Improving Subseasonal Forecasting in the Western U.S.

Paulo Orenstein March 22, 2019

Photo credit: IIP Photo Archive

Joint work with Jessica Hwang, Lester Mackey, Judah Cohen, Karl Pfeiffer

Paulo Orenstein

Improving Subseasonal Forecasting

Introduction			
Goals			

Bring awareness to subseasonal forecasting, an important problem for water management and weather extremes

Introduction			
Goals			

- Bring awareness to subseasonal forecasting, an important problem for water management and weather extremes
- Introduce an example of a crowdsourced, social good project

Introduction			
Goals			

- Bring awareness to subseasonal forecasting, an important problem for water management and weather extremes
- Introduce an example of a crowdsourced, social good project
- Present the SubseasonalRodeo Dataset

Introduction Forec			
Goals			

- Bring awareness to subseasonal forecasting, an important problem for water management and weather extremes
- Introduce an example of a crowdsourced, social good project
- Present the SubseasonalRodeo Dataset
- Discuss effective machine learning methods for the problem

Introduction Forecast Rodeo Dataset M		
Goals		

- Bring awareness to subseasonal forecasting, an important problem for water management and weather extremes
- Introduce an example of a crowdsourced, social good project
- Present the SubseasonalRodeo Dataset
- Discuss effective machine learning methods for the problem
 - multitask model selection
 - weighted locally linear regression
 - ensembling

Introduction			
Goals			

- Bring awareness to subseasonal forecasting, an important problem for water management and weather extremes
- Introduce an example of a crowdsourced, social good project
- Present the SubseasonalRodeo Dataset
- Discuss effective machine learning methods for the problem
 - multitask model selection
 - weighted locally linear regression
 - ensembling
- Encourage you to improve on our results!

Introduction			
Motivation			

▶ Long-term weather prediction (> 2 months): hopeless, use historical climate

Introduction			
Motivation			

- ► Long-term weather prediction (> 2 months): hopeless, use historical climate
- Short-term weather prediction (< 2 weeks): accurate predictions possible using physics-based models

Introduction			
Motivation			

- ► Long-term weather prediction (> 2 months): hopeless, use historical climate
- Short-term weather prediction (< 2 weeks): accurate predictions possible using physics-based models
- Medium-term (*subseasonal*) weather prediction: physics-based models are no longer accurate

Introduction			
Motivation			
Motivation			

- ▶ Long-term weather prediction (> 2 months): hopeless, use historical climate
- Short-term weather prediction (< 2 weeks): accurate predictions possible using physics-based models
- Medium-term (*subseasonal*) weather prediction: physics-based models are no longer accurate
- Subseasonal forecasts are important

Introduction			
Motivation			

- ► Long-term weather prediction (> 2 months): hopeless, use historical climate
- Short-term weather prediction (< 2 weeks): accurate predictions possible using physics-based models
- Medium-term (*subseasonal*) weather prediction: physics-based models are no longer accurate
- Subseasonal forecasts are important
 - allocate water resources
 - manage wildfires
 - prepare for droughts, floods and other weather extremes
 - crop planting, irrigation scheduling, and fertilizer application

Introduction			
Motivation			

- ▶ Long-term weather prediction (> 2 months): hopeless, use historical climate
- Short-term weather prediction (< 2 weeks): accurate predictions possible using physics-based models
- Medium-term (*subseasonal*) weather prediction: physics-based models are no longer accurate
- Subseasonal forecasts are important
 - allocate water resources
 - manage wildfires
 - prepare for droughts, floods and other weather extremes
 - crop planting, irrigation scheduling, and fertilizer application
- Can statistical/ML/non-physics models extend the forecast horizon beyond shortterm prediction?

Introduction			

"During the past eight years, every state in the Western United States has experienced drought that has affected the economy both locally and nationally through impacts to agricultural production, water supply, and energy."

David Raff, USBR

Introduction			
Forecasting 9	systems in use now		
r or cousting s	bystems in use now		

 CFSv2 (Climate Forecasting System, version 2): operational forecasting system for the US, physics-based model representing "coupled atmosphere-ocean-land surfacesea ice system"

Introduction			
Forecasting sy	stems in use now		

- CFSv2 (Climate Forecasting System, version 2): operational forecasting system for the US, physics-based model representing "coupled atmosphere-ocean-land surfacesea ice system"
- NMME (North American Model Ensemble): ensemble of CFSv2 and about 10 other physics-based models from various North American modeling centers

	Introduction			
Forecasting systems in use now	Forecastir	ng systems in use now		

- CFSv2 (Climate Forecasting System, version 2): operational forecasting system for the US, physics-based model representing "coupled atmosphere-ocean-land surfacesea ice system"
- NMME (North American Model Ensemble): ensemble of CFSv2 and about 10 other physics-based models from various North American modeling centers
- Both are examples of Numerical Weather Prediction models

Introduction			
Forecasting sy	stems in use now		

- CFSv2 (Climate Forecasting System, version 2): operational forecasting system for the US, physics-based model representing "coupled atmosphere-ocean-land surfacesea ice system"
- NMME (North American Model Ensemble): ensemble of CFSv2 and about 10 other physics-based models from various North American modeling centers
- Both are examples of Numerical Weather Prediction models
 - simulate future weather using partial differential equations and supercomputers
 - initialized many times with current weather conditions; use the average of predictions
 - initial error doubles every 5 days

	ļ	ntroduction			
Forecasting systems in use now	I	Forecasting	systems in use now		

- CFSv2 (Climate Forecasting System, version 2): operational forecasting system for the US, physics-based model representing "coupled atmosphere-ocean-land surfacesea ice system"
- NMME (North American Model Ensemble): ensemble of CFSv2 and about 10 other physics-based models from various North American modeling centers
- Both are examples of Numerical Weather Prediction models
 - simulate future weather using partial differential equations and supercomputers
 - initialized many times with current weather conditions; use the average of predictions
 - initial error doubles every 5 days
- Can we do better?

	Forecast Rodeo			
Subseasona	al Climate Forecast Re	odeo		

 Year-long, real-time forecasting competition sponsored by US Bureau of Reclamation and NOAA

Forecast Rodeo		

- Year-long, real-time forecasting competition sponsored by US Bureau of Reclamation and NOAA
- Four categories

Forecast Rodeo		

- Year-long, real-time forecasting competition sponsored by US Bureau of Reclamation and NOAA
- Four categories
 - two variables: two-week average temperature and two-week accumulated precipitation
 - two forecasting horizons: 3-4 weeks out and 5-6 weeks out

Forecast Rodeo		

- Year-long, real-time forecasting competition sponsored by US Bureau of Reclamation and NOAA
- Four categories
 - two variables: two-week average temperature and two-week accumulated precipitation
 - two forecasting horizons: 3-4 weeks out and 5-6 weeks out
- Submission frequency: every two weeks

Forecast Rodeo		

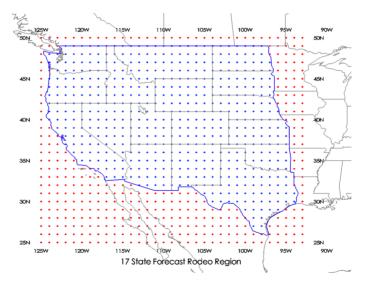
- Year-long, real-time forecasting competition sponsored by US Bureau of Reclamation and NOAA
- Four categories
 - two variables: two-week average temperature and two-week accumulated precipitation
 - two forecasting horizons: 3-4 weeks out and 5-6 weeks out
- Submission frequency: every two weeks
 - first submission: April 18, 2017
 - last submission: April 3, 2018

Forecast Rodeo		

- Year-long, real-time forecasting competition sponsored by US Bureau of Reclamation and NOAA
- Four categories
 - two variables: two-week average temperature and two-week accumulated precipitation
 - two forecasting horizons: 3-4 weeks out and 5-6 weeks out
- Submission frequency: every two weeks
 - first submission: April 18, 2017
 - last submission: April 3, 2018
- ▶ Region: 17 states in western US, G = 514 grid points

Forecast Rodeo	

Forecast Rodeo region



Forecast Rodeo		Conclusion

▶ For the two-week period beginning on *t*

Forecast Rodeo		

- For the two-week period beginning on t
 - observed average temperature or total precipitation: $\mathbf{y}_t \in \mathbf{R}^G$
 - *climatology* for a month-day combination *d*:

$$\mathbf{c}_{d} = \frac{1}{30} \sum_{\substack{t: \text{monthday}(t) = d, \\ 1981 \le \text{year}(t) \le 2010}} \mathbf{y}_{t}$$

the long-term average over 1981-2010 for the month-day d

• observed anomaly: $\mathbf{a}_t = \mathbf{y}_t - \mathbf{c}_{\text{monthday}(t)}$

- For the two-week period beginning on t
 - observed average temperature or total precipitation: $\mathbf{y}_t \in \mathbf{R}^G$
 - *climatology* for a month-day combination *d*:

$$\mathbf{c}_{d} = \frac{1}{30} \sum_{\substack{t: \text{monthday}(t) = d, \\ 1981 \le \text{year}(t) \le 2010}} \mathbf{y}_{t}$$

the long-term average over 1981-2010 for the month-day d

- observed anomaly: $\mathbf{a}_t = \mathbf{y}_t \mathbf{c}_{\text{monthday}(t)}$
- Given a forecast $\hat{\mathbf{y}}_t$, or equivalently, forecast anomalies $\hat{\mathbf{a}}_t = \hat{\mathbf{y}}_t \mathbf{c}_{\text{monthday}(t)}$, the cosine similarity or *skill* is

skill
$$(\hat{\mathbf{a}}_t, \mathbf{a}_t) = \cos(\hat{\mathbf{a}}_t, \mathbf{a}_t) = \frac{\langle \hat{\mathbf{a}}_t, \mathbf{a}_t \rangle}{\|\hat{\mathbf{a}}_t\|_2 \|\mathbf{a}_t\|_2}$$

Highest average skill over the contest period = winner

- For the two-week period beginning on t
 - observed average temperature or total precipitation: $\mathbf{y}_t \in \mathbf{R}^G$
 - *climatology* for a month-day combination *d*:

$$\mathbf{c}_{d} = \frac{1}{30} \sum_{\substack{t: \text{monthday}(t) = d, \\ 1981 \le \text{year}(t) \le 2010}} \mathbf{y}_{t}$$

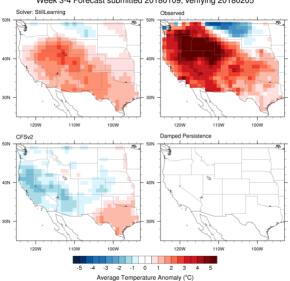
the long-term average over 1981-2010 for the month-day d

- observed anomaly: $\mathbf{a}_t = \mathbf{y}_t \mathbf{c}_{\text{monthday}(t)}$
- Given a forecast $\hat{\mathbf{y}}_t$, or equivalently, forecast anomalies $\hat{\mathbf{a}}_t = \hat{\mathbf{y}}_t \mathbf{c}_{\text{monthday}(t)}$, the cosine similarity or *skill* is

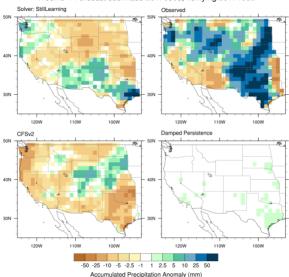
skill
$$(\hat{\mathbf{a}}_t, \mathbf{a}_t) = \cos(\hat{\mathbf{a}}_t, \mathbf{a}_t) = \frac{\langle \hat{\mathbf{a}}_t, \mathbf{a}_t \rangle}{\|\hat{\mathbf{a}}_t\|_2 \|\mathbf{a}_t\|_2}$$

Highest average skill over the contest period = winner

Benchmarks: debiased CFSv2 and "damped persistence"



Week 3-4 Forecast submitted 20180109, verifying 20180205



Week 3-4 Forecast submitted 20170905, verifying 20171002

Forecast Rodeo		Conclusion

Our dataset

► No data provided!

Introduction	Forecast Rodeo	Dataset	Models	Results	Conclusion
Our dataset					
Our dataset					
No d	lata provided!				

▶ Gathered historical data on various weather variables, 1980 to present

	Forecast Rodeo		
0			
Our dataset			

- No data provided!
- Gathered historical data on various weather variables, 1980 to present
 - temperature
 - precipitation
 - sea surface temperature
 - sea ice concentration
 - multivariate El Niño / Southern Oscillation index
 - Madden-Julian oscillation
 - relative humidity
 - pressure
 - geopotential height
 - historical NMME forecasts

	Forecast Rodeo		
0			
Our dataset			

- No data provided!
- Gathered historical data on various weather variables, 1980 to present
 - temperature
 - precipitation
 - sea surface temperature
 - sea ice concentration
 - multivariate El Niño / Southern Oscillation index
 - Madden-Julian oscillation
 - relative humidity
 - pressure
 - geopotential height
 - historical NMME forecasts
- Some are spatiotemporal, some are only temporal

Introduction	Forecast Rodeo	Dataset	Models	Results	Conclusion
Our dataset					

This was an enormous amount of work (seriously)

	Dataset		
Our dataset			
Our dataset			

- This was an enormous amount of work (seriously)
- Postprocessing and transformation

	Dataset		
Our dataset			
Our dataset			

- This was an enormous amount of work (seriously)
- Postprocessing and transformation
 - aggregated to two-week averages or sums
 - PCAed some variables to reduce dimensionality down to 3 principal components
 - chose 1-3 fixed lags for each variable according to forecast horizon, data availability

	Dataset		
Our dataset			

- This was an enormous amount of work (seriously)
- Postprocessing and transformation
 - aggregated to two-week averages or sums
 - PCAed some variables to reduce dimensionality down to 3 principal components
 - chose 1-3 fixed lags for each variable according to forecast horizon, data availability
- Data processing challenges: weird data coding, weird data formats, huge data, inconsistent/untimely data updates, real-time processing

	Dataset		
Our dataset			

- This was an enormous amount of work (seriously)
- Postprocessing and transformation
 - aggregated to two-week averages or sums
 - PCAed some variables to reduce dimensionality down to 3 principal components
 - chose 1-3 fixed lags for each variable according to forecast horizon, data availability
- Data processing challenges: weird data coding, weird data formats, huge data, inconsistent/untimely data updates, real-time processing
- Statistical challenges: spatiotemporal data, correlated predictors, complex dependence structure (careful holdout for cross-validation), non-standard loss function

	Dataset		
Our dataset			

- This was an enormous amount of work (seriously)
- Postprocessing and transformation
 - aggregated to two-week averages or sums
 - PCAed some variables to reduce dimensionality down to 3 principal components
 - chose 1-3 fixed lags for each variable according to forecast horizon, data availability
- Data processing challenges: weird data coding, weird data formats, huge data, inconsistent/untimely data updates, real-time processing
- Statistical challenges: spatiotemporal data, correlated predictors, complex dependence structure (careful holdout for cross-validation), non-standard loss function
- SubseasonalRodeo Dataset: https://doi.org/10.7910/DVN/IHBANG

	Dataset		
Data matrix			

lat 47 47 47 48 :	lon 260 261 262 236	date 1979-02-09 1979-02-09 1979-02-09 1979-02-09	rhum_shift30 86.539415 89.957313 92.553695 93.731037 :	pres_shift30 96061.320731 96419.183454 97493.990932 97277.973493	· · · · · · · · · · ·	target -18.464830 -18.329887 -18.289105 2.575200 :	
:	:	:	:	:		:	

 $J_{10^{6} \times 30}$

		Models	Conclusion
0			
Our models			

► Two regression models

		Models	Conclusion
Our models			

- Two regression models
 - MultiLLR (local linear regression with multitask model selection): uses lagged predictors based on all weather variables, chosen using multitask model selection tailored to the cosine similarity objective
 - AutoKNN (k-nearest-neighbors autoregression): uses lagged temperature or precipitation only, and a skill-specific form of nearest neighbor modeling

		Models	
Our models			

- Two regression models
 - MultiLLR (local linear regression with multitask model selection): uses lagged predictors based on all weather variables, chosen using multitask model selection tailored to the cosine similarity objective
 - AutoKNN (k-nearest-neighbors autoregression): uses lagged temperature or precipitation only, and a skill-specific form of nearest neighbor modeling
- Ensemble of the two models performs better than either model individually

	Models	Conclusion

> Subset the training data to dates within 8 weeks of the target date to be predicted

	Models	Conclusion

- Subset the training data to dates within 8 weeks of the target date to be predicted
 - This is the "local" part

	Models	Conclusion

- Subset the training data to dates within 8 weeks of the target date to be predicted
 - This is the "local" part
- Using backward stepwise selection with linear regression subroutine, choose a common set of relevant predictors for all grid points

	Models	

- Subset the training data to dates within 8 weeks of the target date to be predicted
 - This is the "local" part
- Using backward stepwise selection with linear regression subroutine, choose a common set of relevant predictors for all grid points
 - This is the "linear regression with multitask model selection" part
 - Don't expect all features to be relevant at all times of year

	Models	

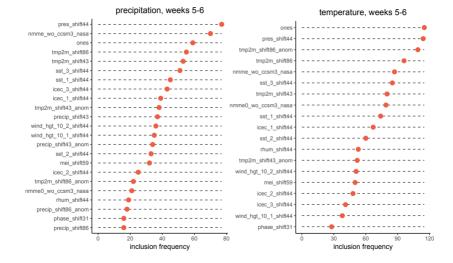
- Subset the training data to dates within 8 weeks of the target date to be predicted
 - This is the "local" part
- Using backward stepwise selection with linear regression subroutine, choose a common set of relevant predictors for all grid points
 - This is the "linear regression with multitask model selection" part
 - Don't expect all features to be relevant at all times of year
- Backward stepwise has to be customized

	Models	

- Subset the training data to dates within 8 weeks of the target date to be predicted
 - This is the "local" part
- Using backward stepwise selection with linear regression subroutine, choose a common set of relevant predictors for all grid points
 - This is the "linear regression with multitask model selection" part
 - Don't expect all features to be relevant at all times of year
- Backward stepwise has to be customized
 - At each step, remove variable that decreases predictive performance the least
 - Predictive performance is the *leave-one-year-out cross-validated cosine similarity* on the target date's day of year, averaged across all historical years
 - To properly leave one year out around t, need to hold out from 4 weeks before t to 48 weeks after t

	Models	

Inclusion frequencies of candidate variables



	Models	Conclusion

AutoKNN: Multitask *k*-nearest-neighbor autoregression

▶ For each target date t, find the 20 most similar historical dates by looking at cosine similarity between anomaly trajectory in the 60 days leading up to t and leading up to each historical date

	Models	Conclusion

AutoKNN: Multitask *k*-nearest-neighbor autoregression

- ▶ For each target date *t*, find the 20 most similar historical dates by looking at cosine similarity between anomaly trajectory in the 60 days leading up to *t* and leading up to each historical date
- ► Call the anomalies of the 20 most similar historical dates knn1 through knn20

	Models	Conclusion

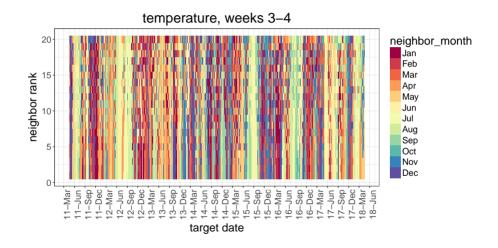
AutoKNN: Multitask *k*-nearest-neighbor autoregression

- For each target date t, find the 20 most similar historical dates by looking at cosine similarity between anomaly trajectory in the 60 days leading up to t and leading up to each historical date
- Call the anomalies of the 20 most similar historical dates knn1 through knn20
- Perform weighted local linear regression using knn1 through knn20 and fixed lagged measurements of temperature or precipitation to predict future anomaly

Introduction	Forecast Rodeo	Dataset	Models	Results	Conclusion
Learned near	est neighbors				
	Precipitation		Tempe	rature	
	and constants a server in target Jul Server Aug So	and the second s		torum minutes	

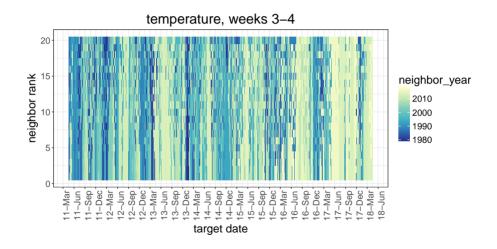
		Models	

Learned nearest neighbors



	Models	

Learned nearest neighbors



	Models	Conclusion

Ensemble of the two models

• We ensemble by averaging the ℓ_2 -normalized forecasted anomalies:

$$\hat{\boldsymbol{a}}_{\mathrm{ensemble}} = \frac{1}{2} \frac{\hat{\boldsymbol{a}}_{\mathrm{LLR}}}{\|\hat{\boldsymbol{a}}_{\mathrm{LLR}}\|_2} + \frac{1}{2} \frac{\hat{\boldsymbol{a}}_{\mathrm{KNN}}}{\|\hat{\boldsymbol{a}}_{\mathrm{KNN}}\|_2}$$

	Models	

Ensemble of the two models

• We ensemble by averaging the ℓ_2 -normalized forecasted anomalies:

$$\boldsymbol{\hat{a}}_{\mathrm{ensemble}} = \frac{1}{2} \frac{\boldsymbol{\hat{a}}_{\mathrm{LLR}}}{\|\boldsymbol{\hat{a}}_{\mathrm{LLR}}\|_2} + \frac{1}{2} \frac{\boldsymbol{\hat{a}}_{\mathrm{KNN}}}{\|\boldsymbol{\hat{a}}_{\mathrm{KNN}}\|_2}$$

This is guaranteed to improve the average skill, thanks to...

		Models	
Ensemble of	the two models		

• We ensemble by averaging the ℓ_2 -normalized forecasted anomalies:

$$\hat{\boldsymbol{a}}_{\mathrm{ensemble}} = \frac{1}{2} \frac{\hat{\boldsymbol{a}}_{\mathrm{LLR}}}{\|\hat{\boldsymbol{a}}_{\mathrm{LLR}}\|_2} + \frac{1}{2} \frac{\hat{\boldsymbol{a}}_{\mathrm{KNN}}}{\|\hat{\boldsymbol{a}}_{\mathrm{KNN}}\|_2}$$

This is guaranteed to improve the average skill, thanks to...

Proposition

Consider an observed anomaly vector **a** and *m* distinct forecast anomaly vectors $(\hat{\mathbf{a}}_i)_{i=1}^m$. For any vector of weights $\mathbf{p} \in \mathbb{R}^m$ with $\sum_{i=1}^m p_i = 1$ and $p_i \ge 0$, let

$$ar{\mathbf{a}}_{(\mathbf{p})} = \sum_{i=1}^m p_i rac{\hat{\mathbf{a}}_i}{\|\hat{\mathbf{a}}_i\|}$$

be the weighted average of the ℓ_2 -normalized forecast anomalies. Then,

$$\left|\sum_{i=1}^{m} p_i \cos(\hat{\mathbf{a}}_i, \mathbf{a})\right| \leq |\cos(\bar{\mathbf{a}}_{(p)}, \mathbf{a})|.$$

		Results	
Results			

- In the contest period (2017-2018), our models beat both of the contest baselines (and the top competitor) by a lot
 - unfortunately, only arrived at these model late in the competition

Introduction Forecast Rodeo Dataset Models Res	lts Conclusion
Results	

- In the contest period (2017-2018), our models beat both of the contest baselines (and the top competitor) by a lot
 - unfortunately, only arrived at these model late in the competition
- ▶ In a historical evaluation period (2011-2017), our models beat a reconstructed baseline by a lot

		Results	
Results			

- In the contest period (2017-2018), our models beat both of the contest baselines (and the top competitor) by a lot
 - unfortunately, only arrived at these model late in the competition
- ▶ In a historical evaluation period (2011-2017), our models beat a reconstructed baseline by a lot
- Ensembling the two models helps significantly

Dataset

N

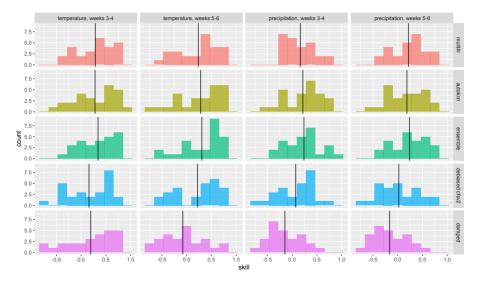
Results

Contest period, 2017-2018

task	LLR	KNN	ensemble	cfsv2	damped	top competitor
temp, weeks 3-4	0.2856	0.2807	0.3414	0.1589	0.1952	0.2855
temp, weeks 5-6	0.2371	0.2817	0.3077	0.2192	-0.0762	0.2357
precip, weeks 3-4	0.1675	0.2156	0.2388	0.0713	-0.1463	0.2144
precip, weeks 5-6	0.2219	0.1870	0.2412	0.0227	-0.1613	0.2162

		Results	Conclusion

Contest period, 2017-2018



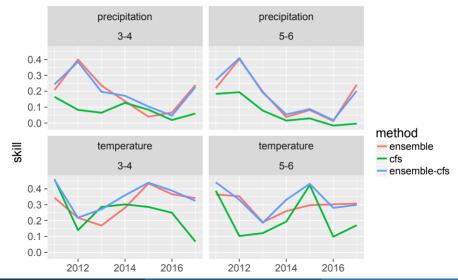
Results

Historical evaluation period, 2011-2017

task	LLR	KNN	ensemble	cfsv2	ens-cfsv2
temp, weeks 3-4	0.2230	0.3111	0.3073	0.2557	0.3508
	0.2204		0.2962	0.2142	0.3279
precip, weeks 3-4	0.1573	0.1513	0.1893	0.0860	0.1964
precip, weeks 5-6			0.1703	0.0691	0.1755

		Results	

Historical evaluation period, 2011-2017



Paulo Orenstein

			Conclusion
Conclusion			

 Subseasonal Forecasting is an important and largely unsolved problem in weather prediction

			Conclusion
Conclusion			

- Subseasonal Forecasting is an important and largely unsolved problem in weather prediction
- Simple statistical models can significantly improve subseasonal forecasting compared to physics-based models

			Conclusion
Construction			
Conclusion			

- Subseasonal Forecasting is an important and largely unsolved problem in weather prediction
- Simple statistical models can significantly improve subseasonal forecasting compared to physics-based models
- ► Ensembling statistical and physics-based forecasts produce further improvements

			Conclusion
Conclusion			

- Subseasonal Forecasting is an important and largely unsolved problem in weather prediction
- Simple statistical models can significantly improve subseasonal forecasting compared to physics-based models
- Ensembling statistical and physics-based forecasts produce further improvements
- We've released the dataset on Dataverse (https://doi.org/10.7910/DVN/IHBANG) and our paper on arXiv (https://arxiv.org/abs/1809.07394)

			Conclusion
Conclusion			

- Conclusion
 - Subseasonal Forecasting is an important and largely unsolved problem in weather prediction
 - Simple statistical models can significantly improve subseasonal forecasting compared to physics-based models
 - Ensembling statistical and physics-based forecasts produce further improvements
 - We've released the dataset on Dataverse (https://doi.org/10.7910/DVN/IHBANG) and our paper on arXiv (https://arxiv.org/abs/1809.07394)
 - More sophisticated modeling approaches can almost certainly do even better. Try your own!