Scalable MCMC for Bayes Shrinkage Priors

Paulo Orenstein
July 2, 2018

Stanford University

Joint work with James Johndrow and Anirban Bhattacharya
Consider the high-dimensional setting: predict a vector $y \in \mathbb{R}^n$ from a set of features $X \in \mathbb{R}^{n \times p}$, with $p \gg n$.
Consider the high-dimensional setting: predict a vector $y \in \mathbb{R}^n$ from a set of features $X \in \mathbb{R}^{n \times p}$, with $p \gg n$.

Assume a sparse Gaussian linear model

$$y = X\beta + \epsilon, \quad \epsilon \sim N(0, \sigma^2 I_n),$$

with $\beta_j = 0$ for many j.

How can we perform prediction and inference?
Introduction

- Consider the high-dimensional setting: predict a vector $y \in \mathbb{R}^n$ from a set of features $X \in \mathbb{R}^{n \times p}$, with $p \gg n$.

- Assume a sparse Gaussian linear model

 $$y = X\beta + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2 I_n),$$

 with $\beta_j = 0$ for many j.

- How can we perform prediction and inference?
Consider the high-dimensional setting: predict a vector $y \in \mathbb{R}^n$ from a set of features $X \in \mathbb{R}^{n \times p}$, with $p \gg n$.

Assume a sparse Gaussian linear model

$$y = X\beta + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2 I_n),$$

with $\beta_j = 0$ for many j.

How can we perform prediction and inference?

- Lasso
Introduction

- Consider the high-dimensional setting: predict a vector $y \in \mathbb{R}^n$ from a set of features $X \in \mathbb{R}^{n \times p}$, with $p \gg n$.

- Assume a sparse Gaussian linear model

 $$y = X\beta + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2 I_n),$$

 with $\beta_j = 0$ for many j.

- How can we perform prediction and inference?
 - Lasso
 - Point mass mixture prior
Introduction

Consider the high-dimensional setting: predict a vector $y \in \mathbb{R}^n$ from a set of features $X \in \mathbb{R}^{n \times p}$, with $p \gg n$.

Assume a sparse Gaussian linear model

$$y = X\beta + \epsilon, \quad \epsilon \sim N(0, \sigma^2 I_n),$$

with $\beta_j = 0$ for many j.

How can we perform prediction and inference?

- Lasso, *but*: convex relaxation; one parameter for sparsity and shrinkage
- Point mass mixture prior
Introduction

Consider the high-dimensional setting: predict a vector $y \in \mathbb{R}^n$ from a set of features $X \in \mathbb{R}^{n \times p}$, with $p \gg n$.

Assume a sparse Gaussian linear model

$$y = X\beta + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2 I_n),$$

with $\beta_j = 0$ for many j.

How can we perform prediction and inference?

- Lasso, but: convex relaxation; one parameter for sparsity and shrinkage
- Point mass mixture prior, but: computation is prohibitive
Can we find a continuous prior that behaves like the point mass mixture prior?
Introduction

- Can we find a continuous prior that behaves like the point mass mixture prior?

- Desiderata:
 - adaptive to sparsity
 - easy to compute
 - good predictive performance
 - good frequentist properties
 - decent compromise between statistical and computational goals
Introduction

- Can we find a continuous prior that behaves like the point mass mixture prior?

- Desiderata:
 - adaptive to sparsity
 - easy to compute
 - good predictive performance
 - good frequentist properties
 - decent compromise between statistical and computational goals

- Global-local priors can achieve this (with some qualifications).
Introduction

- Can we find a continuous prior that behaves like the point mass mixture prior?

- Desiderata:
 - adaptive to sparsity
 - easy to compute
 - good predictive performance
 - good frequentist properties
 - decent compromise between statistical and computational goals

- Global-local priors can achieve this (with some qualifications).

- But... they are still slow.
 - Lasso: \(n \approx 1,000, p \approx 1,000,000 \);
 - Global-local: \(n \approx 1,000, p \approx 1,000 \).
The Horseshoe model*:

\[y_i \mid \beta_j, \lambda_j, \tau, \sigma^2 \overset{\text{ind}}{\sim} N(x_i \beta, \sigma^2) \]

\[\beta_j \overset{\text{ind}}{\sim} N(0, \tau^2 \lambda_j^2) \]

\[\lambda_j \overset{\text{ind}}{\sim} \text{Cauchy}_+(0, 1) \]

\[\tau \sim \text{Cauchy}_+(0, 1) \]

\[\sigma^2 \sim \text{InvGamma}(a_0/2, b_0/2) \]

* [Carvalho et. al, 2010]
Model

The Horseshoe model*:

\[y_i \mid \beta_j, \lambda_j, \tau, \sigma^2 \overset{\text{ind}}{\sim} N(x_i \beta, \sigma^2) \]

\[\beta_j \overset{\text{ind}}{\sim} N(0, \tau^2 \lambda_j^2) \]

\[\lambda_j \overset{\text{ind}}{\sim} \text{Cauchy}_+(0, 1) \]

\[\tau \sim \text{Cauchy}_+(0, 1) \]

\[\sigma^2 \sim \text{InvGamma}(a_0/2, b_0/2) \]

* [Carvalho et. al, 2010]
The Horseshoe model*:

\[y_i \mid \beta_j, \lambda_j, \tau, \sigma^2 \ind \sim N(x_i \beta, \sigma^2) \]

\[\beta_j \ind \sim N(0, \tau^2 \lambda_j^2) \]

\[\lambda_j \ind \sim \text{Cauchy}_+ (0, 1) \]

\[\tau \sim \text{Cauchy}_+ (0, 1) \]

\[\sigma^2 \sim \text{InvGamma}(a_0/2, b_0/2) \]

* [Carvalho et. al, 2010]
Model

The Horseshoe model*:

\[y_i \mid \beta_j, \lambda_j, \tau, \sigma^2 \overset{\text{ind}}{\sim} N(x_i \beta, \sigma^2) \]

\[\beta_j \overset{\text{ind}}{\sim} N(0, \tau^2 \lambda_j^2) \]

\[\lambda_j \overset{\text{ind}}{\sim} \text{Cauchy}_+(0, 1) \]

\[\tau \overset{\text{Cauchy}}{\sim} (0, 1) \]

\[\sigma^2 \sim \text{InvGamma}(a_0/2, b_0/2) \]

[Carvalho et. al, 2010]
Model

- The Horseshoe model*:

\[y_i \mid \beta_j, \lambda_j, \tau, \sigma^2 \overset{\text{ind}}{\sim} N(x_i \beta, \sigma^2) \]

\[\beta_j \overset{\text{ind}}{\sim} N(0, \tau^2 \lambda_j^2) \]

\[\lambda_j \overset{\text{ind}}{\sim} \text{Cauchy}_+(0, 1) \]

\[\tau \overset{}{\sim} \text{Cauchy}_+(0, 1) \]

\[\sigma^2 \overset{}{\sim} \text{InvGamma}(a_0/2, b_0/2) \]

* [Carvalho et. al, 2010]
Model

- Horseshoe has other good frequentist properties.
Model

- Horseshoe has other good frequentist properties.
- It achieves the minimax-adaptive risk for squared error loss up to a constant.
Model

- Horseshoe has other good frequentist properties.

- It achieves the minimax-adaptive risk for squared error loss up to a constant.

- Suppose $X = I$, $\|\beta\|_0 = s_n$, then [van der Pas et al., 2014],

\[\sup_{\beta : \|\beta\|_0 \leq s_n} \mathbb{E}_\beta \left[\|\hat{\beta}_{HS} - \beta\|_2^2 \right] \leq 4\sigma^2 s_n \log \frac{n}{s_n} \cdot (1 + o(1)), \]

while, for any estimator $\hat{\beta}$, [Donoho et al., 1992] shows

\[\sup_{\beta : \|\beta\|_0 \leq s_n} \mathbb{E}_\beta \left[\|\hat{\beta} - \beta\|_2^2 \right] \geq 2\sigma^2 s_n \log \frac{n}{s_n} \cdot (1 + o(1)). \]
Computation

- State-of-the-art: (i) $\tau \mid \beta, \sigma^2, \lambda$, (ii) $(\beta, \sigma^2) \mid \tau, \lambda$, (iii) slice sampling for λ.
Computation

- State-of-the-art: (i) $\tau | \beta, \sigma^2, \lambda$, (ii) $(\beta, \sigma^2) | \tau, \lambda$, (iii) slice sampling for λ. But...
Computation

- State-of-the-art: (i) $\tau | \beta, \sigma^2, \lambda$, (ii) $(\beta, \sigma^2) | \tau, \lambda$, (iii) slice sampling for λ. *But...*

- We scale the model with two ideas.
Computation

- State-of-the-art: (i) $\tau \mid \beta, \sigma^2, \lambda$, (ii) $(\beta, \sigma^2) \mid \tau, \lambda$, (iii) slice sampling for λ. *But...*

- We scale the model with two ideas.

- First idea: **block** (β, σ^2, τ) to improve *mixing*;
 1. sample $(\beta, \sigma^2, \tau) \mid \lambda$ by block sampling: $\tau \mid \lambda$, then $\sigma^2 \mid \tau, \lambda$, and finally $\beta \mid \sigma^2, \tau, \lambda$;
 2. sample $\lambda \mid \beta, \sigma^2$ using slice sampling.
Computation

- State-of-the-art: (i) $\tau | \beta, \sigma^2, \lambda$, (ii) $(\beta, \sigma^2) | \tau, \lambda$, (iii) slice sampling for λ. *But...*

- We scale the model with two ideas.

- First idea: **block** (β, σ^2, τ) to improve *mixing*;
 1. sample $(\beta, \sigma^2, \tau) | \lambda$ by block sampling: $\tau | \lambda$, then $\sigma^2 | \tau, \lambda$, and finally $\beta | \sigma^2, \tau, \lambda$;
 2. sample $\lambda | \beta, \sigma^2$ using slice sampling.

- Second idea: **truncate** some of the matrices involved to improve the *computational cost per step*.
Gibbs sampling

Let $M = X(\text{diag}(\xi \eta))^{-1}X^T + I$, $\xi = \tau^{-2}$, $\eta_j = \lambda_j^{-2}$, and **block update**:

- $p(\tau \mid \lambda, y) \propto \frac{1}{\sqrt{\xi(1+\xi)}} |M|^{-1/2} (y^T M^{-1} y + b_0)^{-\frac{n+a_0}{2}}$

- $p(\sigma^2 \mid \tau, \lambda, y) \sim \text{InvGamma} \left(\frac{n+a_0}{2}, \frac{1}{2} \left[y^T M^{-1} y + b_0 \right] \right)$

- $p(\beta \mid \sigma^2, \tau, \lambda, y) \sim N \left((X^T X + \text{diag}(\xi \eta))^{-1} X^T y, \sigma^2 (X^T X + \text{diag}(\xi \eta))^{-1} \right)$

Then perform slice sampling:

- $p(\lambda \mid \beta, \sigma^2, \tau, y)$: (i) $U \mid \eta_j \sim \text{Unif} \left[0, \frac{1}{1+\eta_j} \right]$; (ii) $\eta_j \mid u \sim e^{-\frac{\xi \theta_j}{2\sigma^2} \eta_j \|y\|_{1-u>\eta_j}}$.
Gibbs sampling

Let $M = X(\text{diag}(\xi \eta))^{-1}X^T + I$, $\xi = \tau^{-2}$, $\eta_j = \lambda_j^{-2}$, and **block update:**

- $p(\tau \mid \lambda, y) \propto \frac{1}{\sqrt{\xi(1+\xi)}} |M|^{-1/2} (y^T M^{-1} y + b_0)^{-\frac{n+a_0}{2}}$

- $p(\sigma^2 \mid \tau, \lambda, y) \sim \text{InvGamma} \left(\frac{n+a_0}{2}, \frac{1}{2} \left[y^T M^{-1} y + b_0 \right] \right)$

- $p(\beta \mid \sigma^2, \tau, \lambda, y) \sim N \left((X^T X + \text{diag}(\xi \eta))^{-1} X^T y, \sigma^2 (X^T X + \text{diag}(\xi \eta))^{-1} \right)$

Then perform slice sampling:

- $p(\lambda \mid \beta, \sigma^2, \tau, y)$: (i) $U \mid \eta_j \sim \text{Unif} \left[0, \frac{1}{1+\eta_j} \right]$; (ii) $\eta_j \mid U \sim e^{-\frac{\xi \beta^2 j^2}{2\sigma^2} \eta_j} \mathbb{I}_{[\frac{1}{U} > \eta_j]}$.

Gibbs sampling

Let $M = X(\text{diag}(\xi \eta))^{-1}X^T + I$, $\xi = \tau^{-2}$, $\eta_i = \lambda_j^{-2}$, and **block update:**

- $p(\tau | \lambda, y) \propto \frac{1}{\sqrt{\xi(1+\xi)}} |M|^{-1/2} \left(y^T M^{-1} y + b_0 \right)^{-\frac{n+a_0}{2}}$

- $p(\sigma^2 | \tau, \lambda, y) \sim \text{InvGamma} \left(\frac{n+a_0}{2}, \frac{1}{2} \left[y^T M^{-1} y + b_0 \right] \right)$

- $p(\beta | \sigma^2, \tau, \lambda, y) \sim N \left((X^T X + \text{diag}(\xi \eta))^{-1} X^T y, \sigma^2 (X^T X + \text{diag}(\xi \eta))^{-1} \right)$

Then perform slice sampling:

- $p(\lambda | \beta, \sigma^2, \tau, y)$: (i) $U | \eta_j \sim \text{Unif} \left[0, \frac{1}{1+\eta_j} \right]$; (ii) $\eta_j | u \sim e^{-\frac{\epsilon \theta_j^2}{2\sigma^2} \eta_j^2 \mathbb{I}_{\left\{ \frac{1-u}{u} > \eta_j \right\}}}$.
Gibbs sampling

Let $M = X(\text{diag}(\xi\eta))^{-1}X^T + I$, $\xi = \tau^{-2}$, $\eta_i = \lambda_j^{-2}$, and block update:

\[p(\tau \mid \lambda, y) \propto \frac{1}{\sqrt{\xi(1+\xi)}} |M|^{-1/2} \left(y^T M^{-1} y + b_0 \right)^{-\frac{n+a_0}{2}} \]

\[p(\sigma^2 \mid \tau, \lambda, y) \sim \text{InvGamma} \left(\frac{n+a_0}{2}, \frac{1}{2} \left[y^T M^{-1} y + b_0 \right] \right) \]

\[p(\beta \mid \sigma^2, \tau, \lambda, y) \sim N \left((X^T X + \text{diag}(\xi\eta))^{-1}X^T y, \sigma^2 (X^T X + \text{diag}(\xi\eta))^{-1} \right) \]

Then perform slice sampling:

\[p(\lambda \mid \beta, \sigma^2, \tau, y): \text{(i) } U \mid \eta_j \sim \text{Unif} \left[0, \frac{1}{1+\eta_j} \right]; \text{(ii) } \eta_j \mid u \sim e^{-\frac{\xi \theta_j^2}{2\sigma^2} \left[\eta_j \right]} \left[\frac{1}{u} > \eta_j \right]. \]
Gibbs sampling

Let $M = X(\text{diag}(\xi \eta))^{-1}X^T + I$, $\xi = \tau^{-2}$, $\eta_j = \lambda_j^{-2}$, and **block update**:

- $p(\tau \mid \lambda, y) \propto \frac{1}{\sqrt{\xi(1+\xi)}} |M|^{-1/2} (y^T M^{-1} y + b_0)^{-\frac{n+a_0}{2}}$

- $p(\sigma^2 \mid \tau, \lambda, y) \sim \text{InvGamma} \left(\frac{n+a_0}{2}, \frac{1}{2} \left[y^T M^{-1} y + b_0 \right] \right)$

- $p(\beta \mid \sigma^2, \tau, \lambda, y) \sim N \left((X^T X + \text{diag}(\xi \eta))^{-1}X^T y, \sigma^2 (X^T X + \text{diag}(\xi \eta))^{-1} \right)$

Then perform slice sampling:

- $p(\lambda \mid \beta, \sigma^2, \tau, y)$: (i) $U \mid \eta_j \sim \text{Unif} \left[0, \frac{1}{1+\eta_j} \right]$; (ii) $\eta_j \mid u \sim e^{-\xi \beta^2 \eta_j^2 / 2\sigma^2} \eta_j \mathbb{1}[\frac{1-u}{u} > \eta_j]$.
Let $M = X (\text{diag}(\xi \eta))^{-1} X^T + I$, $\xi = \tau^{-2}$, $\eta_j = \lambda_j^{-2}$, and **block update**:

1. $p(\tau | \lambda, y) \propto \frac{1}{\sqrt{\xi(1+\xi)}} |M|^{-1/2} \left(y^T M^{-1} y + b_0 \right)^{-\frac{n+a_0}{2}}$
2. $p(\sigma^2 | \tau, \lambda, y) \sim \text{InvGamma} \left(\frac{n+a_0}{2}, \frac{1}{2} \left[y^T M^{-1} y + b_0 \right] \right)$
3. $p(\beta | \sigma^2, \tau, \lambda, y) \sim N \left((X^T X + \text{diag}(\xi \eta))^{-1} X^T y, \sigma^2 (X^T X + \text{diag}(\xi \eta))^{-1} \right)$

Then perform slice sampling:

1. $p(\lambda | \beta, \sigma^2, \tau, y)$: (i) $U | \eta_j \sim \text{Unif} \left[0, \frac{1}{1+\eta_j} \right]$; (ii) $\eta_j \mid u \sim e^{-\frac{\xi \beta^2}{2 \sigma^2} \eta_j \mathbb{1}_{[\frac{1}{u} > \eta_j]}}$.

Gibbs sampling
Gibbs sampling

Let $M = X \cdot \text{diag}(\xi \eta)^{-1} X^T + I$, $\xi = \tau^{-2}$, $\eta_j = \lambda_j^{-2}$, and **block update**:

- $p(\tau \mid \lambda, y) \propto \frac{1}{\sqrt{\xi(1+\xi)}} |M|^{-1/2} \left(y^T M^{-1} y + b_0 \right)^{-\frac{n+a_0}{2}}$

- $p(\sigma^2 \mid \tau, \lambda, y) \sim \text{InvGamma} \left(\frac{n+a_0}{2}, \frac{1}{2} \left[y^T M^{-1} y + b_0 \right] \right)$

- $p(\beta \mid \sigma^2, \tau, \lambda, y) \sim N \left((X^T X + \text{diag}(\xi \eta))^{-1} X^T y, \sigma^2 (X^T X + \text{diag}(\xi \eta))^{-1} \right)$

Then perform slice sampling:

- $p(\lambda \mid \beta, \sigma^2, \tau, y)$: (i) $U \mid \eta_j \sim \text{Unif} \left[0, \frac{1}{1+\eta_j} \right]$; (ii) $\eta_j \mid u \sim e^{-\frac{\xi\beta^2}{2\sigma^2}} \eta_j \mathbb{1}_{\frac{1-u}{u} > \eta_j}$.
Markov approximation

- We approximate $M = X \text{diag}((\xi \eta_j)^{-1}) X^T + I$ with
 $$M_\delta = XD_\delta X^T + I, \quad D_\delta = \text{diag}((\xi \eta_j)^{-1}[\xi_{\text{max}} \eta_j]^{-1} > \delta)$$

 for $\delta \ll 1$, and ξ_{max} the maximum of the current and proposed ξ.
Markov approximation

- We approximate $M = X \text{diag}((\xi \eta_j)^{-1}) X^T + I$ with
 $$M_\delta = XD_\delta X^T + I, \quad D_\delta = \text{diag}((\xi \eta_j)^{-1} \mathbb{I}[(\xi_{\text{max}} \eta_j)^{-1} > \delta])$$
 for $\delta \ll 1$, and ξ_{max} the maximum of the current and proposed ξ.

This makes computation much faster.
Markov approximation

- We approximate $M = X \text{diag}(\xi \eta_j^{-1}) X^T + I$ with

$$M_\delta = X D_\delta X^T + I, \quad D_\delta = \text{diag}(\xi \eta_j^{-1} \mathbb{1}_{[(\xi_{\text{max}} \eta_j)^{-1} > \delta]})$$

for $\delta \ll 1$, and ξ_{max} the maximum of the current and proposed ξ.

- This makes computation much faster.
Markov approximation

- We approximate \(M = X\text{diag}((\xi\eta_j)^{-1})X^T + I \) with
 \[
 M_\delta = XD_\delta X^T + I, \quad D_\delta = \text{diag}((\xi\eta_j)^{-1}I[\xi_{\text{max}}\eta_j^{-1} > \delta])
 \]
 for \(\delta \ll 1 \), and \(\xi_{\text{max}} \) the maximum of the current and proposed \(\xi \).

- This makes computation much faster.

Approximating Kernels

Let \(P_\delta(x, \cdot) \) and \(P(x, \cdot) \) denote the Markov operators for the approximate and exact algorithms, with \(x = (\beta, \sigma^2, \tau, \lambda) \) the entire state vector. Then

\[
\sup_x \|P_\delta(x, \cdot) - P(x, \cdot)\|_{TV} \leq \sqrt{\delta}\|X\|\sqrt{a + \frac{n + a_0}{b_0} + \frac{n}{2} \frac{\|y\|^2}{b_0}} + O(\delta),
\]

for sufficiently small \(\delta > 0 \).
Simulation

- We simulate data as follows:

\[x_i \overset{iid}{\sim} N_p(0, \Sigma) \]
\[y_i \sim N(x_i \beta, 4) \]

\[\beta_j = \begin{cases}
2^{-\left(\frac{j}{4} - \frac{9}{4}\right)} & \text{if } j < 24, \\
0 & \text{if } j \geq 24.
\end{cases} \]
Simulation

- We simulate data as follows:

\[
x_i \overset{iid}{\sim} N_p(0, \Sigma) \\
y_i \sim N(x_i\beta, 4) \\
\beta_j = \begin{cases}
2^{-(j/4-9/4)} & \text{if } j < 24, \\
0 & \text{if } j \geq 24.
\end{cases}
\]

- There are nulls, clear non-nulls, and some subtle non-nulls.
Simulation

- We simulate data as follows:

\[
\begin{align*}
 x_i & \sim \text{iid } N_p(0, \Sigma) \\
 y_i & \sim N(x_i \beta, 4) \\
 \beta_j & = \begin{cases}
 2^{-(j/4-9/4)} & \text{if } j < 24, \\
 0 & \text{if } j \geq 24.
 \end{cases}
\end{align*}
\]

- There are nulls, clear non-nulls, and some subtle non-nulls.

- We consider both $\Sigma = I$ (independent design) and $\Sigma_{ij} = 0.9^{|i-j|}$ (correlated design).
Autocorrelation

Autocorrelation for \(\log(\xi) = -2 \log \tau \)
Effective samples per second

- Approximate algorithm is $50 \times$ more efficient with $n = 2,000$ and $p = 20,000$.

![Histograms showing effective samples per second](image)
Accuracy

- Existing algorithms failed to converge, due to numerical underflow.

Trace plots for $-2\log(\sigma)$ and $\log(\xi) = -2\log(\tau)$; truth in red
In terms of MSE, the approximation costs us little.
Effective sample sizes seem independent of \(n \) and \(p \).
Dependence on p and n

- Effective sample sizes seem independent of n and $p.$
Real application: GWAS

- $n = 2267$ observations, $p = 98385$ SNPs in the genome of maize.
Real application: GWAS

- $n = 2267$ observations, $p = 98385$ SNPs in the genome of maize.
- X: maize seeds; y: growing degree days to silking (‘growth cycle’)
Real application: GWAS

- $n = 2267$ observations, $p = 98385$ SNPs in the genome of maize.
- X: maize seeds; y: growing degree days to silking (‘growth cycle’)

Bimodal posterior distribution for $\beta \mid y$; Lasso (red) shrinks more than Horseshoe (blue)
Real application: GWAS

- $n = 2267$ observations, $p = 98385$ SNPs in the genome of maize.

- X: maize seeds; y: growing degree days to silking (‘growth cycle’)

Bimodal posterior distribution for $\beta \mid y$; Lasso (red) shrinks more than Horseshoe (blue)
Real application: GWAS

- $n = 2267$ observations, $p = 98385$ SNPs in the genome of maize.
- X: maize seeds; y: growing degree days to silking (‘growth cycle’)

Bimodal posterior distribution for $\beta \mid y$; Lasso (red) shrinks more than Horseshoe (blue)
Variable selection with Horseshoe

Number of variables for which $\hat{\beta}_{HS,j} = \mathbb{E}[\beta_j | y] > t$ or $\hat{\beta}_{Lasso,j} > t$ vs threshold t;
both methods largely agree on the identities of the signals.
Conclusion

- There is no point in having a great model, like the Horseshoe, if it can’t be computed.
Conclusion

- There is no point in having a great model, like the Horseshoe, if it can’t be computed.

- There is a need to scale more Bayesian models to the level of Frequentists.
Conclusion

- There is no point in having a great model, like the Horseshoe, if it can’t be computed.
- There is a need to scale more Bayesian models to the level of Frequentists.
- We manage to do that for the Horseshoe prior with two ideas: blocking and truncation.
Conclusion

- There is no point in having a great model, like the Horseshoe, if it can’t be computed.

- There is a need to scale more Bayesian models to the level of Frequentists.

- We manage to do that for the Horseshoe prior with two ideas: blocking and truncation.

- We observed interesting and novel statistical phenomena, e.g., bimodality of β.
There is no point in having a great model, like the Horseshoe, if it can’t be computed.

There is a need to scale more Bayesian models to the level of Frequentists.

We manage to do that for the Horseshoe prior with two ideas: blocking and truncation.

We observed interesting and novel statistical phenomena, e.g., bimodality of β.

There is likely more room for improvement.
References

