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Introduction Forecast Rodeo Dataset Models Results Conclusion

Goals

I Bring awareness to subseasonal forecasting, an important problem for water man-
agement and weather extremes

I Introduce an example of a crowdsourced, social good project

I Present the SubseasonalRodeo Dataset

I Discuss effective machine learning methods for the problem

multitask model selection

weighted locally linear regression

ensembling

I Encourage you to improve on our results!
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Introduction Forecast Rodeo Dataset Models Results Conclusion

Motivation

I Long-term weather prediction (> 2 months): hopeless, use historical climate

I Short-term weather prediction (< 2 weeks): accurate predictions possible using
physics-based models

I Medium-term (subseasonal) weather prediction: physics-based models are no longer
accurate

I Subseasonal forecasts are important

allocate water resources
manage wildfires
prepare for droughts, floods and other weather extremes
crop planting, irrigation scheduling, and fertilizer application

I Can statistical/ML/non-physics models extend the forecast horizon beyond short-
term prediction?
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“During the past eight years, every state in the Western United States
has experienced drought that has affected the economy both locally and
nationally through impacts to agricultural production, water supply, and
energy.”

David Raff, USBR
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Forecasting systems in use now

I CFSv2 (Climate Forecasting System, version 2): operational forecasting system for
the US, physics-based model representing “coupled atmosphere-ocean-land surface-
sea ice system”

I NMME (North American Model Ensemble): ensemble of CFSv2 and about 10 other
physics-based models from various North American modeling centers

I Both are examples of Numerical Weather Prediction models

simulate future weather using partial differential equations and supercomputers
initialized many times with current weather conditions; use the average of predictions
initial error doubles every 5 days

I Can we do better?
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Subseasonal Climate Forecast Rodeo

I Year-long, real-time forecasting competition sponsored by US Bureau of Reclama-
tion and NOAA

I Four categories

two variables: two-week average temperature and two-week accumulated precipitation
two forecasting horizons: 3-4 weeks out and 5-6 weeks out

I Submission frequency: every two weeks

first submission: April 18, 2017
last submission: April 3, 2018

I Region: 17 states in western US, G = 514 grid points
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Forecast Rodeo region
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Contest scoring/objective

I For the two-week period beginning on t

observed average temperature or total precipitation: yt ∈ RG

climatology for a month-day combination d :

cd =
1
30

∑
t : monthday(t)=d ,
1981≤year(t)≤2010

yt

the long-term average over 1981-2010 for the month-day d
observed anomaly: at = yt − cmonthday(t)

I Given a forecast ŷt , or equivalently, forecast anomalies ât = ŷt − cmonthday(t), the
cosine similarity or skill is

skill(ât , at) = cos(ât , at) =
〈ât , at〉
‖ât‖2‖at‖2

Highest average skill over the contest period = winner

I Benchmarks: debiased CFSv2 and “damped persistence”
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cosine similarity or skill is

skill(ât , at) = cos(ât , at) =
〈ât , at〉
‖ât‖2‖at‖2

Highest average skill over the contest period = winner

I Benchmarks: debiased CFSv2 and “damped persistence”

Paulo Orenstein Improving Subseasonal Forecasting Stanford University 8 / 27



Introduction Forecast Rodeo Dataset Models Results Conclusion

Contest scoring/objective

I For the two-week period beginning on t
observed average temperature or total precipitation: yt ∈ RG

climatology for a month-day combination d :

cd =
1
30

∑
t : monthday(t)=d ,
1981≤year(t)≤2010

yt

the long-term average over 1981-2010 for the month-day d
observed anomaly: at = yt − cmonthday(t)
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Introduction Forecast Rodeo Dataset Models Results Conclusion

Our dataset

I No data provided!

I Gathered historical data on various weather variables, 1980 to present

temperature

precipitation

sea surface temperature

sea ice concentration

multivariate El Niño / Southern Oscillation index

Madden-Julian oscillation

relative humidity

pressure

geopotential height

historical NMME forecasts

I Some are spatiotemporal, some are only temporal
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Introduction Forecast Rodeo Dataset Models Results Conclusion

Our dataset

I This was an enormous amount of work (seriously)

I Postprocessing and transformation

aggregated to two-week averages or sums

PCAed some variables to reduce dimensionality down to 3 principal components

chose 1-3 fixed lags for each variable according to forecast horizon, data availability

I Data processing challenges: weird data coding, weird data formats, huge data,
inconsistent/untimely data updates, real-time processing

I Statistical challenges: spatiotemporal data, correlated predictors, complex depen-
dence structure (careful holdout for cross-validation), non-standard loss function

I SubseasonalRodeo Dataset: https://doi.org/10.7910/DVN/IHBANG
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Data matrix



lat lon date rhum_shift30 pres_shift30 . . . target
47 260 1979-02-09 86.539415 96061.320731 . . . -18.464830
47 261 1979-02-09 89.957313 96419.183454 . . . -18.329887
47 262 1979-02-09 92.553695 97493.990932 . . . -18.289105
48 236 1979-02-09 93.731037 97277.973493 . . . 2.575200
...

...
...

...
...

...


106×30
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Our models

I Two regression models

MultiLLR (local linear regression with multitask model selection): uses lagged predic-
tors based on all weather variables, chosen using multitask model selection tailored
to the cosine similarity objective

AutoKNN (k-nearest-neighbors autoregression): uses lagged temperature or precipi-
tation only, and a skill-specific form of nearest neighbor modeling

I Ensemble of the two models performs better than either model individually

Paulo Orenstein Improving Subseasonal Forecasting Stanford University 14 / 27



Introduction Forecast Rodeo Dataset Models Results Conclusion

Our models

I Two regression models

MultiLLR (local linear regression with multitask model selection): uses lagged predic-
tors based on all weather variables, chosen using multitask model selection tailored
to the cosine similarity objective

AutoKNN (k-nearest-neighbors autoregression): uses lagged temperature or precipi-
tation only, and a skill-specific form of nearest neighbor modeling

I Ensemble of the two models performs better than either model individually

Paulo Orenstein Improving Subseasonal Forecasting Stanford University 14 / 27



Introduction Forecast Rodeo Dataset Models Results Conclusion

Our models

I Two regression models

MultiLLR (local linear regression with multitask model selection): uses lagged predic-
tors based on all weather variables, chosen using multitask model selection tailored
to the cosine similarity objective

AutoKNN (k-nearest-neighbors autoregression): uses lagged temperature or precipi-
tation only, and a skill-specific form of nearest neighbor modeling

I Ensemble of the two models performs better than either model individually

Paulo Orenstein Improving Subseasonal Forecasting Stanford University 14 / 27



Introduction Forecast Rodeo Dataset Models Results Conclusion

MultiLLR: Local linear regression with multitask model selection

I Subset the training data to dates within 8 weeks of the target date to be predicted

This is the “local” part

I Using backward stepwise selection with linear regression subroutine, choose a com-
mon set of relevant predictors for all grid points

This is the “linear regression with multitask model selection” part

Don’t expect all features to be relevant at all times of year

I Backward stepwise has to be customized

At each step, remove variable that decreases predictive performance the least

Predictive performance is the leave-one-year-out cross-validated cosine similarity on
the target date’s day of year, averaged across all historical years

To properly leave one year out around t, need to hold out from 4 weeks before t to
48 weeks after t
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Inclusion frequencies of candidate variables

precip_shift86
phase_shift31

precip_shift86_anom
rhum_shift44

nmme0_wo_ccsm3_nasa
tmp2m_shift86_anom

icec_2_shift44
mei_shift59

sst_2_shift44
precip_shift43_anom

wind_hgt_10_1_shift44
wind_hgt_10_2_shift44

precip_shift43
tmp2m_shift43_anom

icec_1_shift44
icec_3_shift44
sst_1_shift44
sst_3_shift44
tmp2m_shift43
tmp2m_shift86

ones
nmme_wo_ccsm3_nasa

pres_shift44

0 20 40 60 80
inclusion frequency

precipitation, weeks 5-6

phase_shift31

wind_hgt_10_1_shift44

icec_3_shift44

icec_2_shift44

mei_shift59

wind_hgt_10_2_shift44

tmp2m_shift43_anom

rhum_shift44

sst_2_shift44

icec_1_shift44

sst_1_shift44

nmme0_wo_ccsm3_nasa

tmp2m_shift43

sst_3_shift44

nmme_wo_ccsm3_nasa

tmp2m_shift86

tmp2m_shift86_anom

pres_shift44

ones

0 30 60 90 120
inclusion frequency

temperature, weeks 5-6

Paulo Orenstein Improving Subseasonal Forecasting Stanford University 16 / 27



Introduction Forecast Rodeo Dataset Models Results Conclusion

AutoKNN: Multitask k-nearest-neighbor autoregression

I For each target date t, find the 20 most similar historical dates by looking at cosine
similarity between anomaly trajectory in the 60 days leading up to t and leading up
to each historical date

I Call the anomalies of the 20 most similar historical dates knn1 through knn20

I Perform weighted local linear regression using knn1 through knn20 and fixed lagged
measurements of temperature or precipitation to predict future anomaly
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Ensemble of the two models

I We ensemble by averaging the `2-normalized forecasted anomalies:

âensemble =
1
2

âLLR

‖âLLR‖2
+

1
2

âKNN

‖âKNN‖2

I This is guaranteed to improve the average skill, thanks to. . .

Proposition

Consider an observed anomaly vector a and m distinct forecast anomaly vectors
(âi)

m
i=1. For any vector of weights p ∈ Rm with

∑m
i=1 pi = 1 and pi ≥ 0, let

ā(p) =

m∑
i=1

pi
âi

‖âi‖

be the weighted average of the `2-normalized forecast anomalies. Then,∣∣∣∣ m∑
i=1

pi cos(âi , a)

∣∣∣∣ ≤ | cos(ā(p), a)|.
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âi

‖âi‖
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Results

I In the contest period (2017-2018), our models beat both of the contest baselines
(and the top competitor) by a lot

unfortunately, only arrived at these model late in the competition

I In a historical evaluation period (2011-2017), our models beat a reconstructed
baseline by a lot

I Ensembling the two models helps significantly
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Contest period, 2017-2018

task LLR KNN ensemble cfsv2 damped top competitor

temp, weeks 3-4 0.2856 0.2807 0.3414 0.1589 0.1952 0.2855
temp, weeks 5-6 0.2371 0.2817 0.3077 0.2192 -0.0762 0.2357
precip, weeks 3-4 0.1675 0.2156 0.2388 0.0713 -0.1463 0.2144
precip, weeks 5-6 0.2219 0.1870 0.2412 0.0227 -0.1613 0.2162
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Historical evaluation period, 2011-2017

task LLR KNN ensemble cfsv2 ens-cfsv2

temp, weeks 3-4 0.2230 0.3111 0.3073 0.2557 0.3508
temp, weeks 5-6 0.2204 0.2810 0.2962 0.2142 0.3279
precip, weeks 3-4 0.1573 0.1513 0.1893 0.0860 0.1964
precip, weeks 5-6 0.1312 0.1403 0.1703 0.0691 0.1755
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Historical evaluation period, 2011-2017
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Conclusion

I Subseasonal Forecasting is an important and largely unsolved problem in weather
prediction

I Simple statistical models can significantly improve subseasonal forecasting com-
pared to physics-based models

I Ensembling statistical and physics-based forecasts produce further improvements

I We’ve released the dataset on Dataverse (https://doi.org/10.7910/DVN/IHBANG)
and our paper on arXiv (https://arxiv.org/abs/1809.07394)

I More sophisticated modeling approaches can almost certainly do even better. Try
your own!
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