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Suppose there were such a thing as the “computational theory of mind” (CTM);
and suppose that, for whatever reason, you were dissatisfied with it. You may
well be tempted to ask: What would an alternative look like? Could there be an
alternative that was even remotely plausible? Is connectionism in the business of
developing such an alternative?

With issues such as these in vogue recently, considerable attention has been
given to the preparatory task of succinctly characterizing some version of CTM
to which the desired alternative can stand opposed. One point of unjversal
consensus has been that an essential feature of CTM is the use of symbolic
representations. Any theory failing to employ such representations automatically
falls outside the broad CTM umbrella. This suggests an obvious approach to the
questions just raised. Assuming that any remotely plausible theory of mind must
be based on manipulation of internal representations of some kind, we need to
find some other generic form of representation to play a foundational role in the
new theory analogous to that played by symbolic representation in CTM. Having
found such a form, we could evaluate the general plausibility of a theory of mind
constructed around it. Perhaps connectionist work contains some clues here, both
about the form itself and about the kind of theory in which it would be embed-
ded.

The alternative form of representation required by this approach has to satisfy
some demanding conditions. It must, of course, be demonstrably nonsymbolic,
but 1t must also be sufficiently general to allow the characterization of a reasona-
bly broad conception of the mind. This means, among other things, that it must
be rich enough to encompass a wide variety of particular articulations (just as
symbolic representation can be instantiated in a very wide variety of particular

33




34 VAN GELDER

ways), and yet chara€terizable in a way that is sufficiently abstract to transcend
all kinds of irrelevant implementation details. Crucially, it will have to be power-
ful enough to make possible the effective representing of the kinds of information
that are essential to human cognitive performance. Preferably, this alternative
will have some decp connection with neural network architectures, thereby mini-
mizing future difficulties relating the new theory to the neurobiological details,
and in the meantime allowing us to both interpret and learn from connectionist
research.

This is a tall order by any account, and a moment’s reflection reveals that
there are few if any plausible candidates available. The traditional cognitive
science literature is of remarkably little help here. In that relatively small portion
concerned specifically with the actual form of mental representation, symbolic
styles have for the most part been contrasted only with breadly imagistic styles
(pictorial, analog, etc.). For a long period the most notable research taking a
manifestly nonsymbolic approach was the investigation of mental imagery, and
surveys of the field typically treat these two broad categories as the only relevant
possibilities. Yet, although the category of imagistic representations might begin
1o satisfy some of the constraints just listed, it clearly fails to satisfy others; in
particular, it is generally accepted that imagistic representations are not powerful
enough to underlie central aspects of cognition such as linguistic performance
and problem solving. There bas even been serious debate over whether mental
imagery itself is strictly imagistic.

One response to this apparent lack of plausible alternatives 15 to accept that
representations must be symbolic 1n some suitably generic sense, and conse-
quently to maintain that any feasible alternative to CTM must differ not in how
knowledge is represented but rather in how the representations themselves are
manipulated—that is, in the nature of the mental processes. Yet this approach
also is unpromising. Representations and processes tend to go hand in hand; the
way knowledge is represented argely fixes appropriate processcs and vice versa.
For this reason, conceding that representations must be generically symbolic
places one in a conceptual vortex with the standard CTM at the center.

One reason there appear to be so few alternatives is that the conception of
symbolic representation invoked in characterizations of CTM is so very general,
and usually rather vague. This suggests a more cautious gambit; fine-tune the
conception of symbolic representation itsell, articulating some more specific
formulation that can fairly be attributed to CTM, thereby making room for some
quasi-symbolic alternative between analog anarchy on one hand and the rigors of
strictly syntactic structure on the other. However, although headway can cer
tainly be made in this direction, it has an obvious strategic flaw: Major dif-
ferences in paradigms are unlikely to rest on delicate philosophical distinctions,
and if perchance they did, it would be relatively difficult to convince others of the
fact. It is vastly preferable to propose a style of representation with unquestiona-
ble antisymbolic credentials. If there actually is any quasi-symbolic option of the
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kind just mentioned, it should be introduced as a special case of a manifestly
distinct category, rather than as some subtle variant on the standard symbolic
moded. _

If at this point we look to connectionism, it is difficult to avoid noticing the
frequent emphasis on distributed representation, an emphasis evident even in the
familiar designation “parallel distributed processing” (PDP). Distributed repre-
sentation may well satisfy the first of the requirements on an acceptable alter-
native, because it is often deliberately contrasted with symbolic representation
{e.g., as when it is claimed that a network knows how to form the past tense
without the benefit of explicit symbolic rules). Moreover, the category appears to
be appropriately general; at one time or another, distributed representation has
cropped up in areas as diverse as functional neuroanatomy, psychology of memo-
1y, image processing, and optical phenomena such as holography; indeed, re-
searchers originally began applying the term distribured representation in con-
nectionist contexts precisely because of perceived similarities between
connectionist representations and these other cases. Considerations such as these
suggest we should inquire into the possibility that distributed representations
form the kind of category we are after. Perhaps, in other words, there is here a
natural kind of representation, a kind that includes all or most of the cases
previously described as distributed, whose members are somehow inherently
nensymbolic, but that is nevertheless sufficiently rich, powerful, and s¢ on, that
it might form the basis of some plausible alternative to CTM.

The immediate difficulty with this suggestion is the Jack of any clear account
of what distributed representation actually is. The concept itself is relatively
novel, and though many people have recently offered their preferred brief charac-
terizations, it has had almost no serious treatments as an independent topic of
investigation.! Worse, there is very little consensus even in such characteriza-
tions as are available. The diversity of definitions suggests that there really is no
unified category of distributed representations after all. Feldman (1989) for one
has concluded “. . . people have been using the term | “distributed”] to denote
everything from a fully holographic model to one where two units help code a
concept; thus, the term has lost its usefulness (p. 72). Clearly, before we can
even begin to take seriously the idea that a plausible alternative to CTM might be
constructed on a distributed foundation, we need to formulate a reasonably clear
and comprehensive account of the nature of distributed representation. This task
goes vastly beyond what might be achieved here: what follows is simply an
exploratory overview of the current concept (or concepts), a disentangling of
some of the many themes and issues that have at one time or another been
associated with distribution.

14 notable exception here is work by Walters (see, e.g., Walters, 1587), although her concemns
are considerably more restricted than those taken up herc. A preliminary account of distributed
representation in connectionist contexts is found in Hinton, McClelland, and Rumelhart {1986).




DIVERSE DEFINITIONS OF DISTRIBUTION

A useful point of entry is to note the inadequacy of one style of definition
common in connectionist work. In perhaps the most authoritative version (Hin-
ton, McClelland, & Rumelhart, 1936), representations are alleged to be dis-
trbuted if: “Each entity is represented by a pattern of activity distributed over
many computing elements, and each computing element is involved in represent-
ing many different entities” (p. 77).7 The most obvious problem here, from the
current perspective, is one of narrow focus. A distributed representation is de-
fined as a “pattern of activity” over “computing elements” specifically; but this
is too limited even for connectionist purposes, because there at least two species
of distributed representation in connectionist networks—the patterns of activity
themselves, and the patterns of connectivity that mediate their transformation. It
may be that these are in fact essentially interlocked, each needing the other, but
there is at least a prima facie distinction, because the two kinds of representation
appear to have some significantly different characteristics, Thus this definition
would have to be generalized significantly if it were to capture the notion of
distribution implicit even in connectionist work, let alone whatever is common to
cases as diverse as those mentioned above. _
Narrowness is not however the worst of its problems. The intended contrast is
with a variety of “localist” representation in which each entity is represented by
activity in a single computing element. But in its concern to distinguish distribu-
tion from these kinds of localist cases, this definition patently fails to distinguish
it from other cases that, surely, are not distributed in any interesting sense. For
many familiar kinds of representation count as “patterns of activity” over sets of
“computing elements” (“units,” “locations,” or whatever}; in particular, when
numbers are encoded as strings of bits in a register of an ordinary pocket cal-
culator, they are being represented by distinctive activity patterns, and each unit
or location participates in the representing of many different numbers over the
course of a calculation.® This leaves two possibilities: either distribution is not an
interestingly distinct category after all; or it is, but one whose essence eludes this
definition. The latter turns out to be vastly more fertile as a working hypothesis.
Day to day practice often compensates for deficiencies in overt formulation.
The real content of this characterization is implicit in the way it is received and
guides construction of new connectionist schemes of representation. In this light,
the central theme of this version—the representing of entities as different pat-
terns of activity over groups of units-—deserves closer scrutiny. Consider first the

“Here, to avoid obvious circularity, we should read “distributed” as meaning something like
“spread over.”

3Single bit storage locations in a digital memory can be seen as cxiremely simple computing
units, changing state according to their inputs, and outputting their state when accessed. Sec
McEliece (1985).
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very simple requirerent that entities be represented over many upits—or, more
generally, over some relatively extended portion of the resources available for
representing.* Lacking any better term, I will describe representations that are
spread out in this sense as extended. Clearly, a representation can only be ex-
tended by comparison with some normal, minimum or standard form, which can
vary from case to case and style to style. Thus in typical connectionist networks
the benchmark is one computing unit to every item, and relative to this a repre-
sentation is extended if it uses many units for every item. In the brain the most
plausible minimal upit is presumably the neuron (as in “grandmother” or
“yellow Volkswagen” cells). Note however that in some other c¢ases, such as
optical holography-—generally taken to be a paradigm example of distributed
representation—there is no obvious parallel, because the surface of a pho-
tographic plate does not come naturally partitioned.

This bare notion of extendedness may seem trivial, but it is a very common
theme in characterizations of distribution; indeed, on some occasions distribution
is described solely in such terms.® It is therefore interesting to sec what, if
anything, is gained by distributing even in this minimal sense.

An important practical concern is worth mentioning first: extendedness can
buy a certain kind of reliability or robustness. If an item is represented over many
locations in such a way that no particular location is crucial to overall efficacy,
then the system can withstand small and isolated damage or noise relatively well.
This point is illustrated by the benefits of redundancy. Duplicating a given
representation many times obviously increases the ability of the whole collection
to convey the same content under adverse conditions. Thus, one reason for the
industrious copying of medieval manuscripts was to ensure that if any onc were
lost, the same text would be preserved elsewhere—a point with a modern coun-
terpart for users of word processors. An extended representation need not be
simply redundant, however. Instead of activating a single neuron to represent a
given perceptual item, the brain -activates a vast number, forming an overall
pattern for the same purpose, but where each neuron is tuned in a slightly
different way to the retinal input. Loss of any particular neuron, or noise in the
system, has almost no eifect on the overall effectiveness of this representation,

4This is the point at which characterizations of distribution in the sense of interest to us here
comes closest to the mainstream computer science conception. In this latter usage “distributed”
applies to systems where storage or processing responsibilities are not restricted to any single
computer but rather are spread through a connected network of machines; coordinating these various
computers to achieve a single task then becomes a major design problem,

SKosslyn and Hatfield (1584), for example, claim that: “In the brain, the best current guess is that
information is not stored in a given location. Rather, information appears to be distributed across
mumerous locations” {p. 1030), Fodor & Pylyshyn (1988) think that “To claim that 2 node 1s
distributed is presumably to claim that its states of activation correspond to patterns of neural
activity—to aggregates of nenral “units’—rather than to activations of single nearens . . .7 {p. 19).
See also McClelland, Rumelhart, and Hinton (1986, p. 33); Papert (1988, p. 11; P. M. Churchland
(1986, p. 289); Tienson (1987, pp. 10-11); Tye {1987, p. 1700,
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which is fortunate, given how noisy neurons are and the rate at which we lose
them.

Whether this advantage of noise or damage resistance in fact accrues o a
given case of extended representation depends very much on the form of encod-
ing involved. A particular number N might be represented in a digital computer
either in binary form or, in a more extended fashion, as a string of bits of length
N; neither has any particular advantage of reliability over the other, even though
the latter uses vastly more resources. This is just to stress again the point that
extendedness must be achieved in such a way that no particular unit or location is
crucial, a condition violated in both these cases. Further, the portion of the
resources involved should be large not only relative to some theoretical minimum
(such as the unit, neuron, or location), but also relative to the scale of likely
damage or noise in the system itself. :

Whether a representation is extended is independent of the stronger require-
ment that a given representation take the form of a distinctive pattern over that
larger portion of the resources. Despite this independence, an important advan-
tage in distributing representations in this sense is that it makes possible the use
of a distinctive pattern for each distinct item. Indeed, such an approach will be
essential if we want to represent a number of different items over the same set of
units. Many authors, especially connectionists and commentators on connec-
tionism, claim that the essence of distribution is to be found in this shift to the
level of overall patterns, or, more geperally, to characteristic overall states of the
network or system. Rosenfeld and Touretzky (1988), for example, have defined
schemes of distributed representation as those in which “each entity is repre-
sented by a pattern of activity over many units (p. 463).6

These patterns might be completely unrelated; they might be chosen at ran-
dom, or it might suit one’s computational purposes to choose patterns simply so
as to maximize the distinctness of any two representations. On the other hand, an
important reason for moving to characteristic patterns for the representing of
cach item is that the internal structures of these patterns can be systematically
related. both to each other and to the nature of the items to be represented,
thereby making the overall scheme more useful in certain ways. There are many
ways to develop pattern-based schemes of representation in which the internal
structures of the patterns have this kind of systematic semantic significance, but
one in particular has been especialty popular in connectionism. On this approach

6Consider also Feldman (1989): “The most compact representation possible would have a unique
unit dedicated to each concept. Tf we assume that a unit corresponds to one neuron, then this is the
grandmother cell or pontifical cell theory. The other cxtreme would have each concept represented as
a pattern of activity in all the units in the system. This is well known as the bolographic model of
memory, and it is the most highly distributed theory that we will consider™ (p. 71). Other such
characterizations include Bechtel (1987, p. 19); Churchland and Sejnowski (1989, p. 30ff.); P. S.
Churchland (1989, p. 118); Cummins (1989, p. 147 Smolensky (1987b, p. 144); Lloyd (1989, p.
110}; Touretzky (1986, p. 523).
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individual processing units pick out (micro)features, which are simply aspects of
the domain, though usually at a much finer grain than that of the primary items to
be represented. In a well known example, in order to represent a kind of room,
we first assign to individual units features that are typicaily found in various
kinds of rooms, such as sofa, TV, ceiling and stove.” Bach different kind of room
can then be represented by means of a distinctive pattern over these units—that
is, that pattern that picks out all and only the relevant features. In this way it is
possible to generate patterns for representing items in which semantic differences
are built directly into the internal structure.

The popularity of this approach in connectionism has led to a common mis-
conception of distributed representation as somehow essentially related to the
notion of a microfeatural semantics for individual units. Thus, some influential
commentators, including notably Pinker and Prince, have seized on the deploy-
ment of microfeatures as the crucial feature distinguishing genuinely distributed
representations from other pattern-based schemes.® Meanwhile, others (such as
Lloyd, 1989, p. 106) urged precisely the opposite—that is, that the distinguish-
ing mark of genuinely distributed representation is that individual units do not
have any scmantic significance, microfeatural or otherwise. Though this dis-
agreement is partly terminological, there is an important issue at stake here. As
has been pointed out by connectionists in a number of places, it is quite possible
to develop a scheme in which every item is represented by means of a seman-
tically significant pattern over a set of units without individual units having any
particular microfeatural significance at all.? The employment of microfeaturcs
(such as “Wickelfeatures™) is just one relatively convenient method for generat-

TThis example is drawn from the Schema model (Rumelhart, Smolensky, McClelland, & Hinton,
19863,

£Pinker and Prince (1988) claim that “PDP models . . . rely on ‘distributed’ representations: &
lacge scale entity is represented by a pattern of activation over a set of units rather than by turming on a
single unit dedicated to it. This would be a sirictly implementational claim, orthogonal to the
differences betwecn connectionist and symbol-processing theotics, were it not for an additional
aspect: the wnits have scmantic content; they stand for (that is, they are tumed on in response to)
specific properties of the entity, and the catity is thus represented solely in terms of which of those
properiies it has” {p. 115). There is some precedent in connectionist writings for this position; thus
Rumethart, Hinton, and McClelland (1586) claim that “In some meodels these units may represent
particular conceptual objects such as features, letters, words, or concepts; in others they are simply
abstract elements over which meaningful patterns can be defined. When we speak of a distributed
representation, we mean onc in which the units represent small, feature-like cntities. In this case it 1s
the pattern as 2 whole that is the meaningful level of analysis. This should be contrasted to a one-unit-
one-concept representational system in which single units represent entire concepts or other large
meaningful cntities” (p. 47}. See also Clark (1989, p. 94).

9For example: “Another possibility . . . [is] that the knowledpe about any individual pateern is
not stored in the connections of a special unit reserved for that pattern, but is distributed over the
conncctions among a large number of processing units. . . . The units in these collections may
themselves correspond 0 conceptual primitives, or they may have no particular meaning as indi-
vidvals” (McClelland, Rumelhart, & Hinton, 1986. p. 33).
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ing such patterns, a method that can readily be discarded if it fails to provide a
useful overall scheme of representation. Connectionist work is by no means
deeply committed to the existence of microfeatural analyses of task domains, or
to simple feature-based semantics for their representations (the failings of which
are readily acknowledged on all sides), and the use of microfeatures is best
regarded as essentially incidental to the distributedness of representations.

When one wants to model cognitive functions, it is particularly useful to have
internal structure in the representations reflecting semantic properties, for dif-
ferences in internal structure will have direct causal effects that can systemat-
jcally influence the direction of processing. Thus some connectionists have ar-
gued that using patterns of activity over many units, rather than activation in a
single unit, makes possible processes that, by virtue of their sensitivity to the
internal structure of the representation themselves, are indirectly sensitive to the
nature of the represented items. 1© Typically, choosing a strictly localist style of
representation will preclude interesting internal structural differences between
representations, and so, to compensate, the representations of each item will
have to be supplemented by further knowledge about how it should be processed
(stored, for example, in symbolic rules, or in the connectivity pattern among
units). In one sense, of course, connectionists are here simply reiterating an old
familiar point. Thus we use a compositional language rather than an unbounded
set of primitives precisely because the internal structure of compositional repre-
sentations has a systematic semantic and computational significance. If there is
anything novel in the connectionist emphasis on using patterns with semantically
significant internal structure, it lies in the highly controversial claim that the
pattern-based schemes naturally implementable in neural networks are ex-
pressively more rich than any feasible compositional language. It 1s often
claimed, for example, that by using patterns of neural activity as the fundamental
mode of representation, connectionists are able to represent fine shades of mean-
ing in a way that is fundamentaily or at Jeast practically impossible for normal
symbolic schemes.

One way to generate representations with both Kinds of advantages discussed
o far (i.e., robustness and rich internal structure) is by coarse-coding. This
places at least two special conditions on the kinds of features assigned to indi-
vidual units. First, they must be coarse, where again this is always relative to
some intuitive or perhaps theoretically defined standard or minimum. One way
the notion of a coarse assignment is often expressed is in terms of the size of the
receptive field of a unit, that is, those aspects or features of the domain with

10For example, Anderson and Hinton (1985, pp. 11-12); Hinton (1981). As Hinton puts it: “the
‘direct content® of a concept (its set of microfeatures) interacts mn intcresting ways with its ‘asso-
ciative content’ (its links to other concepts). The reason for this intcraction, of course, is that the
associative content is caused by the direct content . . .7 (p. 175).
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which activity in a unit is correlated. Coarse assignments are those that give
individual units relatively wide receptive fields, Thus, individual neurons in the
visual cortex are known to pick up on features present in the visual input such as
lines at a certain orientation, but they are often coarse-coded in the sense that the
band of orientations to which the neuron will actually react s quite wide. Coarse
assignments are often disjunctive; for example, to generate coarse-coded repre-
sentations of rooms (as in the above example) we could have individual connec-
fionist units standing not for individual features such as sofa, but for disjunctions
of features (e.g., sofa or TV). This principle carries over to the example of
neurons in the visual system, since neurons generally have wide receptive ficlds
along a number of different dimensions at once (e.g., orientation, location,
movement).

The second condition is that the assignments be overlapping; if one unit picks
out sofa or TV, the next should pick out TV or ceiling, and so on. Again, visual
neurons generally satisfy this condition; if one neuron has as its receptive field a
certain portion of the visual field, another will cover an overlapping portion, and
so on. A representation of a whole item, such as a room or a visual scene, is then
just a distinctive pattern over the full set of units. Such a representation has the
advantage of robustness, because the large and overlapping nature of the recep-
five fields of the units pretty much ensures that no individual unit or group of
anits is crucial fo successful representing. These representations also possess
semantically significant internal structure, because the particular pattern used to
represent an item is determined by the nature of that item, and so similarities and
differences among the items to be represented will be directly reflected in sim-
ilarities and differences among the representations themselves.

In numerous places in the connectionist literature distribution is seen as idents-
cal with, or at least deeply bound up with. coarse coding.!! Coarse coded
representations satisfy the first of the conditions in the standard conpectionist
definition quoted at the start of this section, because they are characteristic
patterns of activity over groups of many units. Moreover, they also satisfy the
second requirement, that each unit be involved in representing many different
entities, because the representations of other items are simply different patterns
of activity over the same group of units. In fact, individual units can even be
involved in representing many different entities at the same time, for the charac-
teristic patterns for two different entities can be activated at once over the same
set of units. The representings of the two different entities can in this way be

N Touretzky and Hinton (1988): “We have rejected this idea in faver of a distributed or “'coarse
coded” representation . . . each pasticular face is almost certainly encoded as a patiern of activity
distributed over quite a large number of units, each of which responds (o a subset of the possible
faces . . .7 (p. 426-427). Sec also Scinowski (1981, p. 191%; P. §. Churchland (1986, p. 459);
Horgan and Tienson (1987, p. 103).
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superimposed on each other. One might initially suppose that this would intro-
duce all kinds of deleterious interference effects, but—depending very much on
the details of the coarse coding scheme in question and the entities being repre-
sented—it turns out to be possible to superimpose patterns while preserving the
functional independence of the tepresentations. An excellent example is the
working memory in Touretzky and Hinton’s (1988) Distributed Connectionist
Production System.

The fact that representations can be superimposed in this way highlights a
crucial ambiguity in the apparently simple notion of “localist” representation
with which distribution is often contrasted. When a contrast with extended repre-
sentation is in order, the relevant sense of “local™ is, roughly, that of restriction
in extent. When a contrast with superimposed representation is in order, how-
ever, the relevant sense of “local” is that of discrete, separated or nonoverlap-
ping. These are quite different and indeed independent properties, and for a clear
understanding of distribution it is crucial they be carefully distinguished. One
author who does so very clearly is Murdock (1979):

The idea of distributed storage does not necessarily imply that information is
physically spread out over a large area. Rather, the key issue is whether memory
traces, whatever their nature, arc separate or combined. With localized storage,
cach trace is separate; so whether it is boxes or bins, there is one trace per Jocation.
Distributed memory takes the opposite position, where combined (superimposed)
traces can be stored and there is no individual representation for a given item.12
(p. il1)

He cannot however afford to discount entirely the importance of being spread
over a large area, because distribution in this weaker sense turns out in practice to
be a necessary condition for representations to be cffectively superimposed. If
individual memories were encoded in the brain by single neurons, it would be
very unlikely that memories could be stored in a superimposed fashion (many
memories to one neuron). It is only because each memory is stored across a wide
network of neurens that it is possible, in practice, to store many memories over
the same set of neurons.

The supenimposition of representings, in some form or other, is probably the
single most common theme in characterizations of distribution, especially when
we look beyond the connectionist literature. In many characterizations it is
clearly the dominant theme. According to McClelland and Rumelhart (1986b),

12Kohonen (1984) is also clear about the distinction: “the spatial distributedncss of memory
traces, the central characteristic of holograms, may mean either of the following two facts: (i}
Elements in a data set are spread by a transformation over a memory area, but different data sets are
always stored in scparate areas. (ii) Several data sets are superimposed on the same medium in a
distributed form™ (p. 81).
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for example, *“[Distributed] models hold that ali memories, old and new, are
stored in the same set of connections . . . {p. 504)73,

Under what circumstances is it correct to say that two representings are
superposed? First, some points of terminology: When two representations are
effectively superposed, they become a single new item representing both the
original contents. Thus we should avoid thinking of superposed representations,
urless for some reason we deliberately want to keep the separate identities of the
originals in mind. Rather, we should think of the superposed representings
achieved by a single representation. Second, the terms superimposed and super-
posed are only largely synonymous. In what foliows 1 will use superposed on the
ground that it is shorter, although rejecting certain domain-specific connotations
such as the notion of wave addition in physics. Superposed as 1 intend it is
defined in what follows.

Intvitively, the representings of two distinct items are superposed if they are
coextensive—if, in other words, they occupy the same poriion of the resources
available for representing. Thus in‘connectionist networks we can have different
items stored as patterns of activity over the same set of units, or multiple different
associations encoded in one set of weights, This point can be stated a little more
precisely as follows. Suppose we have some accurate way to measure the amount
of the resources involved in representing a given content jtem C 14 Then a
representation R of an jtem C is conservative if the amount of the resources
mvolved in representing C is equal to R itself (no more and no less). A represen-
tation R of a series of items ¢; is superposed just in case R is a conservative
representation of each c;.

This characterization is completely general, but can easily be fleshed out in
many different ways. For example, in developing his tensor product scheme for
representing structured items in connectionist networks, Smolensky (1987b) of-
fers a formal definition of superposition in terms of vector addition The result of
adding two vectors is a new vector that, under the scheme in question, is taken to
represent the same items as both the originals. Since the portion of the resources
implicated in representing each item is now exactly coextensive—that is, just the
whole new vector itself—the representings arc superposed in exactly the sense
just outlined. 15

*Kohonen {1984) claims that “In distributed memories, cvery memory clement or fragment of
memory medivm holds traces from many stored items, i.c., the representations are supcrimposed on
each other. On the other hand, every piece of stored information is spread over a large arca.” (p. 11),
For other examples see McClelland and Rumelhart (1986a, p. 176): Papert (1988, p. 12); Rosenherg
and Sejnowski (1986), p. 75); Sejnowski (1981, P 191).

YHow cxactly this amount is determined is not the concem here, but, for a first pass, suppose
that it includes any portion of the representational resources such that variation in that portion is
systematically correlated with varation in €, where “systemnaticaily correlated” is essentially relative
> processes and relations privileged by (he particular scheme of representation being employed,

13%ee Smolensky (19874) 5.2.2.2.
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Sometimes it is appropriate to say both that a representation has just a single
content, and that the representing of that content involves superposition. An
example is an optical hologram of a single scene. In this case there is a single
content, but, given the way helograms are constructed, each part of scene is
represented over the whole surface. Such cases are naturally covered by the
above characterization, for the items ¢, that are each conservatively represented
by R are now simply the parts of a single overall content C. Superposition is
essentially the same, whether it applies to a set of items or to the parts of a single
decomposable item. The only different is one of convenience, that is, where we
find it natural to think of the primary level for identification of distinct iterms or
contents.

Superposition appears to come in something like degrees in at least three
ways. First, R was required above to be a conservative representation of each ¢;,
with the consequence that the resources involved in representing each item are
identical. This is the most interesting case, but various weaker notions can be
defined by relaxing this condition, allowing weaker overlapping relations be-
tween some or all pairs of representings. This accounts for the intuition that there
is some kind of superposition occcurring in coarse-coded schemes. In such
schemes the receptive field of a given unit generally overlaps significantly with
those of its neighbors. Consequently, particular features of the represented item
will tend to be represented in overlapping (i.e., partially superposed) regions of
the tepresentation itself. However, we do not have full superposition in the
representings of the individeal various features; it is merely a neighborly overlap-
ping effect.

Second, whether the amounts of resources invelved in representing distinct
items are the same depends very much on how we measure the resources, and in
particular on our choice of dimensions along which to require that the amounts be
identical. To take a very simple example: A family photo album captures many
scenes, but not in a superposed fashion, for each distinct scene is encoded by a
given photograph. This assumes that we are considering the album along the
natural spatial dimensions. If we consider the album as extended through time,
and ask how much of the album is invelved in representing each scene, the
answer will be roughly the same for every one, suggesting that the representings
are superposed. We could take this as indicating that the degree of superposition
in a given case depends on the nature or the number of dimensicens along which
coextensiveness of representings obtains. A better view is that such examples
highlight the requirement, for genuine superposition, that representings be coex-
tensive in all dimensions, or at Ieast in all those dimensions where variation
makes a real difference to the semantic significance of the representation.

Finally, a third way superposition comes in degrees is in how many contents
or content parts are represented over the same space. It makes intuitive sense that
the more distinct contents represented over the same space, the more strongly
superposed the representation. Holograms are a good example, because the
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relevant scene-portions are extremely fine-grained, no larger than point sources;
each of these very fine portions is represented over the whole surface of the
hologram. The strongest possible notion of superposition, then, would require
that R be a conservative representation of arbitrarily fine portions of the overall
content. It is not difficult to construct artificial examples of this kind of extreme
superposition. Suppose for example we were to treat a function as represented by
its Fourier transform. Each peint in the transform function is obtained by multi-
plying the whole function with a distinct trigonometric function and integrating
over the result. Each point in the original function, then, is effectively repre-
sented over the whole transform; thus there is fuli superposition of arbitrarily fine
slices of the original. This kind of extreme case is however not the norm; indeed,
often the idea of arbitrarily fine divisions of the content makes little sense.

A metaphor often used to illustrate the difference between {discrete) localist
schemes and superposed schemes is that of a filing cabinet. In the ideal filing
cabinet every distinct item to be represented is encoded on a separate sheet of
paper, and the sheets are then placed side by side in cabinet drawers. Because
every item is stored separately, every item can be accessed independently of all
the others, and the modification, removal or destruction of any one piece does
not affect any others. If representation in the cabinet were fully superposed, by
contrast, there would be no separate location for each discrete item; rather, the
whole cabinet would be representing every item without any more fine-grained
correspondence of sheets or locations to individual items. Accessing the repre-
sentation of one item is, in an obvious sense, accessing the representation of al
items; and modifying or destroying the representing of one cannot but affect the
representing of all (though the effect is not necessarily harrful).

Superposed schemes thus differ fundamentally from more standard localist
varieties. In general, schemes of representation define a space of allowable
representations and set up a correspondence with the space of items or contents to
be represented. We are accustomed to thinking of such schemes as setting up a
roughly isomorphic correspondence—that is, there is a distinct representation for
every item to be represented, and the structure of the space of representations
systematically corresponds (in a way that can only be characterized relative to the
scheme in question) to the structure of the space of possible contents. Thus,
languages usually define an infinite array of distinct expression types, which are
then put in correspondence with distinet items or states of affairs; and standard
methods of generating images aim at finding a distinct image for every scene.
When this kind of discrete correspondence fails to be the case—when, for
example, the representational scheme assigns two distinct contents to the one
representation (ambiguity), or two distinct representations to the one content
{synonymy, redundancy)—we usually think of it as some kind of aberration or
defect in the scheme, to be ironed out if we were to set about improving the
scheme.

The notion of superposed representation overthrows this whole familiar pic-
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ture, for superposition aims precisely at finding one point in the space of repre-
sentations that can serve as the representation of multiple contents. For schemes
in which R is a representation of ¢ only if there is some non-arbitrary structural or
functional relationship between R and ¢ (if, for example, c itself or important
information about ¢ an be recovered from R) this becomes a formidable require-
ment, in the sense that actually finding such a point, one that can do double or
multiple semantic duty, may be quite difficult. It is a nontrivial requirement on
the way a scheme is set up that it be rich enough to be able to generate such
representations. Consider the well-known example of a simple linear network in-
capable of computing the “XOR™ function. The fundamental problem here is
that no one point in the space of connection weights is capable of performing all
the transformations from input to output which define that function. Represent-
ing these transformations in a fully superposed fashion requires moving to a
different network structure, offering a different space of possible representations
in the connections.

Suppose one’s aim is to store a number of items. A localist scheme represents
each item in its stored form exactly as it was represented previously; this is an
essential part of the filing cabinet analogy. A superposed scheme, however, must
find a single point in the space that can function properly as the representation of
every item to be stored, Hence superposed storage involves transformation, and
if an item is to be recovered in its original form, this transformation must be
reversed. This brings us to another common theme in characterizations of dis-
tributed representation, the notion that although localist schemes store things as
they are, distributed schemes must recreate the originals, or something like them,
on demand; as Rumelhart and Norman (1981) stated, “Information is better
thought of as ‘evoked” than ‘found” ” (p. 3).1¢

It was pointed out just above that finding a point in the space of representa-
tions that can do multiple semantic duty is often difficult, and there is no guaran-
tee that there is any one point that can perform its multiple duties perfectly or
even at all. A good procedure for producing superposed representations will find
a point that performs optimally in representing the full set of items, but such a
point may still perform imperfectly with respect to a particular item. Various
different schemes for producing superposed representations utilize different en-
coding processes of varying degrees of complexity and subtlety. Itis typically the
case, however, that when the representings of various different items are super-

164 good example 15 also found in McCleliand, Rumelhart, and Hinton (1986]: *In most models,
knowledge is stored as a static copy of a pattern. Retricval amounts to finding the pattern in long-term
memory and copying it into a buffer or working memory. There 15 no real difference between the
stored representation in Jong-term memory and the active representation in working memory. In PDP
models. though, this is not the case. In these models, the patterns themsclves are not stored. Rather,
what is stored is the connection strengths betwecn units that allow these patterns to be re-created” (p.
31). For a particularly strong version, compare Murdock (1982): “What is stored is not a *wax tablet’
or graven image; in Tact, what is stored is not in any sense any sort of an item at all” {p. 623).
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posed, these various representings influence and perhaps interfere with each
other; for example, the superposed recording of two different scenes in one
hologram results in partially degraded performance for each. In general, then,
whether due to limitations inherent in the representational space, or limitations of
the superposing process itself, superposed representations often exhibit imper-
fections that arise precisely because various representings are being superposed.
This, then, is another recurrent feature in descriptions of distribution: “Memory
systems in which distinet stored items are spread over the storage elements and in
which items can mix with each other are often referred to as “distributed’ or
‘hotographic’ ™ (Anderson, 1977, p. 30).!7 Although this might pose a technical
problem for anyone interested in devising efficient distributed storage methods, it
might also be a crucial feature of systemns utilizing distributed representations in
psychological modeling, because these imperfect performance characteristics
may turn out to be useful in explaining certain features of human cognitive
performance.

There 1s one particularly important manner in which this mixing or inter
ference is often manifested. Suppose we have a number of items to be repre-
sented, each of which is a variant on a theme (or perhaps a few central themes).
Suppose, for example, we wish to store a series of vectors exhibiting a certain
structural tendency or pattern in common, though there is significant random
variation from one to the next. Then when the representings of all the items are
superposed, those respects in which they are similar will naturally be reinforced,
and those in which they differ will tend to be in conflict and hence cancel each
other out. Though this effect depends very much on both the details of the
particular encoding precess that generates the superposed representation and the
particular items to be stored, what can often happen is that the resulting represen-
tation performs well insofar as it is representing the common features of each
itern, but poorly insofar as it is representing unique variations. The representa-
tion, in other words, has generalized; it-has emphasized the central tendencies
from among a set of exemplars, and now disregards or downplays particular
differences.!® This generalization can be advantageous at a later point, when the
representation s evaluated with regard to its performance as a representation of
some item it was not originally designed to handle. In such a case, the represen-
tation will perform acceptably just insofar as that iterh can be treated as ex-
emplifying the central tendencies previously extracted. -

In any localist scheme, each distinct item is represented by means of a pro-
prietary chunk of the available resources. Because resources are usually finite,

1"The same theme is taken up by Rumelhart and McClelland (1986): “Associations are simply
stored in the petwork, but because we have a superpositional memeory, similar patterns blend into one
another and reinforce cach other™ (p. 267}

150f course, if it is desirable 10 actually preserve these individual differences. encoding schemes
can be designed and implemented accordingly.
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this puts a strict upper limit on the number of items that can be represented, and
attermpts to exceed this limit can have more or less unfortunate consequences.
Superposed schemes, by contrast, attempt to find a single state of one { possibly
large} chunk of the resources that functions as a representation of all the items to
be stored. Storing another item does not take up more resources: rather, it
involves transforming the state of the same resources. The issue, then, is not
whether there are resources available for storing the item at all; it is rather how
well the new state functions as a representation of all the stored items. Depending
on the particular scheme in question, it is typically the case that storing more
items results in gradual worsening of performance across all or most items rather
than an inability to store any particular one. This is the much vaunted graceful
degradation of distributed systems, and it clearly follows from the nature of
superposed representation (or rather, one important aspect of it). '

EQUIPOTENTIALITY

L have stressed the fundamental gulf between superposed schemes of representa-
tion and more familiar localist schemes, but distribution has on occasion been
associated with even more radical possibilities. Consider Lashley’s (13350) fa-
mous claim about the representation in the brain: “It is not possible to demon-
strate the isolated localization of a memory trace anywhere within the nervous
system. Limited regions may be essential for learning or retention of a particular
activity, but within such regions the parts are functionally equivalent. The en-
gram is represented throughout the area. . .” (p. 477). The first sentence appears
to be a clear statement of superposition. The second sentence however claims
that all memory traces are contained in all parts of the brain region. This is a
much stronger claim, for it is easy enough to envisage a case of fully superposed
representings, but where parts of the overall representation do not have the same
content as the whole. It is clear that Lashley was aware of the difference between
these two properties, and in general claimed that the stronger one was true of the
brain. Thus, in earlier work, he had formulated the famous principle of neural
equipotentiality, “the apparent capacity of any intact part of a functional area to
carry out, with or without reduction in efficiency, the functions which are lost by
destruction of the whole. . .7 (Lashley, 1929, p. 25). For current purposes we
should modify this prineiple and think of a representation as equipotential just in
case each part of that representation has the same semantic significance as the
whole, Every part represents just what the whole represents.

Some have explicitly maintained that equipotentiality is the essence of dis-

19Note that the term gracefu! degradation, like the term distributed representation, has many
senses; the sensc described herc is particularly appropriate to a narrow focus on the issuc of TEDrEser-
tation.



3. A SURVEY OF THE CONCEPT OF DISTRIBUTION 49

tributed representation,?® and this idea is implicit in much other discussion.
Thus, insofar as Lashley is regarded as having determined that memories are
fepresented in distributed fashion in the brain—a Very common move—distribu-
tion is being at least implicitly equated with equipotentiality. The same is trye
when we regard optical holograms as paradigms of distributed representation, for
equipetentiality is one of the most well-known features of at least certain vari-
elies of hologram.2! It is therefore worth spending some time clarifying this
notion of equipotentiality, especially in its relation to superposition.

Equipotentiality requires that the various parts of a representation R have the
same content as R itself. There is an obvious symmetry here with the notion of
superposition, which required that the various parts of the overall content have
the same representing. This suggests the symmetrically opposed definition: R js
an equipotential representation of ¢ Just in case every part r, of R is a representa-
tion of C,22 Unfortunately, this form of the definition seems to allow for tedious
counterexamples involving the simple duplication or replication of a given self-
sufficient representation. An example is Venetian walipaper, which duplicates
hundreds of identical discrete littie sketches of the Rialto all across the wall.
Every sketch is representing the Rialto (or Venice), and the whole wali certainly
fepresents nothing more, and so it would seem that the wallpaper is equipoten-
tial. Surely equipotentiality is a more interesting phenomenon than this!

One problem with these merely redundant representation is that their equipo-
tentiality, such as it is, stops at a certain fixed level: portions of the overall
representation smaller than an individual Rialto sketch do not have the same
conient as the whole. One way to rule out such cases, then, would be to require
that arbitrary portiens of R have the same content as the whole. Thus, R is
equipotential with respect to C Just in case every portion I, of R is a representa-
tion of C for every division of R into parts; that is, no matter how you slice it,
each part still has the same content as the whole. This suggests an asymmetry
between superposition and equipotentiality: because although superposition is an
Interesting phenomenon for ary given discrete division of the content into more
than one part, equipotentiality only appears to be interesting for arbitrary divi-
sions.

It is doubtful, however, whether equipotentiality in this sense is ever attained.,

BWestlake (1970): “. .  the property of distributedness, which s displayed only by holographic
processes. This property, an attribute of certain types of holograms, permits any small portion of the
hologram to reconsituct the entire original sccne recorded by the hoiogram , . (p- 129). See also
Pribram (1969, p- 75M.

2Leith and Uptanicks ( 1965): “each part of the hologram, no matter how small, can reproduce
the entirc image; thus the hologram can be broken into small fragments, each of which can be used to
construct a complete image” (p. 31.

2We cannot require that eachr; be a eonservative Tepresentation of C, for if 1 is conservative,
then 1; would have to include all of the resources mvolved in representing C—that is, R could only
have only been divided into one part, This trivialises equipotentialicy.
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For one thing, if we take fine enough portions of any representation it is unlikely
we will have any content at all, let alone the fuil original content. Though
holograms, for example, are taken to be equipotential, small enough portions fail
to encode anything; all we need do is take some portion smaller than the wave-
length of the illuminating beam and we cannot possibly recover anything of the
original image. On reflection it would be truly remarkable for a nontrivial repre-
sentation to have the same content in any portion, no matter how small, as is
conveyed by the whole. Second, even reasonably large portions of the original
representation typically are not identical in content with the original. Lashley
himself was careful to qualify his principle of neural equipotentiality with a
corresponding principle of mass action, which acknowledged that the smaller the
chunk of brain remaining, the worse the performance. Each portion, it would
seem, could not have had exactly the same content as the whole; for if it had, it
would presumably have been able to generate the same performance. Similarly
for the hologram: The whole scene is recoverable from each part, but only with
proportionately reduced perspective and image quality.

Rescuing the notion of equipotentiality in the face of these objections requires
a two-pronged strategy. On one hand, we need only require that all portions of
some sufficient size (an inherently vague notion) represent the same as the
whole. Mere redundancy then becomes one trivial way of achieving this effect,
practical in some contexts, such as the preservation of medieval wisdom, but
manifestly implausible in others, such as encoding memories in the brain. More
intcresting methods, such as the convolution transformation underlying hologra-
phy, vary parts of R smoothly and systematically as a function of the whole
content. Second, we need to explain some sense in which these sufficiently large
portions tepresent the same as the whole despite slight variation or degradation.
Intuitively, the portions are all still in some important sense representing the
same thing, regardiess of the degradation in performance. Sustaining this intui-
tion means formulating some kind of distinction between what a representation is
of and how good it is as a representation of that content; or, in other words, a
kind of semantic character versus quality distinction. A representation would
then be equipotential insofar as all sufficiently large portions bave, not the same
“content,” but rather the same semantic character as the whole, even if at lower
quality.

When do two representations have the same semantic character in the relevant
sense? We need here some notion of a privileged or important dimension of the
content, such that each part can be seen as semantically coextensive along that
dimension, although perhaps varying on others. To illustrate: Why do a hologram
and its portion have the same semantic character, even if the portion performs
significantly worse in generating the whole scene? The answer is that crudely
gpatial dimensions of the encoded scene are accorded a certain kind of priority,
and what the portion does is recreate the whole scene along these dimensions,
albeit in a degraded way. In short, two representations have the same character if
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their performance is essentially equivalent along what happens to be the intu-
itively important dimension, though it may vary on others. Eashley regarded
regions of the rat brain as equipotential because, with only portions of the region
remaining, a rat could perform the same tasks, even it more slowly or clumsily.
Hence the important dimension here is simply the fact of performance; speed or
agility is relegated to a lesser importance and so is just a matter of quality, not
character.

This description of the character versus quality distinction is a start, but it is
by no means complete because it does not give any general guidelines for
determining what the important dimension is in a particular case. it is unlikely,
bowever, that there could be any such general guidelines, because the relevant
dimension changes from case to case according to interests and purposes that can
vary greatly in ways that have little or nothing to do with intrinsic properties of
the representations themselves. It is natural to be impressed by the fact that each
portion of the hologram reproduces the same spatial extent of the image. Yet
consider the case of an aerospace engineer devising a holographic display unit for
a jet fighter. Here the primary advantage a holographic display has over a regular
screen is that the generated image conveys depth effects at sufficiently high
resolution to assist the pilot in operating the plane. Both depth effects and
resolution would preswmably be lost, however, if only & portion of a hologram
were employed; hence, from the engineer’s point of view, the hologram is not at
all equipotential. Though the hologram itself remains the same, from one naive
point of view it counts as equipotential, although from another point of view it
does not. Because the general character versus quality distinction depends on the
notion of a privileged dimension, that distinction itself is rendered inherently
flexible, even vague; and consequently the very idea of equipotentiality is with-
out any very firm foundation.

It has already been pointed out that superposition does not entail equipoten-
tiality. Given the symmetry between the concepts, it should not be surprising that
the converse is also true: Equipotentiality does not, in general, entail superposi-
tion. Thus, consider again the trivial case of Venetian wallpaper. If we consider
only parts larger than a certain minimum size, then each part has the same
content as the whole. Yet there is clearly one scattered portion of the wall where
the Rialto is found multiply depicted, and likewise one portion where the gon-
dola is found, and these portions are entirely discrete, as can be seen by the fact
that we could paint over all Rialto depictions while leaving all gendola depictions
intact, The wallpaper is therefore trivially equipotential with respect to the whole
scene, but not superposed with respect to the Rialto and the gondola.

The relation between these concepts is however more intimate than these
independence claims suggest. Notice for example that full equipotentiality (i.e.,
equipotentiality of arbitrarily fine portions of R} immediately entails full super-
position. If the whole content is encoded in every part of the representation, no
matter how fine, it follows that every part of the content must be encoded over
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the whole representation.?* Further, it turns out that standard methods for gener-
ating real instances of equipotential representation do in fact vary every part of
the representation as a function of the whole content, thereby guaranteeing
superposition. Conversely, common methods for developing superposed repre-
sentations often produce something akin to equipotentiality as a side-effect. In
connectionism, for example, it is common to represent transformations from
input to output in the one set of weights. It is a well-known feature of such
representations that they are relatively impervious to localized damage or noise;
thus, removing units or connections makes relatively little difference to overall
performance (Wood, 1978). Another way to describe this situation is in terms of
the equipotentiality of the representation: large enough portions effectively repre-
sent the same as the whole,

In general, insofar as there is equipotentiality, any portion of a representation
can take over the tasks of the whole; in other words, equipotential representations
are robust by their very, nature. This brings the discussion of themes associated
with distribution around a full circle. Robustness was seen to be a desirable
consequence of at least some forms of merely extensive representation, but it
dropped out of consideration in the discussion of superposition. Although super-
posed representations are often relatively robust, nothing in the definition of
superposition 1itself guarantees this: although a series of items are represented
aver the same resources, it might be that all those resources are required for the
effective representing of any one item. However, with equipetentiality, which is
intuitively the strongest form of distribution of all, robustness is guaranteed.,

Distributed systems or representations are often described as kofistic. This is
an extraordinarily vague term, and usually contributes nothing to our understand-
ing of the phenomenon in question; nevertheless, with the above discussion in
mind it is possible to sort out some things that might be intended. For example,
describing a distributed representation as holistic might be a reference to the fact
that, when a representation R is superposed, each part of R is involved in
representing a number of items at once, and in that sense reflects the “whole”
content. Similarly, in superposed schemes R functions as a representation of a
number of items at once; in that sense, one state represents the whole content, or
each item is only represented in the context of the whole content. Alternatively,
describing distributed representations as holistic might be a reference to equipo-
tentiality, where each part represents the “‘whole™ content. Each of these senses
gestures 1n the direction of some important aspect of distributed representation;

#3The converse, however, does not in general hold: full superposition does not entail full cquipo-
tentiality. This can be seen from the Fourier transform cxample. Though every point in the original
function is represented over the whole transform, it is not possible to recreate the whole original
function fiom any given point in the transform. This difference is due to an asymmetry in the
concepts hemselves. Equipotentiality requires that each portion of R actuaily represent the whoie
content, although superposition requires only that each portion of R be involved in representing each
part of the content,

e
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however, superimposing them in the one (dare I say, holistic) concept results, in
this case, in litfle more than a blur.24

WHAT IS DISTRIBUTION?

This discussion sketches just the broadest outlines of the current concept of
distribution. It reveals something of the multiplicity of themes in the vicinity of
distribution, and some of the extraordinary differences among characterizations
previously put forward. But how does it bear on the wider project of finding
some general kind of representation on the basis of which a genuine alternative to
CTM might be constructed? What, after this discussion, can we say that dis-
tributed representation actually is?

In view of the multifarious nature of typical instances, and the wide variety of
properties thought to be central to distribution, it may be tempting o suppose that
distributed representation is really just some kind of *family resemblance” con-
cept, gathering together i a loose way a heterogeneous collection of styles of
tepresentation that actually turm out to have no interesting properties in common.
Such concepts are bad news for theorizing because they effectively preclude one
from making interesting general claims about all members of that type. Conse-
quently if a survey of current usage revealed that distribution was in fact such a
concept, the speculative project of investigating alternatives to CTM constructed
around a putative category of distributed representation would be stopped in its
tracks.

This prospect is not a serious concern, however. Current usage has only a
limited claim on our allegiance. The appropriate response, in the interests of
conceptual clarification and scientific progress, would be simply to redraw the
conceptual boundaries, thereby revising the current muddled use of the term. We
would be providing, in other words, an explication of the concept: a new, precise
account of distribution, based on the old confused version but displacing it. In
the current case, MOTSOVEr, there is a way of explicating the concept of distribu-
fion that is not excessively disruptive of current usage. It tumms out that one
theme—the superposition of representings—is both commen to a large propor-
tion of standard characterizations and true of most cases that intuition counts as
paradigm instances. This opens the door to a proposal, still informal and far from
precise, but nevertheless substantial: distribution is the superposition of repre-
sentings, and distributed representations are those which belong to schemes
defined around a core method of generating superposed representations.

One reason for supposing that superposition is the heart of distribution is that

2The alleged “holism”™ of distributed representation has nothing to do with the term Aologram.
Denis Gabor coined the term, from the Greek for whele writing, to bring out the fact that a hologram
records all the jnformation in a given wave of light (i.e.. intensity and phase).
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the various other themes and properties discussed above are either implausibly
weak or implausibly strong. Thus, extensiveness alone cannot be what is impor-
tant about distributed representation, because a wide variety of representations
that are obviously not distributed in any interesting sense censume more than
some theoretical minimum by way of representational resources. To count as
genuinely distributed a representation must be more than simply spread over a
large area, whether that be on the page, in the sky, in a computer memory or in
the brain. Similarly, a distributed representation must also be more than just a
“pattern” Over some extended area, for virtually any representation will count as
a pattern of some kind. This notion must be tightencd somehow, yet various
common approaches—such as the requirement that the patterns result from
coarse-coding—fail to capture the natural class of distributed representations, for
they end up excluding various standard cases to which such an approach is
inapplicable. Coming from the other direction, equipotentiality cannot be re-
garded as a definitive feature of disiribution. For one thing, it is not always clear
that equipotentiality is a well-defined property: it all depends on whether we can
privilege some dimension along which it makes sense to say that the full content
is preserved in each portion of the representation. Equipotentiality also suffers
the problem of exclusivity; all kinds of representations that appear to be dis-
tributed in an important sense fail to exhibit significant equipotentiality.

Superposition has neither of these failings. It is strong enough that very many
kinds of representations do not count as superposed, yet it manages 10 subsume
virtually all paradigm cases of distribution, whether these are drawn from the
brain, connectionism, psychology, or optics. Moreover, superposition is a satis-
fying cheice in other ways. As a structural feature it seems to be in deep-seated
opposition to the standard Kinds of localist schemes with which we have long
been familiar. As pointed out above, usual forms of representation are designed
so that, roughly, the structure of the domain of representations mitrors that of
world itself; every different item to be represented is mapped to its own dis-
tinctive point or points in the space of representations. Superposed schemes
violate this neat order, and do so inherently; thus the distinction between localist
and superposed schemes marks a fundamental gulf in kinds of representation, a
gulf suggesting that semantic superposition is not some incidental property that
merely cross-classifies other forms of representation, but rather is the kind of
property that manages to pick out a whole distinct genus of its own.

Much remains to be done if this speculation is 10 be firmly grounded. The
notion of semantic superposition has to be precisely defiped, and it must be
shown that schemes of distributed representation can be effectively gencrated in
such terms; this includes showing that a sufficient number of the intuitive para-
digm cases of distribution are indeed characterizable as falling under superposed
schemes. It would also have to be demonstrated that the loose claims of incom-
patibility made here between superposition and other supposedly localist styles,
such as generically symbolic representation, stand up under closer scrutiny. If
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such elaboration were successful, however, we would be able—indeed, obli-
ged—to investigate the possibility raised at the beginning of this paper: namely,
that a theory of cognition might be constructed on a distributed foundation, a
theory that would automatically count as an alternative to CTM.

Thorough investigation of this possibility would invalve determining whether
the generic category of distributed representation, defined in terms of superposi-
tion, satisfies the demanding criteria set forth earlier. It is entirely unclear at this
stage, for example, whether distributed representations (of whatever particular
variety) would be sufficiently powerful to represent effectively the kinds of
information that underlie human cognitive performance. Much connectionist
work in psychological modeling can be regarded as an empirical investigation of
precisely this issue, but it is still much to early to expect any conclusive verdict,
especially when we realize that those investigations are being carried out in the
absence of any well-developed theory of the nature of distributed representation.

On the other band, there are some reasons to be optimistic, I have suggested
already that, from the preliminary perspective afforded by this overview, it s
plausible to suppose that distributed representation is both appropriately gencral
as a category and inherently mon-symbolic, features that surely constitute a
promising start. Moreaver, distributed representations possess the desired deep
affiliation with neural networks. Briefly, on the current proposal, a distributed
representation is one in which each component of the representation is implicated
in the representing of many items at once. The high degree of interconnectedness
between processing units in neural networks constitutes excellent conditions for
implementing this kind of dependence. This is not to say, of course, that any
representation in a neural network must be distributed; on the contrary, it is
manifestly possible to impose localist or even symbolic structures on neural
mechanisms. Tt is to say that neural networks provide a very natural medium for
implementing distributed representations; ot rather, to put the peint even more
strongly: to insist on utilizing nondistributed representations in a neural network
framework would be to stubbornly avoid capitalizing on some of the most impor-
tant benefits of neural machinery. It would be akin to using digital electronic
circuitry while stubbornly refusing to implement -general purpose symbol pro-
cessing.

This deep affiliation makes distributed representation attractive as a possible
alternative to symbolic representation, There is, for example, nothing implausi-
ble in supposing that there are distributed representations to be found in the
brain. Quite the contrary: Distribution is an empirically well-established feature
of the neurological substrate in which our cognitive capabilities find their ulti-
mate realization. Indeed, the biological reality of distributed representation is a
principle so secure that it cannot even be counted as a discovery, for the concept
itself first arose in attempts to describe the unusual kinds of representations found
in the brain, and when jt was proposed above that there may be a broad natural
category of distributed representation, neural representations were taken to be



b6 VAN GELDER

paradigm instances. This intimate association with the actual machinery underly-
ing human cognition stands in plain contrast with the biological remoteness of
symbolic representations. Though CTM demands a langoage of thought, and
CTM advocates insist that the expressiops of this language are realized in the
neural substrate, and consequently predict the eventoal discovery of “symbols
amongst the neurons,” neuroscience has never yet stumbled across syntactically
structured representations In the brain, This discrepancy only becomes more
embarrassing to CTM as the sum of neuroscientific knowledge increases, and
provides at least a prima facie argument in favor of any biologically motivated
alternative.

Nevertheless, this proposal does not fall afoul of ancther quite different meth-
odological constraint based on the supposed autonomy of psychology and neuro-
science. CTM orthodoxy maintains that psychological generalizations are only 10
be found at a certain level of description of a system—roughly, the level at which
the sysiem’s operation is most usefully understood as cognizing, that is, involv-
ing the transformation of representations. When C'TM proposes symbolic repre-
sentation as the form in which information must be stored and processed, sym-
bolic representation is described in a sufficiently general way in which only the
abstract structure is important. All kinds of implementational details become
irrelevant, and, consequently, systems differing widely in their physical in~
stantiation can be regarded as falling under the same psychological principles. To
descend to the level of the system’s particular implementation would be to
descend to a level from which the true psychological generalizations are no
longer visible. An immediate consequence of this view is that theories and
models of cognitive functioning are held to be relevantly similar, or seen as
falling under the one approach or paradigm, only insofar as they are similar at
this relatively abstract level. Thus it becomes possible to maintain that the sole
thread binding all CTM (or classical) approaches together 1s 2 commitment to
symbolic representation together with operations that are sensitive to syntactic
structure.

Recently however, with rapid advances in neuroscience and the resurgence of
connectionism, it has become popular to maintain that cognitive functioning is
not independent of, and can not be understood independently of, the details of
the particular way in which cognition happens to be instantiated. Thus, in the
case of human cognitive abilities, it is maintained that we must shift the focus of
attention from abstract, purely psychological or “top down" investigations to the
messy details of the actual neurobiological mechanisms themselves, their evolu-
tionary context, and their very specific capabilities. Meanwhile it is maintained
that the crucia) feature bringing the wide diversity of approaches within the
groundswell of opposition to C'TM under a single paradigm is not to be found at
the level of a form of representation but rather in terms of a general commitment
to neurobiological authenticity.

An articulated concept of distributed representation offers a sound theoretical
basis for reconciling these two apparently conflicting strains of thought. It pos-
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sesses an inherent neurobiological plausibility, but without sacrificing the gener-
ality required of a genuinely psychological hypothesls. I have urged that distribu-
MnmuMﬂMmdmwmmdmewmmmMmoﬂwm%mmgﬂDMMHMHS
completely independent of details of the particular ways in which the superposi-
tion might be achieved. The wide variety of instances of distribution already
imown to exist—and effectively describable in terms of superposition—attests to
the breadth of this characterization. Given a well-developed conception of dis-
tributed representation, it is possible to determine which kinds of operations are
suited to processing distributed representations, and consequently what Kinds of
distributed mechanisms might subserve various different cognitive functions,
without ever needing to descend to descriptions of particular hardware imple-
mentations. Arguments for or against such theories can then be formulated at this
relatively abstract psychological level. It is in this light that we should under-
stand many connectionist models of cognitive functions that, despite being based
on networks of neural units, are highly remote from biological details. This
approach can also be seen in the work of psychologists such as Metcalie, who
has proposed distributed mechamisms to account for various memory phenomena
quite irrespective of how those mechanisms are in fact instantiaied in the head;
these proposals are then tested on the basis of straightforwardly psychological
experiments. (For examples of Metcalfe’s work see Eich, 1982; Metcalfe, 1989;
also Murdock, 1979, 1982.) With high level descriptions of distributed mecha-
nisms in hand, it is possible to continue on to construct much more specific
models which specify, to some relevant level of detail, how these distributed
mechanisms happen to be built up out of human wetware, a process which not
only tests the hypotheses themselves but stimulates future developments.

1n short, the concept of distributed representation enables us to preserve the
insight that a theory of cogpition is more than just a theory of how particular
mechanisms perform their specific functions; but also, by virtue of its intimate
relationship with connectionism and the brain, acknowledges the importance of
detailed studies of the actual machinery underlying human cognitive perfor-
mance. There need be no tension between studying cognition and studying
particular neurobiological instantiations of cognition, because the general con-
cept of distributed representation functions as the unifying principle. For this
reason, there is also no need to insist that the centra) feature binding together a
wide group of nevroscientific and connectionist alternatives to CTM is a concern
with neurobiological plausibility, for we can now sec the possibility of a deeper
similarity between these various approaches, one that obtains at the level at
which they count as theories of cognition.
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