = P̄X2X1 and Z = P̄X2Z.
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Figure 3.1: Top graph: Anderson canonical correlation LM statistic for instrument
irrelevance as a function of the Box-Cox parameter. Bottom graph: IV Price elasticity
estimate as a function of the Box-Cox parameter.

Given the asymptotic distribution of Anderson’s test, one can ex-
amine whether ruling out IV estimates that have low test values would
considerably narrow the range of IV estimates. To illustrate how such an
approach might work, observe that the α = 0.9, α = 0.95 and α = 0.99
critical values for Anderson’s test are respectively 2.705, 3.842 and 6.635.
One might choose not to accept any IV estimate that does not produce
a significant Anderson test result (i.e., only choose IV estimates for
which Anderson’s test rejects the null hypothesis that the instruments
are irrelevant).

Figure 3.2 shows how such a strategy based on a 0.9, 0.95 or 0.99
significance level would narrow the range on IV estimates produced
by the Box-Cox transform. The horizontal dashed lines correspond to
the chi-squared critical values 2.705, 3.842 and 6.635. The dark curve
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Figure 3.2: Anderson canonical correlation LM statistic for instrument irrelevance
as a function of the IV price elasticity estimate.

consists of the estimated elasticities depicted in Figure 3.1 mapped to
their associated Anderson canonical correlation test value. The figure
shows that rejecting any estimate below the α = 0.95 threshold (i.e.,
3.842), would still generate elasticity estimates with an acceptable range
from −1.30 to −0.15 and 0.43 to 0.72. Setting a higher threshold of
α = 0.99 narrows the range somewhat to just negative values, but the
range of negative estimates, −1.01 to −0.15, is still wide in economic
terms.

The Anderson rank test has a Lagrange Multiplier test form. Related
relevance tests include the first-stage F test on the instruments that
are excluded from the second stage, the related Wald test, and the
Kleibergen and Paap (2006) test. The later two statistics have certain
advantages, particularly when there is more than one right hand side
endogenous variable or the errors are not independently and identically
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distributed.13 However, both the F test and the Cragg-Donald statistics
have proven popular in this single equation model because Stock and
Yogo (2005) use them as a basis for diagnosing whether the instruments
are “weak”.

Figure 3.3: Anderson, Cragg-Donald and F tests for relevant and weak instruments
as a function of the Box-Cox parameter.

Although there is no clear definition of a weak instrument, weak
instruments can be thought of as a situation where the relevance condi-
tion is close to failing. In such a case, the instruments excluded from
the second stage regression have little predictive power in the first stage
regression. This lack of explanatory power is known to result in greater
finite sample bias and increased variability of the IV estimator.14 In
some cases. the bias and variance introduced by using weak instruments

13See also Olea and Paueger (2013) and Sanderson and Windmeijer (2013).
14See for example Phillips (1983).
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can result in the “cure being worse than the disease”.15 Indeed, the
results in Figures 2.1 through 3.2 suggest that this is not just true
from a sampling perspective, but that for the same sample, slight vari-
ations in an instrument’s functional form can result in substantially
different estimates. This latter point appears not to be appreciated.
Another important implication is that even if the instrument(s) pass a
relevance screen, one could still see a wide range of estimates produced
by otherwise consistent estimators.

Staiger and Stock (1997), Stock and Yogo (2005), and Sanderson
and Windmeijer (2013), among others, have proposed diagnostics for
weak instruments based on first-stage regression F statistics or the
Cragg and Donald statistic. The most familiar of the two is the F test
applied to first-stage coefficients on the exogenous variables excluded
from the second stage. Staiger and Stock suggest the informal rule that
the instruments should be considered “weak”, and thus that sampling
issues such as bias and variance may be a concern, if this F test is less
than 10. Stock and Yogo provide more detailed tables for evaluating
the first-stage F test.16

Many econometric software packages now report test statistics for
weak instruments as part of their instrumental variable routines.17

Because these tests are related to the relevance tests, they also might
provide a useful means for screening functional forms. To illustrate,
Figure 3.3 plots Anderson’s canonical correlation test, the Cragg-Donald
statistic and the F test (here a squared t-test) on the excluded price
of corn instrument, Z(λ). The latter two tests are perhaps the most
commonly used weak instrument diagnostics. The figure reveals that
the tests yield similar results for values of λ less than one-half. If we
use the rule of thumb that the F statistic should exceed 10 for the
instrument not to be declared weak, then we would only consider values

15See Bound et al. (1995) and the original NBER Technical Working Paper No.
137, June 1993.

16It is important to recall that the F test may be less relevant when there is
more than one right hand side endogeneous variable. See Stock and Yogo (2005) and
Sanderson and Windmeijer (2013).

17For example, Stata’s ivreg2 command has options to compute Anderson’s
canonical correlation coefficient, the Cragg-Donald rank statistic, F statistic and
Sanderson and Windmeijer multivariate F .
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of λ ≥ 0.5, which implies the estimated price elasticity would lie in the
range −0.88 to −0.15. This is a somewhat smaller range than implied
by the α = 0.99 cutoff for Anderson’s canonical correlation statistic, but
nevertheless it still is an economically wide range. Upping the F cutoff
to 16.38, which according to Stock and Yogo (2005) results in a 10%
maximal Wald test size distortion, narrows the range to −0.72 to −0.15,
which is still a considerable range. (For example, the interval includes
the OLS estimate.) Thus it appears that while weak instrument tests
might prove useful at ruling out some functional form choices, they
might not narrow the range considerably.



4
More on Functional Form and Efficient

Instruments

To summarize the discussion to this point, the functional form of an
instrument can have an important bearing on the resulting instru-
mental variable estimate. Absent experimentation, the researcher may
be unaware that their instrumental variable estimate may depend on
functional form. While tests for instrument relevance or weakness may
provide useful diagnostics and screens, they do not by themselves in-
dicate how sensitive the IV estimator may be. For instance, a specific
functional form can pass, and yet other functional forms might also
pass. Those two forms may yield substantially different IV estimates.

To know the potential for variation, the researcher may want to
experiment with the functional form of the instrument. In the demand
example, the Box-Cox transformation proved useful because all the
values of the instrument were positive. Other transforms, such as the
Yeo-Johnson or the modulus transformation, might also prove useful.18

One can also experiment with instruments based on quantiles of the
underlying instrumental variable. One possibility is to use an indicator

18See Section 5.
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Figure 4.1: IV estimates of the price elasticity versus the quantile parameter that
determines the instrument. (See equation (4.1).)

function indexed by a parameter tied to the quantiles, such as

h(Z, λ) =

1 if Z ≥ F̂−1(λ)
0 if Z < F̂−1(λ)

(4.1)

where F̂ (·) denotes the empirical distribution function of Z and λ takes
on a fractional value. In the demand example, this approach constructs
a discrete instrument based on whether the input price is low (Z = 0)
or high (Z = 1). Such a strategy is related to a strategy used by
Newey (1990). Figure 4.1 shows how this choice would impact the price
elasticity estimates using Epple and McCallum’s data.19 Again the
pattern mimics that of Figure 2.1, even though the instrument now only
is a qualitative summary of the input corn price variable.

The idea of experimenting with the functional form of the instrument
raises an important issue regarding what the researcher is willing to
assume about the instrument. Besides the relevance condition, the

19The figure varies λ discretely because the empirical distribution function has
discrete steps. Not shown in the figure is an IV estimate of β̂p = 33.945 for λ = 0.4
because it distorts the scale of the figure.
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instrument must also be “exogenous”. A weak form of exogeneity is to
assume Cov(Zi, εi) = 0. But a stronger form is needed to ensure that
Cov(h(Zi), εi) = 0 for the parametric functions proposed in (2.2) and
(4.1). The stronger condition E(εi|Zi) = 0 ensures this.20

When E(εi|Zi) = 0, the researcher in principle has many different
instruments that they can use. For instance, Z works, as would Z2, Z3,
etc. This suggests that the researcher might attempt to approximate
the unknown (correct) functional form of the instrument using flexi-
ble parametric or nonparametric methods. For instance, suppose that
unbenownst to the researcher the first and second stages are given by:

Y = X1β1 + ξ

X1 = Wπ0 + ω .
(4.2)

whereW is the “true” instrument. Suppose that there exists a monotonic
function h(·) so that W = h(Z), where the Z are the instruments
available (e.g., the price of corn). With conditional mean independence,
we could attempt to approximate h(Z) with a flexible parametric form,
such as a polynomial in Z (and cross-products if there is more than one
instrument). This idea follows the approach of Kelejian (1971), who
explored the idea of approximating nonlinear endogenous variables with
polynomials.

Table 4.1 shows what this approach would deliver using Epple and
McCallum data. The columns report different IV estimates based on
adding successive powers of the corn price to the first stage. For instance,
the third column reports estimates based on a quadratic in the real
corn price (i.e., pcπ1 + p2

cπ2). From the table we see that adding more
powers moves the estimated price elasticity towards the OLS estimate of
-0.265. Though this need not always happen, there are several possible
explanations for why this might occur. One explanation is that if the
additional terms are irrelevant, then they simply add noise to the first
stage. This noise can impact the IV estimate in the second stage. One
can get some sense of whether this is happening by considering whether
additional terms improve the overall first-stage fit. The bottom row

20But in addition one may want to assume E(ωi|Zi) = 0 as well in order to
estimate h(Z).



More on Functional Form and Efficient Instruments 223

Table 4.1: Broiler Demand Equation Estimates

ln qc = β0 + βpln pc + βI ln I + βpbln pb + ε

IV: (Excluded) Instruments
pcorn

pcorn p2
corn

pcorn p2
corn p3

corn

Parameter OLS pcorn p2
corn p3

corn p4
corn

β0 −4.680 −1.638 −4.560 −4.770 −4.647
(0.675) (1.343) (0.847) (0.806) (0.795)

βp −0.265 −0.615 −0.279 −0.254 −0.268
(0.070) (0.149) (0.091) (0.086) (0.085)

βI 0.852 0.545 0.840 0.861 0.849
(0.069) (0.136) (0.086) (0.082) (0.081)

βpb −0.118 −0.067 −0.116 −0.119 −0.118
(0.084) (0.105) (0.084) (0.084) (0.084)

Anderson CC NA 17.45 30.40 34.06 35.12
Cragg-Donald F NA 24.24 33.08 29.12 23.42
Incremental F NA 24.24 28.19 9.39 2.83
(First Stage)

Asymptotic standard errors in parentheses.

of the table addresses this question by reporting the incremental F
statistics for each new term. These statistics suggest that the first few
powers of pc matter, but starting with the quartic term more terms
incrementally fail to improve the fit.21 A second explanation is that
additional terms can violate the exogeneity assumption Cov(Z, ε) = 0,
thereby leading to an inconsistent estimate. Further, it is known that the
finite sample bias of the instrumental variable estimator becomes worse
with more instruments ((e.g. Bound et al., 1995)). A third explanation
is that the more terms that are used in the reduced form, the closer the
first stage fit moves to being perfect, in which case the IV estimator
would return the OLS estimate.

21The incremental F is equal to the squared t-statistic on the last instrument
added to the model. The incremental F of 2.83 for the fourth power is not statistically
significant at a 5% level.
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As an alternative to using a polynomial approximation, one can
estimate the functional form of W = h(Z) directly using nonparametric
methods (provided E(ω|Z) = 0). This idea follows the optimal instru-
ments approach suggested by Newey (1990). Specifically, the idea is to
recover the conditional mean using flexible semiparametric methods.
For instance, one can use Robinson (1988) two-step partially linear
estimator.22 The IV estimates for the second stage using Robinson’s
partially-linear semiparametric approach are displayed in the last col-
umn of Table 4.2. These estimates are similar to the OLS and the cubic
polynomial approximation results from Table 4.1, which are reproduced
in the first two columns of Table 4.2.

Some sense of why the flexible IV results are similar can be obtained
by comparing the different flexible estimates of h(Z). This is done in
Figure 4.2. It displays standardized estimates of h(Z) for the linear and
cubic IV instrument models in Table 4.1, and the semiparametric instru-
ment model in Table 4.2.23 The cubic and semiparametric instrument
results provide similar estimates of h(Z), and thus it is not surprising
that they provide similar price elasticity estimates. It is also interesting
to note that the Box-Cox results displayed in Figure 3.1 suggest that
when λ ≈ 3, and the instrument therefore is a cubic in the corn price,
that the relevance and weak instrument test statistics are maximized.
Interestingly, the IV results for λ = 3 are similar to those in Table 4.2.

22In the first step, the variables on the right hand side of the structural equation
are nonparametrically regressed on the excluded instruments. For model (3.1) this
amounts to constructing estimates of E(X1|Z) and E(X2|Z). The linear coefficients
of the first stage are then recovered from the least squares regression

X1 − ̂E(X1|Z) = (X2 − ̂E(X2|Z))π2 + ξ.

The estimated π2 coefficients can then be used to construct the semiparametric
estimate of W = h(Z) as

ĥ(Z) = ̂E(X1|Z)− ̂E(X2|Z)π̂2.

This estimate can then be used as an estimated “optimal” instrument in the second
stage.

23The estimates are standardized by removing the mean from each.
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Table 4.2: Broiler Demand Equation Estimates

ln qc = β0 + βpln pc + βI ln I + βpbln pb + ε

IV: Excluded Instruments
pcorn

p2
corn Semiparametric

Parameter OLS p3
corn ĥ(Z)

β0 −4.680 −4.770 −3.890
(0.675) (0.806) (0.752)

βpc −0.265 −0.254 −0.356
(0.0699) (0.086) (0.088)

βI 0.852 0.861 0.772
(0.0686) (0.082) (0.076)

βpb −0.118 −0.119 −0.105
(0.0836) (0.084) (0.082)

Asymptotic standard errors in parentheses. The standard errors in the
last column are the standard errors for 500 bootstrap replications. The
first-stage estimate of h(Z) is constructed using a normal kernel and
least squares cross-validation to pick the bandwidth.

Figure 4.2: Estimates of the first-stage predictor based on different functions of
the price of corn.



5
Further Evidence

So far the argument that instrument functional form matters has been
largely developed using one data set, one model and one instrument.
One might ask whether this sensitivity is present in other datasets
and models. The answer is that the problem noted is not special. To
demonstrate this, we exploit a model used by Newey (1990) to illus-
trate the finite sample properties of different strategies for estimating
“efficient” instruments. In particular, Newey (1990) compares the use
of polynomial and nonparametric first-stage estimates for the first and
second stage equations

Yi = β0 + β1X1i + ξi

X1i = I(α0 + α1Zi ≥ ωi) .
(5.1)

where I(·) is an indicator function equal to one when the condition in
parentheses is true,


ξi

ωi

Zi

 ∼ N




0
0
0

 ,


1 0.7 0
0.7 1 0
0 0 1


 ,
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and β0 = β1 = α0 = 1. This model regresses Y on a dummy variable
X that is correlated with regression error ξ. Unlike the demand model,
here the first stage is nonlinear in the instrument Z. Although the first
stage is nonlinear, we can decompose X into its conditional expectation,
W = h(Z) = Φ(1 +Z), and a conditional mean zero error ν = X−h(Z)
such that it resembles the reduced form equation in (4.2).24

To analyze the sensitivity of β1 to the functional form of the first
stage, we generate 500 simulated datasets for sample sizes of 100 and
200. We experiment with α1 = 1 and α1 = 0.5, the latter case resulting
in less variation in the conditional mean of the first stage, and therefore
weaker instruments. Table 5.1 reports the mean, median, and upper
and lower quartiles of five different estimators of the second stage for
N=100. Table 5.2 does the same for N=200. The top half of each table
reports results for α1 = 1; the bottom reports results for α = 0.5. The
five estimators are: OLS, IV using Z as the instrument; IV using Z, Z2

and Z3 as instruments, IV using the optimal (first-stage conditional
mean) instrument; Φ(1 + Z), and IV using a nonparametric regression
estimate of the conditional mean.

The estimates in both tables suggest the following. OLS exhibits
substantial bias, with the bias increasing with the weakening of the
instrument. There is substantially less bias with the IV estimators, and
the biases generally diminsh as the sample size increases. The bias
appears worse for the flexible polynomial and nonparametric estimates.
Indeed, the noise in the nonparametric estimator of the first-stage
conditional mean leads to greater bias and dispersion of estimates (as
measured by the interquartile range) compared to when we use the
true conditional mean (Column 4). Further, the bias and variability of
the flexible IV estimates appears to increase as the importance of Z
in the first stage (as represented by α1) falls. Indeed as α1 declines to
0.5, the performance of the IV estimator using the correct conditional
mean function deteriorates considerably. Thus, there appears to be some
small sample evidence that estimating the first stage flexibly can lead

24Here Φ(·) is the cumulative distribution function of a standard normal random
variable.
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to greater variation in the second stage estimates. Nevertheless, looking
across the results, all IV estimators perform reasonably well.

The results summarized in Tables 5.1 and 5.2 reflect statistics
calculated across 500 simulated datasets. As such, they do not speak
directly to the sensitivity of the IV estimates for a given sample. For
example, in any of the 500 samples, the four IV estimates may differ
substantially. To demonstrate this is the case, we follow the approach of
Section 2 and explore two parametric power transformations that allow Z
to take on negative values. The Yeo and Johnson (2000) transformation
allows for negative values of the transformed values as follows

h(X,λ) =



(1 +X)λ − 1
λ

X ≥ 0, λ 6= 0

ln(1 +X) X ≥ 0, λ = 0

−(1−X)2−λ − 1
2− λ X < 0, λ 6= 2

− ln(1−X) X < 0, λ = 2

(5.2)

Alternatively, the John and Draper (1980) modulus transformation uses

h(X,λ) =


Sign(X) (1 + |X|)λ − 1

λ
λ 6= 0

Sign(X) ln(1 + |X|) λ = 0
(5.3)

where Sign(X) equals one if X ≥ 0 and is minus one otherwise.
In what follows we focus on the modulus transformation results for

N=100.25 Figure 5.1 is the analog of Figure 2.1 in Section 2, except it
reports statistics for different λ’s across the 500 simulated data sets. The
dark line is the average of the 500 estimates of β1. It shows what one
might expect based on Tables 5.1 and 5.2, that on average the choice of
modulus functional form does not matter. All deliver an estimate close
to one on average. The dotted lines in the figure are the 25th and 75th
percentiles of the estimates. They appear to be narrowest somewhere
in the range of λ equal to one (linear) or two (quadratic).

25 The N=200 and the Yeo-Johnson transformation results yield largely similar
general conclusions.
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Table 5.1: Descriptive Statistics for the Newey Simulation Model, N=100

Y = 1 + X + ε

X = I( 1 + α1Z) + ω

IV: Instruments: Constant +
Z

Z2

OLS Z Z3 Φ(1 + α1Z) ĥ(Z)
α1 = 1.0
Mean 0.158 1.006 0.990 1.028 0.903
25%tile 0.016 0.717 0.724 0.748 0.642
Median 0.149 0.992 0.966 1.004 0.890
75%tile 0.297 1.283 1.235 1.287 1.130
SE 0.207 0.430 0.406 0.428 0.382
RMSE 0.867 0.429 0.406 0.428 0.394
Weak Inst F NA 0.96 0.38 0.97 0.99
α1 = 0.5
Mean -0.113 1.135 0.859 1.289 0.876
Lower 25% -0.268 0.498 0.334 0.515 0.296
Median -0.108 0.985 0.776 1.002 0.683
Upper 75% 0.029 1.566 1.343 1.544 1.226
SE 0.218 1.177 0.792 2.080 1.103
RMSE 1.134 1.183 0.804 2.098 1.109
Weak Inst F NA 0.21 0.01 0.28 0.28

The row “Weak Inst F” reports the fraction of first-stage F tests that exceed
the Stock-Yogo critical value assuming a 10% maximum Wald test size distortion
threshold.
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Table 5.2: Descriptive Statistics for the Newey Simulation Model, N=200

Y = 1 + X + ε

X = I( 1 + α1Z) + ω

IV: Instruments: Constant +
Z

Z2

OLS Z Z3 Φ(1 + α1Z) ĥ(Z)
α1 = 1.0
Mean 0.146 1.008 0.994 1.007 0.937
25%tile 0.039 0.787 0.786 0.802 0.736
Median 0.149 1.001 0.976 0.991 0.926
75%tile 0.259 1.224 1.202 1.225 1.122
SE 0.152 0.330 0.307 0.316 0.298
RMSE 0.868 0.329 0.307 0.316 0.305
Weak Inst F NA 1.00 0.96 1.00 1.00
α1 = 0.5
Mean -0.106 1.059 0.962 1.074 0.881
25%tile −0.210 0.619 0.555 0.641 0.480
Median −0.096 1.002 0.892 0.993 0.823
75%tile 0.004 1.418 1.332 1.447 1.204
SE 0.159 0.662 0.614 0.678 0.610
RMSE 1.117 0.664 0.615 0.682 0.621
Weak Inst F NA 0.66 0.04 0.70 0.82

The row “Weak Inst F” reports the fraction of first-stage F tests that exceed
the Stock-Yogo critical value assuming a 10% maximum Wald test size distortion
threshold.



Further Evidence 231

Figure 5.2 shows that Figure 5.1 and Tables 5.1 and 5.2 mask
considerable differences in the estimates for the simulated datasets. Like
Figure 2.1, it plots for a given dataset how the IV estimate varies with
the λ used in the modulus transformation. The 10 lines in the figure
correspond to 10 randomly generated datasets. In each case, use of an
F test for weak instruments would reject the null hypothesis that the
instrument is weak. Nevertheless the IV estimate can vary substantially
with λ.

Figure 5.3 attempts to summarize the range of estimates one could
obtain for one dataset. The summary is done across all 500 datasets.
For each dataset, β1 is estimated for λ’s between -3 and 3. We take the
maximum and the minimum estimates over this range and compute
the difference. The empirical cumulative distribution function of these
500 differences appear in Figure 5.3 for α1 = 0.5 or α1 = 1.0 and
N = 100. The two lines show that there can be considerable differences.
For example, the median difference is 0.46 for α1 = 0.5 and 0.25 for
α1 = 1.0. Again, there are substantial differences in the IV estimates
even though tests suggest the instruments are not weak.

Figure 5.1: Means and average upper and lower quantiles across the 500 simulated
IV estimates of β1 = 1 (N=100).
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Figure 5.2: IV estimates of β1 for ten randomly generated datasets (N=100). The
parameter λ indexes the modulus transformation.

Figure 5.3: Empirical distribution functions for the difference between the maximum
and minimum IV estimates of β1 (N=100 and 200).



6
Conclusions

The main point of this article has been to urge researchers to think more
carefully about not just which variables should serve as instruments
but what form those variables should take as instruments. The paper
has shown that the functional form of an instrument can matter for
the resulting estimate. It appears to matter most when instruments
would normally be judged to be weak, but even when they would not be
judged weak, the instrumental variable estimates can still be sensitive
to the choice of functional form in finite samples.

The potential sensitivity of the instruments to functional form could
be approached in several different ways. One is for the researcher to
report the range of instrumental variable estimates obtainable from
different functional forms. For instance, one could experiment with
different parametric transformations and report the observed range of
estimates. This range could potentially be narrowed by ruling out trans-
formations that produce weak instruments. An alternative approach is
to attempt to approximate the unknown functional form of the instru-
ment using parametric series or semiparametric methods. While these
methods offer more flexibility and can help reveal nonlinearities in the
first-stage conditional means, Monte Carlo evidence suggests that they

233
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may not produce very efficient instrumental variable estimates unless
the sample size is large. In practice one also has to worry that these
flexible estimators presume a stronger form of exogeneity holds, and if
it does not, these estimators may result in inconsistent estimates.
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