The Hidden Convex Optimization Landscape of Deep Neural Networks

Mert Pilanci
June 28, 2023

Electrical Engineering
Stanford University
The Impact of Deep Learning

Deep Neural Networks

- non-convex (stochastic) gradient descent
- extremely high-dimensional problems
 - 152 layer ResNet-152: 60.2 Million parameters (2015)
 - GPT1-3 language model: 175 Billion parameters (May 2020)
 - BAAI2 multi-modal model: 1.75 Trillion parameters (June 2021)
 - GPT-4 (March 2023)

1OpenAI General Purpose Transformer
2The Beijing Academy of Artificial Intelligence
deep learning models

- often provide the best performance due to their large capacity
 → challenging to train
deep learning models

- often provide the best performance due to their large capacity → **challenging to train**
- are complex black-box systems based on non-convex optimization → **hard to interpret what the model is actually learning**
Deep learning models

- often provide the best performance due to their large capacity
 - challenging to train
- are complex black-box systems based on non-convex optimization
 - hard to interpret what the model is actually learning
deep learning models

- often provide the best performance due to their large capacity
 → **challenging to train**
- are complex black-box systems based on non-convex optimization
 → **hard to interpret what the model is actually learning**
deep learning models

- often provide the best performance due to their large capacity → **challenging to train**
- are complex black-box systems based on non-convex optimization → **hard to interpret what the model is actually learning**

one year later, another paper

nature

Matters Arising | Published: 02 October 2019

One neuron versus deep learning in aftershock prediction

Arnaud Mignan & Marco Broccardo

Nature 574, E1–E3(2019) | Cite this article

6210 Accesses | 2 Citations | 367 Altmetric | Metrics
deep learning models
 ○ often provide the best performance due to their large capacity
 → **challenging to train**
 ○ are complex black-box systems based on non-convex optimization
 → **hard to interpret what the model is actually learning**

logistic regression (1 layer) has the same performance as the 6 layer NN for this task
Sensitive to perturbations

- adversarial examples, Szegedy et al., 2014, Goodfellow et al., 2015
- (left) traffic light is classified as ‘oven’ when 11 pixels are changed
- (right) stop sign recognized as speed limit sign, Evtimov et al, 2017
Deep networks can hallucinate!

Fast MRI Challenge, 2020
model generates a false vessel (Muckley et al.)
Open questions

- what are neural networks actually doing?
- can we make neural network models more reliable?
- can we make training energy/memory/data efficient?
How neural networks work?

- Least-Squares, Logistic Regression, Support Vector Machines etc. are understood extremely well.
- Insightful theorems for neural networks?
Least Squares

\[
\min_x \| Ax - b \|^2_2
\]

- optimality condition: \(A^T (Ax - b) = 0 \)
- solvers: Cholesky/QR, Conjugate Gradient,...
Least Squares with L1 regularization

\[
\min_x \|Ax - y\|_2^2 + \lambda \|x\|_1
\]

- **L1 norm** \(\|x\|_1 = \sum_{i=1}^{d} |x_i| \)

encourages solution \(x^* \) to be sparse
L1 regularization: mechanical interpretation with large λ

$$\min_x \frac{1}{2}(x - y)^2 + \lambda|x|$$

- **elastic energy**
- **potential energy**

red spring constant $= 1$

blue ball mass $= \lambda$ (large)
Least Squares with group L1 regularization

\[
\min_x \left\| \sum_{i=1}^{L} A_i x_i - y \right\|_2^2 + \lambda \sum_{i=1}^{L} \|x_i\|_2
\]

\[
\|x_i\|_2 = \sqrt{\sum_{j=1}^{d} x_{ij}^2}
\]

encourages solution \(x^*\) to be group sparse, i.e., most blocks \(x_i\) are zero
Training two-layer neural networks: Non-convex optimization

\[p_{\text{non-convex}} := \text{minimize} \quad L (\phi(XW_1)W_2, y) + \lambda (\|W_1\|_F^2 + \|W_2\|_F^2) \]

\[W_1 \in \mathbb{R}^{d \times m} \]

\[W_2 \in \mathbb{R}^{m \times 1} \]

where \(\phi(u) \) is the activation function
Rectified Linear Unit (ReLU) and Threshold Activations

\[
\rho_{\text{non-convex}} := \minimize \quad L(\phi(XW_1)W_2, y) + \lambda (\|W_1\|_F^2 + \|W_2\|_F^2) \\
W_1 \in \mathbb{R}^{d \times m} \\
W_2 \in \mathbb{R}^{m \times 1}
\]

where \(\phi(u) = \text{ReLU}(u) = \max(0, u) \)

or \(\phi(u) = \text{sign}(u) \)
Neural Networks are Convex Regularizers

\[p_{\text{non-convex}} := \minimize_{W_1 \in \mathbb{R}^{d \times m}, W_2 \in \mathbb{R}^{m \times 1}} \ L(\phi(XW_1)W_2, y) + \lambda \left(\|W_1\|_F^2 + \|W_2\|_F^2 \right) \]

\[p_{\text{convex}} := \minimize_{Z \in \mathcal{K} \subseteq \mathbb{R}^{d \times p}} \ L(Z, y) + \lambda \underbrace{R(Z)}_{\text{convex regularization}} \]
\(p_{\text{non-convex}} := \minimize L(\phi(XW_1)W_2, y) + \lambda (\|W_1\|^2_F + \|W_2\|^2_F) \)

\[W_1 \in \mathbb{R}^{d \times m} \]
\[W_2 \in \mathbb{R}^{m \times 1} \]

\(p_{\text{convex}} := \minimize L(Z, y) + \lambda R(Z) \)

\[Z \in \mathcal{K} \subseteq \mathbb{R}^{d \times p} \]

Theorem \(p_{\text{non-convex}} = p_{\text{convex}} \), and an optimal solution to \(p_{\text{non-convex}} \) can be obtained from an optimal solution to \(p_{\text{convex}} \).

ReLU Network using squared loss $= \text{group Lasso using fixed features}$

Data matrix $X \in \mathbb{R}^{n \times d}$ and label vector $y \in \mathbb{R}^n$

\[X = \begin{bmatrix} x_1^T \\ \vdots \\ x_n^T \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \]

\[p_{\text{non-convex}} = \min_{W_1, W_2} \left\| \sum_{j=1}^m \phi(XW_1j)W_2j - y \right\|_2^2 + \lambda \left(\|W_1\|_F^2 + \|W_2\|_F^2 \right) \]

\[p_{\text{convex}} = \min_{u_1, v_1, \ldots, u_p, v_p \in \mathcal{K}} \left\| \sum_{i=1}^p D_i X(u_i - v_i) - y \right\|_2^2 + \lambda \left(\sum_{i=1}^p \|u_i\|_2 + \|v_i\|_2 \right) \]

D_1, \ldots, D_p are fixed diagonal matrices

Theorem $p_{\text{non-convex}} = p_{\text{convex}}$, and an optimal solution to $p_{\text{non-convex}}$ can be recovered from optimal non-zero u_i^*, v_i^*, $i = 1, \ldots, p$ as

\[W_{1j}^* = \frac{u_i^*}{\sqrt{\|u_i^*\|_2}}, \quad W_{2j} = \sqrt{\|u_i^*\|_2} \text{ or } W_{1j}^* = \frac{v_j^*}{\sqrt{\|v_j^*\|_2}}, \quad W_{2j} = -\sqrt{\|v_j^*\|_2}. \]
\(n = 3 \) samples in \(\mathbb{R}^d \), \(d = 2 \)

\[
X = \begin{bmatrix}
x_1^T \\
x_2^T \\
x_3^T
\end{bmatrix} = \begin{bmatrix}
2 & 2 \\
3 & 3 \\
1 & 0
\end{bmatrix}, \quad y = \begin{bmatrix}
y_1 \\
y_2 \\
y_3
\end{bmatrix}
\]

\[
D_1X = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} X = \begin{bmatrix}
2 & 2 \\
3 & 3 \\
1 & 0
\end{bmatrix}
\]
\[n = 3 \text{ samples in } \mathbb{R}^d, \ d = 2 \]

\[
X = \begin{bmatrix}
 x_1^T \\
 x_2^T \\
 x_3^T
\end{bmatrix} = \begin{bmatrix}
 2 & 2 \\
 3 & 3 \\
 1 & 0
\end{bmatrix}, \quad y = \begin{bmatrix}
 y_1 \\
 y_2 \\
 y_3
\end{bmatrix}
\]
\(n = 3 \) samples in \(\mathbb{R}^d, d = 2 \)
\[
X = \begin{bmatrix}
x_1^T \\
x_2^T \\
x_3^T
\end{bmatrix} = \begin{bmatrix}
2 & 2 \\
3 & 3 \\
1 & 0
\end{bmatrix}, \quad y = \begin{bmatrix}
y_1 \\
y_2 \\
y_3
\end{bmatrix}
\]

\[
D_1X = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} X = \begin{bmatrix}
2 & 2 \\
3 & 3 \\
1 & 0
\end{bmatrix}
\]
\[
D_2X = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix} X = \begin{bmatrix}
2 & 2 \\
3 & 3 \\
0 & 0
\end{bmatrix}
\]
\[
D_4X = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix} X = \begin{bmatrix}
0 & 0 \\
0 & 0 \\
1 & 0
\end{bmatrix}
\]
Example: Convex Program for \(n = 3, d = 2 \)

\[
\begin{align*}
n = 3 \text{ samples} \quad X &= \begin{bmatrix} x_1^T \\ x_2^T \\ x_3^T \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \\
\min \left\| \begin{bmatrix} x_1^T \\ x_2^T \\ x_3^T \end{bmatrix} (u_1 - v_1) + \begin{bmatrix} x_1^T \\ x_2^T \\ 0 \end{bmatrix} (u_2 - v_2) + \begin{bmatrix} 0 \\ 0 \\ x_3^T \end{bmatrix} (u_3 - v_3) - y \right\|_2^2 + \lambda \left(\sum_{i=1}^{3} \|u_i\|_2 + \|v_i\|_2 \right)
\end{align*}
\]

subject to

\[
D_1 X u_1 \geq 0, \quad D_1 X v_1 \geq 0 \\
D_2 X u_2 \geq 0, \quad D_2 X v_2 \geq 0 \\
D_4 X u_3 \geq 0, \quad D_4 X v_3 \geq 0
\]

equivalent to the non-convex two-layer NN problem
Learning two-layer ReLU neural networks with m neurons

$$f(x) = \sum_{j=1}^{m} W_{2j} \phi(W_{j1}x)$$

Previous results:
- Combinatorial $O(2^m n^{dm})$ (Arora et al., ICLR 2018)
- Approximate $O(2^{\sqrt{m}})$ (Goel et al., COLT 2017)

Convex program $O((\frac{n}{r})^r)$ where $r = \text{rank}(X)$
Computational Complexity

Learning two-layer ReLU neural networks with m neurons

$$f(x) = \sum_{j=1}^{m} W_{2j} \phi(W_{j1}x)$$

Previous results:

- Combinatorial $O(2^m n^d m)$ (Arora et al., ICLR 2018)
- Approximate $O(2^{\sqrt{m}})$ (Goel et al., COLT 2017)

Convex program $O\left(\left(\frac{n}{r}\right)^r\right)$ where $r = \text{rank}(X)$

n : number of samples, d : dimension

(i) polynomial in n and m for fixed rank r

(ii) exponential in d for full rank data $r = d$. This can not be improved unless $P = NP$ even for $m = 1.$
Number of variables = number of hyperplane arrangements

- convex program has at most \((\frac{n}{r})^r\) variables

\[\text{#activation patterns of a one neuron} = \left| \{\text{sign}(Xw) : w \in \mathbb{R}^d\} \right| \leq O\left(\frac{n}{r}\right)^r \text{ where } r = \text{rank}(X). \]

- rank is constant for convolutional networks
 e.g., \(3 \times 3 \times 1024\) convolution \(\implies r = 9 \implies \) polynomial-time computation
ReLU Networks with Batch Normalization (BN)

○ BN transforms a batch of data to zero mean and standard deviation one, and has two trainable parameters α, γ

$$BN_{\alpha,\gamma}(x) = \frac{(I - \frac{1}{n}11^T)x}{\| (I - \frac{1}{n}11^T)x \|_2} \gamma + \alpha$$

\[
p_{\text{non-convex}} = \min_{W_1, W_2, \alpha, \gamma} \left\| BN_{\alpha,\gamma}(\phi(XW_1))W_2 - y \right\|_2^2 + \lambda \left(\| W_1 \|_F^2 + \| W_2 \|_F^2 \right)
\]

\[
p_{\text{convex}} = \min_{w_1, v_1 \ldots w_p, v_p \in \mathcal{K}} \left\| \sum_{i=1}^p U_i (w_i - v_i) - y \right\|_2^2 + \lambda \left(\sum_{i=1}^p \| w_i \|_2 + \| v_i \|_2 \right)
\]

where $U_i \Sigma_i V_i^T = D_i X$ is the SVD of DX_i, i.e., BatchNorm whitens local data

T. Ergen, A. Sahiner, B. Ozturkler, J. Pauly, M. Mardani, M. Pilanci
Demystifying Batch Normalization in ReLU Networks, ICLR 2022
Vector Output Two-layer ReLU: equivalent to nuclear norm penalty

\[
p_{\text{non-convex}} = \min_{W_1 \in \mathbb{R}^{d \times m}, W_2 \in \mathbb{R}^{m \times c}} \left\| \sum_{j=1}^{m} \phi(XW_1)W_2j - Y \right\|_2^2 + \lambda \left(\|W_1\|_F^2 + \|W_2\|_F^2 \right)
\]

\[
p_{\text{convex}} = \min_{U_1, V_1 \ldots U_p, V_p \in \mathcal{K}} \left\| \sum_{i=1}^{p} D_i X(U_i - V_i) - y \right\|_2^2 + \lambda \left(\sum_{i=1}^{p} \|U_i\|_* + \|V_i\|_* \right)
\]

\(D_1, \ldots, D_p\) are fixed diagonal matrices

Theorem \(p_{\text{non-convex}} = p_{\text{convex}}, \) and an optimal solution to \(p_{\text{non-convex}}\) can be recovered from optimal non-zero \(U_i^*, V_i^*, i = 1, \ldots, p.\)

A. Sahiner, T. Ergen, J. Pauly, M. Pilanci *Vector-output ReLU Neural Network Problems are Copositive Programs*, ICLR 2021
Three layer NN: FC-Relu-FC-Relu-FC is equivalent to a convex program with double hyperplane arrangements

$$p^*_3 = \min_{\{W_j, u_j, w_{1j}, w_{2j}\}_{j=1}^m} \frac{1}{2} \left\| \sum_{j=1}^m ((XW_j) + w_{1j}) + w_{2j} - y \right\|^2 + \frac{\beta}{2} \sum_{j=1}^m (\|W_j\|_F^2 + \|w_{1j}\|_2^2 + w_{2j}^2),$$

Theorem

The equivalent convex problem is

$$\min_{\{W_i, W'_i\}_{i=1}^p} \frac{1}{2} \left\| \sum_{i=1}^p \sum_{j=1}^P D_i D_j \tilde{X} (W'_{ij} - W_{ij}) - y \right\|^2 + \frac{\beta}{2} \sum_{i,j=1}^p \|W_{ij}\|_F + \|W'_{ij}\|_F.$$
Reducing Complexity: Approximating Convex Programs by Sampling

\[\tilde{p}_{\text{sampled-cvx}} = \min_{u_1, v_1 \ldots u_{\tilde{p}}, v_{\tilde{p}}} \ \sum_{i=1}^{\tilde{p}} D_i X(u_i - v_i) - y^2 + \lambda \left(\sum_{i=1}^{\tilde{p}} \|u_i\|_2 + \|v_i\|_2 \right) \]

- sampled convex model: sample \(D_1, \ldots, D_{\tilde{p}} \) as \(\text{Diag}(Xu > 0) \) where \(u \sim N(0, I) \)
- guarantee for two-layer ReLU NNs: \((1 + \frac{\sigma_{k+1}(X)}{\lambda}) \) relative objective value approximation using \(O\left(\frac{n}{k}\right)^k \) samples

![Graph showing test accuracy vs. number of sampled hyperplanes](image)
All stationary points correspond to sampled convex models

\[p_{\text{non-convex}} := \min_{W_1, W_2} L(\phi(XW_1)W_2, y) + \lambda \left(\|W_1\|_F^2 + \|W_2\|_F^2 \right) \]

Theorem Stationary points \(\left\{ x : 0 \in \text{conv} \{\lim_{k \to \infty} \nabla f(x_k) \mid \lim_{k \to \infty} x_k = x, x_k \in D\} \right\} \) of \(p_{\text{non-convex}} \) are optimal solutions of the sampled convex program \(p_{\text{sampled-cvx}} \)

Y. Wang, J. Lacotte, M. Pilanci. **The Hidden Convex Optimization Landscape of Two-Layer ReLU Neural Networks: an Exact Characterization of the Optimal Solutions**

ICLR, 2022
Exact Convex Program: Two-Layer ReLU NN

Figure: \(m = 8 \)

Training cost of a two-layer ReLU network trained with SGD (10 initialization trials) and the convex program on a toy dataset \((d = 2) \)

Figure: \(m = 15 \)
Exact Convex Program: Classifying a subset of CIFAR-10

Figure: Two-layer ReLU network trained with SGD (10 initialization trials) and the convex program on a subset of CIFAR-10 for binary classification ($n = 195$)
Sampled Convex Model vs Non-convex Model (Stochastic Gradient Descent)

Figure: training accuracy

Figure: test accuracy

10-class classification on the CIFAR Dataset \((n = 50,000, \, d = 3072)\) with randomly sampled arrangement patterns for the convex program
Person detection task on the COCO Dataset containing 110,000 images of median resolution 640 x 480. Two-layer ReLU CNN trained on pretrained MobileNetV3 features (convex PyTorch model: https://github.com/pilancilab/convex_nn)
Specialized Convex Solver: Performance Profile

- **baseline**: gradient based non-convex optimization: SGD, ADAM (best of 10 random initializations and 10 learning rates)
- **convex**: proximal gradient with adaptive acceleration
 \[O(1/T^2) \] convergence rate

Performance profile showing the percentage of problems solved over a collection of 400 UC Irvine datasets up to 10^{-3} training error vs time

\[4\] A. Mishkin, A. Sahiner, M. Pilanci. **Fast Convex Optimization for Two-Layer ReLU Networks, ICML 2022.** github.com/pilancilab/scnn
Interpreting Neural Networks via Convexity: Time Series Prediction

\[X = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{bmatrix} = \begin{bmatrix} x[1] & \ldots & x[d] \\ x[2] & \ldots & x[d+1] \\ \vdots & \vdots & \vdots \\ x[n] & \ldots & x[d+n-1] \end{bmatrix}, \quad y = \begin{bmatrix} x[d+1] \\ x[d+2] \\ \vdots \\ x[d+n] \end{bmatrix} \]
Interpreting Neural Networks via Convexity: Time Series Prediction

\[p_{\text{convex}} = \min_{u_1, v_1 \ldots u_p, v_p \in \mathcal{K}} \left\| \sum_{i=1}^{p} D_i X (u_i - v_i) - y \right\|_2^2 + \lambda \left(\sum_{i=1}^{p} \| u_i \|_2 + \| v_i \|_2 \right) \]

- sampled convex program: \(D_i = \text{diag}(X u_i \geq 0), u_i \sim \mathcal{N}(0, I) \) forms a Locality Sensitive Hash (Charikar, 2002)
Layer-Wise Training of Deep Networks

(i) train a two-layer network convex optimization
(ii) fix the hidden layer to use as feature embedding
(ii) repeat two-layer network training on these features
 - ideal for **edge AI**: low memory and low communication between blocks
 - modular: networks can keep evolving, can terminate early during inference
 - each convex model is trained to global optimality efficiently with no hyperparameter tuning
Numerical results for layer-wise convex learning: CIFAR-10 image classification

- end-to-end trained 5 layer CNN accuracy: 89%
- 16 layer VGG accuracy: 92%
Convex Generative Adversarial Networks (GANs)

- Wasserstein GAN parameterized with neural networks

\[
p^* = \min_{\theta_g} \max_{D: \text{1-Lipschitz}} \mathbb{E}_{x \sim p_x} [D(x)] - \mathbb{E}_{z \sim p_z} [D(G_{\theta_g}(z))]
\]

\[
\cong \min_{\theta_g} \max_{\theta_d} \mathbb{E}_{x \sim p_x} [D_{\theta_d}(x)] - \mathbb{E}_{z \sim p_z} [D_{\theta_d}(G_{\theta_g}(z))]
\]

Theorem: Two-layer generator two-layer discriminator WGAN problems are convex-concave games. Saddle-points exists and globally solvable under convex parameterization. (Sahiner et al. *Hidden Convexity of Wasserstein GANs*, ICLR 2022.)
Conclusion and Open Problems

- neural networks are high-dimensional convex models. Convex optimization theory & solvers can be applied.
- we can have better specialized solvers (e.g., accelerated proximal gradient)
- Extensions: autoencoders, transformers, diffusion models
- Open problems: improving the sampler

Ref 1 M. Pilanci, T. Ergen, Neural Networks are Convex Regularizers: Exact Polynomial-time Convex Optimization Formulations for Two-Layer Networks. ICML 2020

Ref 2 T. Ergen, M. Pilanci, Convex Geometry and Duality of Over-parameterized Neural Networks. JMLR 2021
two-layer ReLU-activation generator \(G_{\theta_g}(Z) = (ZW_1)_+ W_2 \)

two-layer quadratic activation discriminator \(D_{\theta_d}(X) = (XV_1)^2 V_2 \)

Wasserstein GAN problem is equivalent to a convex-concave game, which can be solved via convex optimization

\[
G^* = \text{argmin}_G \|G\|_F^2 \text{ s.t. } \|X^T X - G^T G\|_2 \leq \lambda
\]

\[
W_1^*, W_2^* = \text{argmin}_{W_1, W_2} \|W_1\|_F^2 + \|W_2\|_F^2 \text{ s.t. } G^* = (ZW_1)_+ W_2,
\]

the first problem can be solved via singular value thresholding as \(G^* = U(\Sigma^2 - \lambda I)^{1/2} V^\top \) where \(X = U\Sigma V^\top \) is the SVD of \(X \).

the second problem can be solved via convex optimization as shown earlier
Progressive GANs

deeper architectures can be trained layerwise
Numerical Results

- real faces from the CelebA dataset
- fake faces generated using convex optimization

Two-layer quadratic activation discriminator and linear generator trained via closed form optimal solution progressively for a total of 4 layers

A. Sahiner et al. *Hidden Convexity of Wasserstein GANs*, preprint 2021
Transformer and Attention-based Architectures

- based on the attention module

\[f(X) = \sigma(XQ^T K X)XV \]

- \(Q, K, V \) are trainable parameters: \(Q \) : query, \(K \) : key, \(V \) : value
- used in transformers, vision transformers, mixer models...
- **There is a convex formulation**\(^1\)

\(^1\)A. Sahiner, T. Ergen, B. Ozturkler, M. Mardani, J. Pauly, M. Pilanci, ICML 2022
Transfer Learning

- transfer learning *without fine-tuning existing weights of the backbone network*
- generate embeddings from an ImageNet pre-trained deep transformer model
- then finetune by training a two-layer attention block using convex optimization to classify images from CIFAR-100, while leaving the pre-trained backbone fixed
Transfer Learning

- transfer learning *without fine-tuning existing weights of the backbone network*
- generate embeddings from an ImageNet pre-trained deep transformer model
- then finetune by training a two-layer attention block using convex optimization to classify images from CIFAR-100, while leaving the pre-trained backbone fixed
- **unified architecture:** can be applied to any data (text, images, time series, tabular data, multimodal data...)
- **ideal for fine-tuning edge devices**
Two layer CNN with pooling: Conv-Pooling-Relu-FC is equivalent to ℓ_1 penalty, i.e., constrained Lasso $\min_{\mathcal{K}} \| \Phi w - y \|_2^2 + \lambda \| w \|_1$

$$p^*_2 = \min_{\{ u_j, w_{1j}, w_{2j} \}_{j=1}^m} \frac{1}{2} \left\| \sum_{j=1}^m (XU_j w_{1j}) + w_{2j} - y \right\|_2^2 + \frac{\beta}{2} \sum_{j=1}^m (\| w_{1j} \|_2^2 + w_{2j}^2),$$

Theorem

Let $\tilde{X} = XF$ and $F \in \mathbb{C}^{d \times d}$ be the DFT matrix. The equivalent convex problem is

$$\min_{\{ w_i, w'_i \}_{i=1}^p} \frac{1}{2} \left\| \sum_{i=1}^p \text{diag}(S_i) \tilde{X} (w'_i - w_i) - y \right\|_2^2 + \frac{\beta}{\sqrt{d}} \sum_{i=1}^p (\| w_i \|_1 + \| w'_i \|_1),$$

s.t. $(2\text{diag}(S_i) - I_n) \tilde{X} w_i \geq 0$, $(2\text{diag}(S_i) - I_n) \tilde{X} w'_i \geq 0$, $\forall i,$
Sampled Convex Model vs Non-convex Model for fine-tuning

Person detection task on the Common Objects in Context Dataset (110,000 images of median resolution 640 x 480).

Fine-tuning all layers of MobileNetV3 + convex and non-convex CNN head