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Introduction

I Consider the high-dimensional setting: predict a vector y ∈ Rn from a set of
features X ∈ Rn×p, with p � n.

I Assume a sparse Gaussian linear model

y = Xβ + ε, ε ∼ N(0, σ2In),

with βj = 0 for many j .

I How can we perform prediction and inference?

Lasso

, but: convex relaxation; one parameter for sparsity and shrinkage

Point mass mixture prior

, but: computation is prohibitive
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Introduction

I Can we find a continuous prior that behaves like the point mass mixture prior?

I Desiderata:

adaptive to sparsity

easy to compute

good predictive performance

good frequentist properties

decent compromise between statistical and computational goals

I Global-local priors can achieve this (with some qualifications).

I But... they are still slow.

Lasso: n ≈ 1, 000, p ≈ 1, 000, 000;

Global-local: n ≈ 1, 000, p ≈ 1, 000.
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Model

I The Horseshoe model*:

yi | βj , λj , τ, σ
2 ind∼ N(xiβ, σ

2)

βj
ind∼ N(0, τ2λ2j )

λj
ind∼ Cauchy+(0, 1)

τ ∼ Cauchy+(0, 1)

σ2 ∼ InvGamma(a0/2, b0/2)

*[Carvalho et. al, 2010]
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Model

I Horseshoe has other good frequentist properties.

I It achieves the minimax-adaptive risk for squared error loss up to a constant.

I Suppose X = I , ‖β‖0 = sn, then [van der Pas et al., 2014],

sup
β:‖β‖0≤sn

Eβ
[
‖β̂HS − β‖22

]
≤ 4σ2sn log

n
sn
· (1 + o(1)),

while, for any estimator β̂, [Donoho et al., 1992] shows

sup
β:‖β‖0≤sn

Eβ
[
‖β̂ − β‖22

]
≥ 2σ2sn log

n
sn
· (1 + o(1)).
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Computation

I State-of-the-art: (i) τ | β, σ2, λ, (ii)
(
β, σ2

)
| τ, λ, (iii) slice sampling for λ.

But...

I We scale the model with two ideas.

I First idea: block (β, σ2, τ) to improve mixing;

1. sample (β, σ2, τ) | λ by block sampling: τ | λ, then σ2 | τ, λ, and finally β | σ2, τ, λ;

2. sample λ | β, σ2 using slice sampling.

I Second idea: truncate some of the matrices involved to improve the computational
cost per step.
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Gibbs sampling

Let M = X (diag(ξη))−1XT + I , ξ = τ−2, ηj = λ−2j , and block update:

I p(τ | λ, y) ∝ 1√
ξ(1+ξ) |M|

−1/2 (yTM−1y + b0
)− n+a0

2

I p(σ2 | τ, λ, y) ∼ InvGamma
( n+a0

2 , 12
[
yTM−1y + b0

])
I p(β | σ2, τ, λ, y) ∼ N

(
(XTX + diag(ξη))−1XT y , σ2

(
XTX + diag(ξη)

)−1)

Then perform slice sampling:

I p(λ | β, σ2, τ, y): (i) U | ηj ∼ Unif
[
0, 1

1+ηj

]
; (ii) ηj | u ∼ e−

ξβ2j
2σ2

ηj I[ 1−u
u >ηj ]

.
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Markov approximation

I We approximate M = Xdiag((ξηj)
−1)XT + I with

Mδ = XDδX
T + I , Dδ = diag((ξηj)

−1I[(ξmaxηj )
−1>δ])

for δ � 1, and ξmax the maximum of the current and proposed ξ.

I This makes computation much faster.

Approximating Kernels

Let Pδ(x , ·) and P(x , ·) denote the Markov operators for the approximate and exact
algorithms, with x = (β, σ2, τ, λ) the entire state vector. Then

sup
x
‖Pδ(x , ·)− P(x , ·)‖TV ≤

√
δ‖X‖

√
a +

n + a0
b0

+
n
2
‖y‖2
b0

+O(δ),

for sufficiently small δ > 0.
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Simulation

I We simulate data as follows:

xi
iid∼ Np(0,Σ)

yi ∼ N(xiβ, 4)

βj =

{
2−(j/4−9/4) if j < 24,

0 if j ≥ 24.

I There are nulls, clear non-nulls, and some subtle non-nulls.

I We consider both Σ = I (independent design) and Σij = 0.9|i−j | (correlated design).
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Autocorrelation

Autocorrelation for log(ξ) = −2 log τ
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Effective samples per second

I Approximate algorithm is 50× more efficient with n = 2, 000 and p = 20, 000.
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Accuracy

I Existing algorithms failed to converge, due to numerical underflow.

Trace plots for −2 log(σ) and log(ξ) = −2 log(τ); truth in red
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Accuracy

I In terms of MSE, the approximation costs us little.
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Dependence on p and n

I Effective sample sizes seem independent of n and p.
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Real application: GWAS

I n = 2267 observations, p = 98385 SNPs in the genome of maize.

I X : maize seeds; y : growing degree days to silking (‘growth cycle’)

Bimodal posterior distribution for β | y ; Lasso (red) shrinks more than Horseshoe (blue)

Paulo Orenstein Scalable MCMC for Bayes Shrinkage Priors Stanford University 13 / 16



Introduction Model Computation Results Conclusion

Real application: GWAS

I n = 2267 observations, p = 98385 SNPs in the genome of maize.

I X : maize seeds; y : growing degree days to silking (‘growth cycle’)

Bimodal posterior distribution for β | y ; Lasso (red) shrinks more than Horseshoe (blue)

Paulo Orenstein Scalable MCMC for Bayes Shrinkage Priors Stanford University 13 / 16



Introduction Model Computation Results Conclusion

Real application: GWAS

I n = 2267 observations, p = 98385 SNPs in the genome of maize.

I X : maize seeds; y : growing degree days to silking (‘growth cycle’)

Bimodal posterior distribution for β | y ; Lasso (red) shrinks more than Horseshoe (blue)

Paulo Orenstein Scalable MCMC for Bayes Shrinkage Priors Stanford University 13 / 16



Introduction Model Computation Results Conclusion

Real application: GWAS

I n = 2267 observations, p = 98385 SNPs in the genome of maize.

I X : maize seeds; y : growing degree days to silking (‘growth cycle’)

Bimodal posterior distribution for β | y ; Lasso (red) shrinks more than Horseshoe (blue)

Paulo Orenstein Scalable MCMC for Bayes Shrinkage Priors Stanford University 13 / 16



Introduction Model Computation Results Conclusion

Real application: GWAS

I n = 2267 observations, p = 98385 SNPs in the genome of maize.

I X : maize seeds; y : growing degree days to silking (‘growth cycle’)

Bimodal posterior distribution for β | y ; Lasso (red) shrinks more than Horseshoe (blue)

Paulo Orenstein Scalable MCMC for Bayes Shrinkage Priors Stanford University 13 / 16



Introduction Model Computation Results Conclusion

Variable selection with Horseshoe

Number of variables for which β̂HS,j = E[βj | y ] > t or β̂Lasso,j > t vs threshold t;
both methods largely agree on the identities of the signals
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Conclusion

I There is no point in having a great model, like the Horseshoe, if it can’t be com-
puted.

I There is a need to scale more Bayesian models to the level of Frequentists.

I We manage to do that for the Horseshoe prior with two ideas: blocking and trun-
cation.

I We observed interesting and novel statistical phenomena, e.g., bimodality of β.

I There is likely more room for improvement.
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Extra slides

I More simulation results

I Why “Horseshoe”?
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More simulations

I We let n = 1000 and p = 20, 000.
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More simulations

I The new algorithm lead to significant improvement in the autocorrelation:
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More simulations
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Why "Horseshoe"?

I In the orthogonal case with n ≥ p and σ2 = τ = 1, and defining a shrinkage profile
κj = 1/(1 + nλ2j ), we can write E[βj |y ] = (1− E[κj |y ])β̂j .

I Prior density for κj :
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