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Abstract

In many situations human behavior approximates that of a
Bayesian ideal observer, suggesting that, at some level, cog-
nition can be described as Bayesian inference. However, a
number of findings have highlighted an intriguing mismatch
between human behavior and that predicted by Bayesian infer-
ence: people often appear to make judgments based on a few
samples from a probability distribution, rather than the full dis-
tribution. Although sample-based approximations are a com-
mon implementation of Bayesian inference, the very limited
number of samples used by humans seems to be insufficient
to approximate the required probability distributions. Here we
consider this discrepancy in the broader framework of statis-
tical decision theory, and ask: if people were making deci-
sions based on samples, but samples were costly, how many
samples should people use? We find that under reasonable as-
sumptions about how long it takes to produce a sample, locally
suboptimal decisions based on few samples are globally op-
timal. These results reconcile a large body of work showing
sampling, or probability-matching, behavior with the hypoth-
esis that human cognition is well described as Bayesian in-
ference, and suggest promising future directions for studies of
resource-constrained cognition.
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Across a wide range of tasks, people seem to act in a man-
ner consistent with optimal Bayesian models (in perception:
Knill & Richards, 1996; motor action: Maloney, Trommer-
shauser, & Landy, 2007; language: Chater & Manning, 2006;
decision making: McKenzie, 1994; causal judgments: Grif-
fiths & Tenenbaum, 2005; and concept learning: Goodman,
Tenenbaum, Feldman, & Griffiths, 2008). However, despite
this similarity between Bayesian ideal observers and human
observers, two crucial problems remain unaddressed across
these domains. First, human behavior often appears to be
optimal on average, but not within individual people or in-
dividual trials: What are people doing on individual trails
to produce optimal behavior in the long-run average? Sec-
ond, Bayesian inference is straight-forward when considering
small laboratory tasks, but intractable for large-scale prob-
lems like those that people face in the real world: How can
people be carrying out generally intractable Bayesian calcu-
lations in real-world tasks? Here we will argue that both of
these problems can be resolved by considering the algorithms
that people may be using to approximate Bayesian inference.

The first problem is highlighted by an intriguing observa-
tion from Goodman et al. (2008) about performance in cat-
egorization tasks in which people see positive and negative
exemplars of a category and are then asked to generalize any
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learned rules to new test items. After exposure to several cat-
egory exemplars people classify new test items consistently
with fully Bayesian inference, on average. This average be-
havior suggests that people consider many possible classifica-
tion rules, update their beliefs about each one, and then clas-
sify new items by averaging the classification over all the pos-
sible rules. However, this perfectly Bayesian behavior is only
evident in the average across many observers. In contrast,
each individual classifies all test items in a manner consis-
tent with only one or a few rules; which rules are considered
varies from observer to observer according to the appropri-
ate posterior probabilities (Goodman et al., 2008). Thus, it
seems that an individual observer acts based on just one or
a few rules sampled from the posterior distribution, and the
fully Bayesian behavior only emerges when averaging many
individuals, each with different sampled rules.

This sampling behavior is not limited to concept-learning
tasks. In many other high-level cognitive tasks, individuals’
patterns of response — and sometimes even responses on indi-
vidual trials — appear to reflect just a small number of samples
from the posterior predictive distribution. When predicting
how long a cake will bake given that it has been in the oven for
45 minutes (Griffiths & Tenenbaum, 2006), the across-subject
variance of responses is consistent with individuals guessing
based on only two prior observations of cake baking times
(Mozer, Pashler, & Homaei, 2008). When making estimates
of esoteric quantities in the world, multiple guesses from one
individual have independent error, like samples from a proba-
bility distribution (Vul & Pashler, 2008). In all of these cases
(and others; e.g., Xu & Tenenbaum, 2007; Anderson, 1991;
Sanborn & Griffiths, 2008), people seem to sample instead of
computing the “fully Bayesian” answer.

Critics of the Bayesian approach (e.g., Mozer et al., 2008)
have suggested that although many samples may adequately
approximate Bayesian inference, behavior based on only a
few samples is fundamentally inconsistent with the hypoth-
esis that human cognition is Bayesian. Others highlight the
second problem and argue that cognition cannot be Bayesian
inference because exact Bayesian calculations are computa-
tionally intractable (e.g., Gigerenzer, 2008).

In this paper we will argue that acting based on a few sam-
ples can be easily reconciled with optimal Bayesian infer-
ence and may be the method by which people approximate
otherwise intractable Bayesian calculations. We argue that
(a) sampling behavior can be understood in terms of sensible



sampling-based approaches to approximating intractable in-
ference problems in Bayesian statistics and Al; (b) very few
samples from the Bayesian posterior are often sufficient to
obtain approximate predictions that are almost as good as pre-
dictions computed using the full posterior; and (c) on conser-
vative assumptions about how much time it might cost to pro-
duce a sample from the posterior, making predictions based
on very few samples (even just one), can actually be the glob-
ally optimal strategy.

Bayesian inference with samples

Bayesian probability theory prescribes a normative method to
combine information and make inferences about the world.
However, the claim that human cognition can be described
as Bayesian inference does not imply that people are doing
exact Bayesian inference.

Exact Bayesian inference amounts to fully enumerating
hypothesis spaces every time beliefs are updated with new
data. In any large-scale application, this is computationally
intractable, so inference must be approximate. This is the
case in “Bayesian” artificial intelligence and statistics, and
this must apply even more in human cognition, where the
real-world inferences are vastly more complex and responses
are time-sensitive. The need for approximating Bayesian in-
ference leaves two important questions. For artificial intelli-
gence and statistics: What kinds of approximation methods
work best to approximate Bayesian inference? For cognitive
science and psychology: What kinds of approximation meth-
ods does the human mind use?

In the tradition of rational analysis, or Marr’s computa-
tional approach (Marr, 1982), a reasonable strategy to an-
swering the psychological question begins with good answers
to the engineering question. Thus, we will explore the hy-
pothesis that the human mind approximates Bayesian infer-
ence with some version of the algorithmic strategies that have
proven best in Al and statistics, on the grounds of computa-
tional efficiency and accuracy.

In artificial intelligence and statistics, one of the most com-
mon methods for implementing Bayesian inference is with
sample-based approximations. Inference by sampling is a
procedure to approximate a probability distribution by repeat-
edly simulating a simpler stochastic process which produces
alternatives from a hypothesis space according to their proba-
bility under the distribution in question. The result of any one
such simulation is a sample. With sufficiently many samples,
these calculations based on these approximations approach
the exact calculations using the analytical probability distri-
butions themselves!. Sampling methods are typically used
because they are applicable to a large range of computational

IThe Monte Carlo theorem states that the expectation over a
probability distribution can be approximated from samples:

k
Ens[f(S)] = ¢ Y F(51), when S ~ P(S). I

models and are more robust to increasing dimensionality than
other approximate methods.

Many cognitively plausible sampling algorithms exist and
some specific ones have been proposed to account for aspects
of human behavior (Griffiths, Canini, Sanborn, & Navarro,
2007; Levy, Reali, & Griffiths, 2009; Brown & Steyvers,
2008). For our purposes, we need only assume that a per-
son has the ability to draw samples from the hypothesis space
according to the posterior probability distribution. Thus, it is
reasonable to suppose that people can approximate Bayesian
inference via a sampling algorithm, and evidence that humans
make decisions by sampling is not in conflict with the hypoth-
esis that the computations they are carrying out are Bayesian.

However, recent work suggests that people base their deci-
sions on very few samples (Vul & Pashler, 2008; Goodman
et al., 2008; Mozer et al., 2008) — so few that any claims of
convergence to the real probability distribution do not hold.
Algorithms using only two samples (Mozer et al., 2008) will
have properties quite different from full Bayesian integration.
This leaves us with the question: How bad are decisions based
on few samples?

Bayesian and sample-based agents

To address the quality of decisions based on few samples,
we will consider performance of optimal (fully Bayesian)
and sample-based agents in the common scenario of choos-
ing between two alternatives. Many experimental tasks in
psychology are a variant of this problem: given everything
learned, make a two-alternative forced-choice (2AFC) re-
sponse. Moreover, real-world tasks often collapse onto such
simple 2AFC decisions, for instance: we must decide whether
to drive to the airport via the bridge or the tunnel, depend-
ing on which route is likely to have least traffic. Although
this decision will be informed by prior experiences that pro-
duced intricate cognitive representations of possible traffic
flow, at one particular junction these complex representations
collapse onto a prediction about a binary variable and deci-
sion: Should we turn left or right?

Statistical decision theory (Berger, 1985) prescribes how
information and beliefs about the world and possible rewards
should be combined to define a probability distribution over
possible payoffs for each available action (Maloney, 2002;
Kording, 2007; Yuille & Biilthoff, 1996). An agent trying
to maximize payoffs over many decisions should use these
normative rules to determine the expected payoff of each ac-
tion, and choose the action with the greatest expected payoff.
Thus, the standard for decisions in statistical decision theory
is to choose the action (A*) that will maximize expected util-
ity under the posterior predictive distribution over possible
world states (S) given prior data (D), assuming that action
and state uniquely determine the utility obtained:

A* = argmjlxz U(A;S)P(S|D). (2)
S
2An agent might have other goals, e.g., maximizing the mini-

mum possible payoff (i.e., extreme risk aversion); however, we will
not consider situations in which such goals are likely.



If the world state is sufficiently specified, 2AFC decisions
map onto a prediction about which of two actions (A; and A3)
will have higher expected utility — for instance: will we spend
less time in traffic taking the bridge or the tunnel? There-
fore, choosing among two alternatives amounts to predicting
the outcome of a Bernoulli trial: will A; or A, have greater
utility? Thus, P(A* = A;) = p and P(A* = Ay) = (1 —p),
and we can simply parameterize these decisions in terms of
the posterior predictive probability p. For simplicity, we will
consider choosing the higher-utility action a “correct” choice,
and choosing the lower-utility action an “incorrect” choice.
The fully Bayesian agent will choose the more likely alterna-
tive, and will be correct p proportion of the time (we assume
p is between 0.5 and 1, given symmetry).

A sample-based agent would sample possible world states,
and make decisions based on those sampled world states (S,,):

k
A" =argmax y U(A;S))
LU 3)

Si~ P(S|D),

so in the case of making predictions between two alterna-
tives one of which may be correct, the sample-based agent
should choose the action corresponding to the most frequent
outcome in the set of sampled world states. Thus, a sample-
based agent drawing k samples will choose a particular out-
come with probability g:

k
q:1_®CDF(§7p7k)a (4’)

where Oc¢pr is the binomial cumulative density function and
k/2 is rounded down to the nearest integer. This sample-
based agent will be right with probability gp+ (1 —¢)(1— p).

Good decisions from few samples

Sample-based error rate
minus optimal error rate

Figure 1: Increased error rate for the sample-based agent over the
optimal agent as a function of the Bernoulli trial probability and
the number of samples drawn for a decision (decisions based on 0
samples not shown).

So, how much worse will such 2AFC decisions be if they
are based on a few samples rather than the “fully Bayesian”

inference? Bernoulli estimated that more than 25,000 sam-
ples are required for “moral certainty about the true proba-
bility of a two-alternative event® (Stigler, 1986). Although
Bernoulli’s calculations were based on different derivations
than those which are now accepted (Stigler, 1986), it is un-
deniable that inference based on a small number of samples
differs from the “fully Bayesian™ solution and will contain
greater errors, but how bad are the decisions based on this
inference?

In Figure 1 we plot the difference in error rates between
the sample-based and optimal agents as a function of the un-
derlying probability (p) and number of samples (k). When p
is near 0.5, there is no use in obtaining any samples (since a
perfectly informed decision will be as likely to be correct as
a random guess). When p is 1 (or close), there is much to be
gained from a single sample since that one sample will indi-
cate the (nearly-deterministically correct) answer; however,
subsequent samples are of little use, since the first one will
provide all the gain there is to be had. Most of the benefit of
large numbers of samples occurs in interim probability values
(around 0.7 and lower).
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Figure 2: (a) The maximum and expected increase in error for the
sample-based agent compared to the optimal agent as a function of
number of samples (see text). (b) Expected and maximum gain in
accuracy from an additional sample as a function of the number of
samples already obtained.

Since the sample-based agent does not know what the true
probability p may be for a particular decision we can consider
the scenarios such an agent should expect: the average sce-
nario (expectation over p) and the worst case scenario (maxi-
mization of the loss over p). These are displayed in Figure 2a
assuming a uniform probability distribution over p. The devi-
ation from optimal performance decreases to negligible lev-
els with very few samples, suggesting that the sample-based
agent need not have more than a few samples to approximate
ideal performance. We can go further to assess just how much
is gained (in terms of decreased error rate) from an additional
sample (Figure 2b). Again, the vast majority of accuracy is
gained with the first sample, and subsequent samples do very
little to improve performance.

Thus, even though few samples will not provide a very ac-
curate estimate of p — definitely not sufficient to have “moral

3Bernoulli considered moral certainty to be at least 1000:1 odds
that the true ratio will be within % of the measured ratio.



Utility per decision
Decisions per time
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Figure 3: Expected utility per decision, the number of decisions that can be made per unit time, and the expected rate of return (utility per
unit time) as a function of the Bernoulli probability and the number of samples (with an example action/sample cost ratio of 232).

certainty” — they are sufficient to choose an action: We do not
need moral certainty to act optimally.

How many samples for a decision?

Lets take seriously the hypothesis that people make infer-
ences based on samples. If this is the case, how many sam-
ples should people use before making a decision? For in-
stance, how many possible arrangements of traffic across the
city should we consider before deciding whether to turn left
for the tunnel or right for the bridge? Considering one such
possibility requires concerted thought and effort — it seems
obvious that we should not pause at the intersection for sev-
eral hours and enumerate all the possibilities. It also seems
likely that we shouldn’t just turn left or right at random with-
out any consideration. So, how many samples should we take:
how hard should we think?

Determining an optimal answer to this meta-cognitive
problem requires that we specify how much a sample may
“cost”? To be conservative (and for the sake of simplicity),
we will assume that a sample can only cost time — it takes
some amount of time to conjure up an alternate outcome, pre-
dict its value, and update a decision variable.

Thus, if a given sample is free (costs O time), then we
should take infinitely many samples, and make the best de-
cision possible every time. If a sample costs 1 unit of time,
and the action time (the time that it would take us to act once
we have chosen to do so) is also 1 unit of time, then we should
take zero samples we should guess randomly. To make this
peculiar result intuitive, lets be concrete: if we have 100 sec-
onds, and the action time is fixed to be 1 second, then we can
make 100 random decisions, which will be right 50% of the
time, thus giving us an expected reward of $50. If taking a
single sample to improve our decision will cost an additional
second per decision, then if we take one sample per decision,
each decision will take 2 seconds, and we could make at most
50 of them. It is impossible for the expected reward from this
strategy to be greater than guessing randomly, since even if
100% of the decisions are correct, only $50 will be gained.
Moreover, since 100% accuracy based on one sample is ex-
tremely unlikely (this could only arise in a completely deter-

ministic prediction task), substantially less reward should be
expected. Thus, if obtaining a sample takes as long as the
action, and we do not get punished for an incorrect answer,
we should draw zero samples per decision and make as many
random decisions as we can. More generally, we can param-
eterize how much a sample “costs” as the ratio between the
time required to make an action and the time required to ob-
tain one sample (action/sample ratio) — intuitively, a measure
of how many samples it would take to double the time spent
on a decision.

The expected accuracy for a sample-based agent (previous
section) gives us the expected utility per decision as a func-
tion of k (the number of samples) and p (the Bernoulli trial
probability; Figure 3a), and the utility function. We consider
two utility functions for the 2AFC case: no punishment — cor-
rect: gain 1; incorrect lose 0) and symmetric — correct: gain
1; incorrect: lose 1. Given one particular action/sample time
ratio, we can compute the number of decisions made per unit
time (Figure 3b). Multiplying these two functions together
yields the expected utility per unit time (Figure 3c).

Since p is unknown to the agent, an ideal k must be cho-
sen by taking the expectation over p. This marginalization
(assuming a uniform distribution over p) for many different
action/sample time ratios is displayed in Figure 4. It is clear
that as samples become cheaper, one is best advised to take
more of them converging to the limit of infinitely many sam-
ples when the samples are free (the action/sample time ratio
is infinity).

In Figure 5 we plot the optimal number of samples as a
function of the action/sample time ratio. Remarkably, for
ratios less than 10, one is best advised to make decisions
based on only one sample if the utility function is symmet-
ric. Moreover, with no punishment for incorrect answers, the
action/sample time ratio must be 2 or greater before taking
any samples (making a guess thats at all educated, rather than
fully random) becomes a prudent course of action. Thus, un-
der some assumptions about how much it costs to think, mak-
ing guesses based on very few samples (e.g., one) is the best
course of action: Making many locally suboptimal decisions
quickly is the globally optimal strategy.
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Figure 4: Expected utility per decision, number of decisions per unit time, and expected utility per unit time (rate of return) as a function of
the number of samples and action/sample cost ratios. Action/sample cost ratios are logarithmically spaced between 1 (red) and 1000 (yellow).
In the last graph the solid circles indicate the optimal number of samples at that action/sample cost ratio. (The utility function used for this
figure contained no punishment for an incorrect choice and +1 for a correct choice.)
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Figure 5: The optimal number of samples as a function of the ac-
tion/sample time-cost ratio for each of two utility functions (sym-
metric — correct: +1, incorrect: -1; and no punishment for incorrect
answers — correct: +1, incorrect: 0).

Discussion

We began with the observation that, on average, people tend
to act consistently with ideal Bayesian inference, integrating
information to optimally build models of the world; however,
locally, they appear to be systematically suboptimal, acting
based on a very limited number of samples. This has been
used to argue that people are not “fully Bayesian” (Mozer et
al., 2008). Instead, we have argued that sample-based ap-
proximations are a powerful method for implementing ap-
proximate Bayesian inference. Although with few samples,
sample-based inferences will deviate from exact Bayesian
inference, we showed that for two-alternative forced-choice
tasks, a decision based on a very small set of samples is nearly
as good as an optimal decision based on a full probability

distribution. Moreover, we showed that given reasonable as-
sumptions about the time it takes to produce an exact sample,
a policy of making decisions based on very few samples (even
just one) is globally optimal, maximizing long-run utility.

In this paper we considered sample-based decisions about
predictions of variables that had not been previously observed
— predictions computed through Bayesian inference over la-
tent variables and structures in the world. However, a large
prior literature on “probability matching” (Herrnstein, 1961;
Vulkan, 2000) has studied a very similar phenomenon in a
simpler task. In probability matching, subjects predict the
outcome of a trial based on the relative frequencies with
which that outcome has been observed in the past. Thus, sub-
jects have direct evidence of the probability that lever A or
lever B should be pulled, but they do not seem to maximize;
instead, they “probability match” and choose levers with a
frequency proportional to the probability of reward. On our
account, this literal “probability matching” behavior amounts
to making decisions based on one sample, while decisions
based on more samples would correspond to Luce choice de-
cisions with an exponent greater than 1 (Luce, 1959).

“Probability matching” to previously observed frequencies
is naturally interpreted as sampling prior events from mem-
ory. This interpretation is consistent with recent work sug-
gesting that people make decisions based on samples from
memory. Stewart, Chater, and Brown (2006) suggested that a
policy of making decisions through binary preference judg-
ments among alternatives sampled from memory can ac-
count for an assortment of human judgment and decision-
making errors. Similarly, Schneider, Oppenheimer, and Detre
(2007) suggest that votes from sampled orientations in multi-
dimensional preference space can account for violations of
coherent normative utility judgments. A promising direction
for future research would be to relate models suggesting that
samples are drawn from cognitive processes such as memory,
to models like those we have described in our paper, in which
samples are drawn from probability distributions reflecting



ideal inferences about the world.

How much might a sample “cost”? A relevant measure of
sample cost in multiple-trial experiments is the ratio between
the time it takes to make an action and go on to the next trial
and the time required to draw a sample to inform a decision
about that action. Ratios near 10 seem quite reasonable: most
experimental trials last a few seconds, and it can arguably
cost a few hundred milliseconds to consider a hypothesis. Of
course, this is speculation. However, in general, it seems to
us that in most experimental tasks, the benefits gained from a
better decision are relatively small compared to the costs of
spending a very long time thinking. So, if thinking amounts
to sampling possible alternatives before making a decision, it
should not be surprising that people regularly seem to use so
few samples.

We should emphasize that we are not arguing that all hu-
man actions and decisions are based on very few samples.
The evidence for sampling-based decisions arises when peo-
ple make a decision or a choice based on what they think
is likely to be true (Which example is in the concept? How
long will this event last? How many airports are there in the
US?). In other situations people appear to integrate over the
posterior, or to take many more samples, such as when peo-
ple make graded inductive judgments (How similar is A to
B? How likely is it that X has property P given that Y does?
How likely do you think that F causes G?). It is interesting to
consider why there may be a difference between these sorts
of decisions.

Under reasonable two-alternative choice scenarios, people
are best advised to make decisions based on few samples (fu-
ture work will extend this to n-AFC and continuous choice
decisions). This captures a very sensible intuition: when we
are deciding whether to turn left or right at an intersection, we
should not enumerate every possible map of the world. We do
not need “moral certainty” about the probability that left or
right will lead to the fastest route to our destination — we just
need to make a decision. We must implicitly weigh the bene-
fits of improving our decision by thinking for a longer period
of time against the cost of spending more time and effort de-
liberating. Intuition suggests that we do this in the real world:
we think harder before deciding whether to go north or south
on an interstate (where a wrong decision can lead to a detour
of many miles), than when we are looking for a house (where
the wrong decision will have minimal cost). Empirical evi-
dence confirms this: when the stakes are high, people start
maximizing instead of “probability matching” (Shanks, Tun-
ney, & McCarthy, 2002). Nonetheless, it seems that in sim-
ple circumstances, deliberating is rarely the prudent course of
action — for the most part, making quick, locally suboptimal,
decisions is the globally optimal policy: one and done.
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