Courses
CEE
101D/201D Computations in Civil and
Environmental Engineering
The
objective of this course is to make students more comfortable with using
computational and visualization methods in the design and analysis of
engineering systems. We focus on MATLAB
7 applications to problems that student
The
course is taught for 3 units in the autumn quarter and is mostly for
undergraduates and first-year graduates.
Enrollment is usually limited.
CEE
268 Groundwater Flow
We start with the study of the
fundamental physical mechanisms that control flow in porous media leading to
Darcy’s law. Then, using analytical,
semi-analytical, and finite-element techniques (implemented through software
package COMSOL Multiphysics,
http://www.comsol.com/), we solve a variety of interesting and practical
groundwater problems: flow to and from wells, rivers, lakes, drainage ditches;
flow through and under dams; streamline tracing; capture zones of wells and
pump-and-treat systems; and mixing schemes for in-situ remediation. The primary objective is to give students an
appreciation of unique features of flow in porous media as well as some handy
tools that they can use in engineering practice. Prerequisites: calculus and introductory fluid
mechanics.
The course is taught for 3-4 units in
the winter quarter. It is mainly
attended by students in the EES and EFMH programs in Civil and Environmental
Engineering, as well as students from Geological and Environmental Sciences,
Geophysics, and Energy Engineering.
CEE
362 Numerical Modeling of Subsurface
Processes
This is an advanced class involving
hands-on numerical simulation of interesting problems. In the process of solving specific problems,
we review key ideas in: problem formulation, PDEs and weak
formulations, choice of boundary conditions, etc. We solve using the finite-element code COMSOL Multiphysics,
with a variety of solvers and pre- and post-processing of data. Then, we engage in interpreting the
results. Problems include: flow in
saturated porous media with complex boundaries and heterogeneities; solute
transport with common reaction models; effects of heterogeneity on dispersion,
dilution, and mixing of solutes; variable-density flow and seawater intrusion; upscaling or coarsening of scale; and biofilm
modeling.
The course is taught for 3-4 units in
the spring quarter. Attendance is
limited to five students who, in addition to maturity, interest, and
background, must have access to a sufficiently powerful laptop. Taught in Alternate Years. The next time it will be taught will probably
be in 2012-2013.
CEE
362G Stochastic
Inverse Modeling and Data Assimilation Methods
This is an advanced class
dealing with stochastic methods for the solution of inverse problems that are
algebraically underdetermined and/or have solutions that are sensitive to data.
Emphasis is on geostatistical inversion methods that,
in addition to using data, incorporate information about structure such as
spatial continuity and smoothness. We will review linear, quasilinear
(successive linearizations), and computer-intensive
The course is taught for 3-4 units in
the spring quarter. Taught in Alternate
Years. This class is scheduled to be
taught again in 2011-2012.
For
Times: See
Stanford University Bulletin