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We propose a new model of human concept learning that provides a rational analysis of learn-
ing feature-based concepts. This model is built upon Bayesian inference for a grammatically
structured hypothesis space—a concept language of logical rules. We compare the model pre-
dictions to human generalization judgments in several well-known category learning experi-
ments, and find good agreement for both average and individual participants generalizations.
We further investigate judgments for a broad set of seven-feature concepts—a more natural
setting in several ways—and again find that the model explains human performance.

But what are concepts save formulations and
creations of thought, which, instead of giving
us the true form of objects, show us rather the
forms of thought itself?
—Cassirer (1946, p. 7)

The study of concepts—what they are, how they are used
and how they are acquired—has provided one of the most
enduring and compelling windows into the structure of the
human mind. What we look for in a theory of concepts, and
what kinds of concepts we look at, depend on the functions
of concepts that interest us. Three intuitions weave through-
out the cognitive science literature (see, e.g. Fodor, 1998;
Murphy, 2002):

1. Concepts are mental representations that are used to
discriminate between objects, events, relations, or other
states of affairs. Cognitive psychologists have paid particular
attention to concepts that identify kinds of things—those that
classify or categorize objects—and such concepts will also
be our focus here. It is clear how an ability to separate ob-
jects according to kind could be critical to survival. To take a
classic example, a decision about whether it is appropriate to
pursue or to flee an intruder depends on a judgment of kind
(prey or predator), and an error in this judgment could have
disastrous consequences.

2. Concepts are learned inductively from the sparse and
noisy data of an uncertain world. Animals make some in-
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stinctive discriminations among objects on the basis of kind,
but cognition in humans (and probably other species) goes
beyond an innate endowment of conceptual discriminations.
New kind-concepts can be learned, often effortlessly despite
great uncertainty. Even very sparse and noisy evidence, such
as a few randomly encountered examples, can be sufficient
for a young child to accurately grasp a new concept.

3. Many concepts are formed by combining simpler con-
cepts, and the meanings of complex concepts are derived
in systematic ways from the meanings of their constituents.
Concepts are the constituents of thought, and thought is
in principle unbounded, though human thinkers are clearly
bounded. The “infinite use of finite means” (Humboldt,
1863) can be explained if concepts are constructed, as lin-
guistic structures are constructed, from simpler elements: for
example, morphemes are combined into words, words into
phrases, phrases into more complex phrases and then sen-
tences.

In our view, all of these intuitions about concepts are cen-
tral and fundamentally correct, yet previous accounts have
rarely attempted to (or been able to) do justice to all three.
Early work in cognitive psychology focused on the first
theme, concepts as rules for discriminating among categories
of objects (Bruner, Goodnow, & Austin, 1956). Themes two
and three were also present, but only in limited ways. Re-
searchers examined the processes of learning concepts from
examples, but in a deductive, puzzle-solving mode more than
an inductive or statistical mode. The discrimination rules
considered were constructed compositionally from simpler
concepts or perceptual features. For instance, one might
study how people learn a concept for picking out objects as
“large and red and round”. An important goal of this research
program was to characterize which kinds of concepts were
harder or easier to learn in terms of syntactic measures of a
concept’s complexity, when that concept was expressed as a
combination of simple perceptual features. This approach
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reached its apogee in the work of Shepard, Hovland, and
Jenkins (1961) and Feldman (2000), who organized possi-
ble Boolean concepts (those that discriminate among objects
representable by binary features) into syntactically equiva-
lent families and studied how the syntax was reflected in
learnability.

A second wave of research on concept learning, often
known as the “statistical view” or “similarity-based ap-
proach”, emphasized the integration of themes one and two
in the form of inductive learning of statistical distributions or
statistical discrimination functions. These accounts include
prototype theories (Posner & Keele, 1968; Medin & Schaffer,
1978), exemplar theories (Shepard & Chang, 1963; Nosof-
sky, 1986; Kruschke, 1992), and some theories in between
(Anderson, 1990; Love, Gureckis, & Medin, 2004). These
theories do not rest on a compositional language for concepts
and so have nothing to say about theme three—how simple
concepts are combined to form more complex structures (Os-
herson & Smith, 1981).

An important recent development in the statistical tra-
dition has been the rational analysis of concept learning
in terms of Bayesian inference (Shepard, 1987; Anderson,
1990; Tenenbaum & Griffiths, 2001). These analyses show
how important aspects of concept learning—such as the
exponential-decay gradient of generalization from exemplars
(Shepard, 1987) or the transitions between exemplar and pro-
totype behavior (Anderson, 1990)—can be explained as ap-
proximately optimal statistical inference given limited exam-
ples. However, these rational analyses have typically been
limited by the need to assume a fixed hypothesis space of
simple candidate concepts—such as Shepard’s (1987) “con-
sequential regions”: connected regions in a low-dimensional
continuous representation of stimuli. The standard Bayesian
framework shows how to do rational inductive learning given
such a hypothesis space, but not where this hypothesis space
comes from nor how learners can go beyond the simple con-
cepts it contains when required to do so by the complex pat-
terns of their experience.

The last decade has also seen renewed interest in the
idea that concepts are constructed by combination, as a way
of explaining apparently unbounded human conceptual re-
sources. This is especially apparent in accounts of concepts
and concept learning that place compositionality at center
stage (Fodor, 1998; Murphy, 2002). Logical or rule-based
representations are often invoked. Most relevant to our work
here is the rules-plus-exceptions (RULEX) model of Nosof-
sky, Palmeri, and McKinley (1994), which is based on a set
of simple heuristics for constructing classification rules, in
the form of a conjunction of features that identify the con-
cept plus a conjunction of features which identify exceptions.
The RULEX model has achieved strikingly good fits to clas-
sic human concept-learning data, including some of the data
sets that motivated statistical accounts, but it too has limita-
tions. Fitting RULEX typically involves adjusting a number
of free parameters, and the model has no clear interpretation
in terms of rational statistical approaches to inductive learn-
ing. Perhaps most importantly, it is unclear how to extend
the rule-learning heuristics of RULEX to more complex rep-

resentations. Therefore, while RULEX uses a compositional
representation, it is unable to fully leverage compositionality.

Our goal here is a model that integrates all three of these
major themes from the literature on concepts and concept
learning. Our Rational Rules model combines the inferen-
tial power of Bayesian induction with the representational
power of mathematical logic and generative grammar; the
former accounts for how concepts are learned under uncer-
tainty while the latter provides a compositional hypothesis
space of candidate concepts. This paper is only a first step
towards an admittedly ambitious goal, so we restrict our at-
tention to some of the simplest and best-studied cases of con-
cept learning from the cognitive psychology literature. We
hope readers will judge our contribution not by these limits,
but by the insights we develop for how to build a theory that
captures several deep functions of concepts that are rarely
integrated and often held to be incompatible. We think these
insights have considerable generality.

Our approach can best be understood in the tradition of
rational modeling (Anderson, 1990; Oaksford & Chater,
1998), and specifically rational models of generalization
(Shepard, 1987; Tenenbaum & Griffiths, 2001). The main
difference with earlier work is the adoption of a qualitatively
richer and more interesting form for the learner’s hypothesis
space. Instead of defining a hypothesis space directly as a set
of subsets of objects, with no intrinsic structure or construc-
tive relations between more complex hypotheses and simpler
ones, we work with a compositional hypothesis space gener-
ated by a probabilistic grammar. The grammar yields a “con-
cept langauge” which describes a range of concepts varying
greatly in complexity, all generated from a small basis set of
features or atomic concepts. Hypotheses range from the sim-
plest, single-feature, rules to complex combinations of rules
needed to describe an arbitrary discrimination boundary. The
prior probability of each hypothesis is not specified directly,
by hand, but rather is generated automatically by the gram-
mar in a way that naturally favors the simpler hypotheses. By
performing Bayesian inference over this concept language, a
learner can make rational decisions about how to generalize
a novel concept to unseen objects given only a few, poten-
tially noisy, examples of that concept. The resulting model
is successful at predicting human judgments in a range of
concept learning tasks at both the group and individual level,
using a minimum of free parameters and arbitrary processing
assumptions.

This analysis is an advance for several viewpoints on con-
cepts and concept learning. From the vantage of rule-based
models of categorization (e.g. RULEX) the Rational Rules
model provides a rational inductive logic explaining why cer-
tain rules should be extracted. This naturally complements
the insights of existing process-level accounts by tying the
rule-learning competency to general principles of learning
and representation. To rational statistical accounts of con-
cept learning, the grammar-based approach of the Rational
Rules model contributes a more satisfying account of the
hypothesis space and prior: from simple components the
grammar compactly specifies an infinite, flexible hypothesis
space of structured rules and a prior that controls complexity.
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For compositionality advocates, we provide a way to use the
“language of thought” (Fodor, 1975) (reified in the concept
language of logical rules) to do categorization under uncer-
tainty. That is, the grammar-based induction approach sug-
gests a compelling way to quantitatively relate the language
of thought, already an elegant and rational view of the mind,
to human behavior, even at the level of predicting individual
participants. Finally, by showing that the rational statistical
approach to concepts is compatible with the rule-based, com-
binatorial, approach, and that the union can accurately pre-
dict human behavior, we hope to cut one of the gordian knots
of of modern psychology: the supposed dichotomy between
rules and statistics.

Preliminary Sketch

In this section we will sketch out a notion of concepts, and
concept learning, using the three intuitions above; in the next
section we formalize this discussion.

Concepts are mental representations, that is they are things
“in the head” which have some structure that reflects the
world. Since we are concerned with concepts that are used
to discriminate between objects, a natural hypothesis is that
concepts are simply rules for classifying objects based on
their features. This hypothesis is bolstered by the common
reports of participants in concept learning experiments that
they “feel as if” they are using a rule (e.g. Armstrong, Gleit-
man, & Gleitman, 1983). How can we specify the structure
of concepts, if we accept as a working hypothesis that they
are rules? Since many concepts are formed by combining
simpler concepts, many of the corresponding rules should be
built by combining other rules.

The classic examples of such combinatory syntax come
from generative grammar, and particularly context-free
grammars (CFGs) (see e.g. Manning & Schütze, 1999; Rus-
sell & Norvig, 2002). A CFG is a collection of terminal
symbols, non-terminal symbols, and production rules. For
instance, we could have a CFG with single non-terminal
A, two terminals a, b, and two productions A→Aa and
A→b. Beginning with A this grammar generates strings
by applying the productions until no non-terminal remains:
A→Aa→Aaa→baa, etc. The strings of terminal symbols
formed by applying production rules are the language spec-
ified by the CFG—for the example all strings of the form
ba...a. Note that production rules specify possible expan-
sions of single symbols, and can be seen as combination op-
erations “in reverse” (for instance reversing the production
A→Aa allows the combination of an A-constituent with the
primitive a to get another A-constituent). We adopt CFGs
to provide the combinatory syntax for our concepts, thus
we have a concept language describing the representations
of rules. However, a CFG describes only the structure of
representations, if this structure is to influence the use of
concepts it must be mirrored in the meaning we assign to
a representation—each syntactic combination of rules must
give us a new rule able to discriminate among objects in the
world. Fortunately, if we think of rules as functions from
objects to truth values (where True is arbitrarily assigned to

“in the concept”), then there is a natural set of combination
operations: the logical connectives. Indeed, classical logic
is a paradigmatic example of a language with CFG syntax,
a semantics of discriminative rules, and combination opera-
tions that work on both levels. If we supplement with a set of
primitive concepts (which are features or, perhaps, other pre-
existing concepts), mathematical logic appears to provide a
simple and intuitive framework for concepts.

Before we embrace this framework for concepts, we
should reflect on the reasons why rule-based representations
have had such a troubled past in psychology. Since an under-
lying commitment of rule-based accounts (at least as classi-
cally interpreted) is that concepts have deterministic defini-
tions, there seems to be no room for one object which sat-
isfies the definition to be a “better” example than another.
Rosch and colleagues showed that people are very willing
to assign graded typicality to concepts, and that this grada-
tion is reflected in many aspects of concept use (e.g. Mervis
& Rosch, 1981). Combined with the difficulty of identify-
ing definitions for common concepts (Wittgenstein, 1953),
these results led many authors to suggest that the organizing
principle of concepts is similarity—for example via “fam-
ily resemblance” among exemplars—not rules. The con-
ventional wisdom regarding the virtues of rule-based versus
similarity-based models of cognition is that “rules provide
precision, expressiveness, and generativity, and similarity
provides flexibility and the means to deal with uncertainty”
(Sloman, Love, & Ahn, 1998). Modern cognitive psychol-
ogy has been especially concerned with the “fuzzy edges”—
capturing the ways that people deal with uncertainty—so it is
natural that similarity-based models of concept learning have
come to dominate. Is it true, however, that proper treatment
of uncertainty is antithetical to rule-based representation? In
concept learning uncertainty arises primarily in two ways:
examples are unreliable, and available evidence is sparse. We
believe that these can be addressed in ways that are agnostic
to representation: allow that some experiences are outliers,
and employ a strong inductive bias, respectively. Both of
these responses to uncertainty can be realized by viewing
concept learning as an inductive inference problem.

A general approach to the analysis of inductive learn-
ing problems has emerged in recent years (Anderson, 1990;
Tenenbaum, 1999b; Chater & Oaksford, 1999). Under this
approach a set of hypotheses is posited, and degrees of belief
are assigned using Bayesian statistics. This assignment relies
on: a description of the data space from which input is drawn,
a space of hypotheses, a prior probability function over these
hypotheses, and a likelihood function relating each hypoth-
esis to the data. The prior probability, P(h), describes the
belief in hypothesis h before any data is seen, and hence cap-
tures prior knowledge. The likelihood, P(d|h), describes the
data one would expect to observe if hypothesis h were cor-
rect. With these components, inductive learning can be de-
scribed very simply: we wish to find the appropriate degree
of belief in each hypothesis given some observed data—the
posterior probability P(h|d). Bayes’ theorem tells us how to
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compute this probability,

P(h|d) ∝ P(h)P(d|h), (1)

identifying the posterior probability as proportional to the
product of the prior and the likelihood. This Bayesian pos-
terior provides a rational analysis of inductive learning: a
coherent integration of evidence and a priori knowledge into
posterior beliefs (optimal within the specified learning con-
text).

By viewing concept acquisition as an inductive problem,
we may employ this Bayesian framework to describe the
learning of a concept from examples. As described earlier,
our hypothesis space is the collection of all phrases in a
grammatically-generated concept language. Since each con-
cept of this language is a classification rule, a natural likeli-
hood is given by simply evaluating this rule on the examples:
the data have zero probability if they disagree with the clas-
sification rule, and constant probability otherwise. However,
to account for the unreliability of examples, we will allow
non-zero probability for a data set, even if some examples
are misclassified. That is, we assume that there is a small
probability that any example is an outlier, which should be
ignored. We will see in the next section that this outlier
assumption combines with rule-evaluation to give a simple
likelihood function, which decreases exponentially with the
number of “misclassifications” of the examples.

In Bayesian models the prior, P(h), provides the inductive
bias needed to solve under-constrained learning problems.
Hence, equipping the concept language with an appropri-
ate prior can address the uncertainty engendered by sparse
evidence. A natural prior follows by extending the gram-
mar into a probabilistic context free grammar. By viewing
the generative process for phrases, which is specified by the
grammar, as a probabilistic process, we get a probability dis-
tribution on phrases of the concept language. We will see
that this prior has a syntactic complexity bias: the prior prob-
ability of a combined rule is less than the prior probability
of either component. In fact, the prior probability of a rule
decreases, roughly exponentially, in the number of symbols
used to express it. There is some empirical evidence that
the number of primitive feature symbols in a rule, called its
Boolean complexity, is relevant to the inductive bias of hu-
man concept learning. Indeed, Feldman (2000) found that
the Boolean complexity is a good predictor of the difficulty
of remembering a wide variety of binary concepts. Feldman
(2006) showed that other aspects of the algebraic complexity
of concepts predict further facets of human learning and use.
This suggests that the natural inductive bias provided by the
grammar of our concept language may be sufficient to de-
scribe human learning, and particularly the ways that human
learning copes with the uncertainty of sparse examples.

Using this formulation of concept learning as a Bayesian
induction problem, we can address, within a rule-based
framework, the uncertainty inherent in concept learning.
How does this overcome the determinism of rule-based rep-
resentations, which was such a stumbling block to early the-
ories? It has been noted before (Shepard, 1987; Tenenbaum,

2000) that graded effects can arise out of mixtures of deter-
ministic representations, and that such mixtures result from
rational Bayesian use of deterministic representations under
uncertainty. Though our ideal Bayesian learner is committed
to there being a correct definition for each concept, there is
rarely enough information to determine this correct defini-
tion completely. Instead, the posterior belief function will
be spread over many different definitions. This spread can
result in graded, similarity-like effects in the classification
behavior of the ideal agent, or in more deterministic rule-like
classification, depending on the pattern of examples the agent
observes and the shape of the posterior distribution they give
rise to.

An Analysis of Concept Learning

In light of the above discussion, we wish to formulate
a concept language of rules, and analyze the behavior of a
rational agent learning concepts expressed in this language.
This analysis will describe an ideal concept learner that sat-
isfies the three intuitions with which we began this paper. In
later sections we will explore the relationship between hu-
man concept acquisition and this ideal learning model.

The learning problem can be phrased, using the Bayesian
induction formalism, as that of determining the posterior
probability P(F|E, `(E)), where F ranges over formulae in
the concept language, E is the set of observed example ob-
jects (possibly with repeats) and `(E) are the observed labels.
Thus concept learning will roughly amount to “probabilistic
parsing” of labeled examples into representations of the con-
cept language. (We consider a single labeled concept, thus
`(x) ∈ {1, 0} indicates whether x is an example or a non-
example of the concept. An example is given in Table 1,
which we will use throughout this section.) The posterior
may be expressed (through Bayes’ formula) as:

P(F|E, `(E)) ∝ P(F)P(E, `(E)|F) (2)

To use this relationship we will need our concept language
(which describes the hypothesis space), the prior probability,
P(F), and a likelihood function, P(E, `(E)|F).

Concept Representation

The concept language in which we will represent rules is
a fragment of first-order logic. This will later allow us to
use the standard truth-evaluation procedure of mathematical
logic in defining our likelihood. The terminal symbols of
the language (those which can appear in finished rules) are
logical connectives (∧,∨,⇔), grouping symbols, a quanti-
fier over objects (∀ x) with quantified variable x, and a set
of feature predicates. The feature predicates can be thought
of as simple preexisting concepts, or as perceptual primi-
tives. (Thus each concept, once learned, potentially becomes
a “feature” for future concepts; for a related view see Schyns,
Goldstone, and Thibaut (1998).) We will focus on simple
feature predicates formed from functions fi(x), which report
the value of a physical feature, and operators =c, <c, and >c,
which represents comparison with constant c. Initially each
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Table 1
A set of labeled examples E={A1,...,A5,B1,...,B4} (from
Medin & Schaffer (1978)). This example set admits, for ex-
ample, the simple definition D1: f1(x)=0, by assuming A5
and B1 are outliers, and the more complex definition D2:
( f1(x)=0 ∧ f3(x)=0) ∨ ( f2(x)=0 ∧ f4(x)=0), with no outliers.
Object Label ` Feature Values

A1 1 0001
A2 1 0101
A3 1 0100
A4 1 0010
A5 1 1000
B1 0 0011
B2 0 1001
B3 0 1110
B4 0 1111

feature predicate is of the form fi(x)=c (read “the ith feature
of object x has value c”), with Boolean values (c ∈ {0, 1}).
The extension to continuous-valued features by using the in-
equality comparison operators is straightforward, and will be
used later in the paper.

(S1) S → ∀x `(x)⇔(D)
(D1) D → (C) ∨ D
(D2) D → False
(C1) C → P ∧C
(C2) C → True
(P1) P → F1

...
(PN) P → FN
(F11) F1 → f1(x) = 1
(F12) F1 → f1(x) = 0

...
(FN1) FN → fN(x) = 1
(FN2) FN → fN(x) = 0

Figure 1. Production rules of the DNF grammar. S is the start
symbol, and D,C, P, Fi the other non-terminals. Productions (Fi1)
and (Fi2) can be naturally extended to “decision boundary” predi-
cates, e.g., F1 → f1(x) < 2.

The set of formulae in our language is generated by the
context-free “disjunctive normal form”, or DNF, grammar,
Fig. 1. Informally, each formula provides a “definition” and
asserts that that definition must hold anytime the label is
true1: ∀x `(x)⇔D. Each definition has the form of a stan-
dard dictionary entry: a set of alternative “senses”, each of
which is a list of necessary and sufficient conditions on the
features. For example, the labeled examples in Table 1 admit
an imperfect definition with a single sense ( f1(x)=0) and a
complex definition with two senses ( f1(x)=0 ∧ f3(x)=0) and
( f2(x)=0 ∧ f4(x)=0). More formally, each D non-terminal
becomes, by productions (D1) and (D2), a disjunction of C

non-terminals (the “senses”); each C-term becomes a con-
junction of predicate P-terms, and each P-term becomes a
specific feature predicate. Let us illustrate the generative pro-
cess of the DNF grammar by considering the two examples
from Table 1.

F12 :

∀x !(x)⇔(((f1(x)=0) ∧ True) ∨ False)

∀x !(x)⇔((F1 ∧ True) ∨ False)

∀x !(x)⇔((P ∧ True) ∨ False)

∀x !(x)⇔((P ∧ C) ∨ False)

∀x !(x)⇔((C) ∨ False)

∀x !(x)⇔((C) ∨D)

∀x !(x)⇔(D)

S
S1 :

D1 :

D2 :

C1 :

C2 :

P1 :

Figure 2. Derivation of a formula from the DNF grammar.

First consider the derivation illustrated in Fig. 2. Begin-
ning with the start symbol, S , the first step is to use produc-
tion (S1) to derive ∀x `(x)⇔D. Next we expand the symbol
D by applying production (D1), then production (D2). This
leads to a single conjunct term:

∀x `(x)⇔((C) ∨ False)

We continue by expanding the C-term using productions
(C1) then (C2):

∀x `(x)⇔((P ∧ True) ∨ False)

Using production (P1), the P-term is replaced with F1, and
using production (F12) this becomes an assertion of the value
for the first feature2:

∀x `(x)⇔( f1(x)=0)

We have thus derived a simple formula incorporating defini-
tion D1 for the concept of Table 1.

More complex derivations are also possible from this
grammar. For example, let us consider the derivation of
the complex definition D2 from Table 1. Beginning with
∀x `(x)⇔D, we expand the symbol D by applying produc-
tion (D1) twice (instead of once), then production (D2). This

1 In later sections we often write only the definition part of the
formulae, for clarity.

2 The terminal symbols True and False stand for logical True
and False—they are used to conveniently terminate a string of con-
junctions or disjunctions, respectively, and can be ignored. We now
drop them, and unnecessary parentheses, for clarity.
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leads to a disjunction of two conjunct terms (the two “senses”
of the definition). We now have the rule:

∀x `(x)⇔(C ∨C)

Recall that C is a non-terminal, so each of these C-terms
can ultimately result in a distinct substring (and similarly for
the other non-terminals). Each non-terminal symbol C leads,
by productions (C1) and (C2), to a conjunction of predicate
terms:

∀x `(x)⇔((P ∧ P) ∨ (P ∧ P))

Using production(s) (Pi), each predicate term becomes a fea-
ture predicate Fi, for one of the N features:

∀x `(x)⇔(
(
F1 ∧ F3) ∨ (F2 ∧ F4))

Finally, with productions (Fi1) and (Fi2), each feature predi-
cate becomes an assertion that the ith feature has a particular
value ( f1(x)=0, etc.):

∀x `(x)⇔(
(
f1(x)=0 ∧ f3(x)=0) ∨ ( f2(x)=0 ∧ f4(x)=0))

Informally, this means that the label holds when: f1 and f3
are zero, or f2 and f4 are zero—this accurately classifies all
the examples of Table 1.

Thus far we have used the generative nature of the DNF
grammar only to specify which sequences of symbols are
syntactically well formed (that is, those which represent valid
concepts). However, generative processes can also be used
to induce probability distributions: we can induce a proba-
bility distribution over the formulae of the concept language
by providing a probability for each choice in the derivation
process. Thus, the simple generative process that allows us to
build syntactic formulae will also provide a prior over these
formulae.

A Syntactic Prior
As illustrated above, each formula is generated from the

start symbol S by a derivation: a sequence of productions,
each replacing a single non-terminal, that ends when there
are no non-terminals left to replace. At each step of a deriva-
tion we choose from among the productions which could be
used to expand the next non-terminal symbol3—and if we
assign a probability to each such choice we will have a prob-
ability for the complete derivation. Hence, by supplementing
the context-free grammar with probabilities for the produc-
tions we get a prior over the formulae of the language: each
production choice in a derivation is assigned a probability,
and the probability of the complete derivation is the product
of the probabilities for these choices. Of course, the set of
production probabilities, τ, must sum to one for each non-
terminal symbol. The probability of a derivation DerivF for
formula F is:

P(DerivF |G, τ) =
∏

s∈DerivF

τ(s), (3)

where s∈DerivF are the productions in the derivation, τ(s)
the probability of each, and G denotes the grammar. The

DNF grammar is unambiguous—there is a single derivation
for each well-formed formula4—so Eq. 3 gives the probabil-
ity of the formula itself: P(F|G, τ) = P(DerivF |G, τ). For
a generic context-free grammar, P(F|G, τ) would instead be
the sum of the probabilities of its derivations. This would
complicate our analysis, but not in any critical way.

Note that the prior in Eq. 3 captures a syntactic simplicity
bias: smaller formulae have shorter derivations, thus higher
prior probability. However, the precise values of the produc-
tion probabilities may affect the inductive bias in important
ways. For instance, if production (D2) (of the DNF grammar,
Fig. 1) is much more likely that production (D1), but produc-
tions (C1) and (C2) are about equally likely, then complexity
as measured by the number of disjunctions will be penalized
more heavily than complexity as measured by the number of
conjunctions. Given this sensitivity, how should a rational
agent choose production probabilities? Any specific choice
would be ad-hoc, and would preclude learning correct val-
ues from experience. Rather than committing to a specific
choice, we can maintain uncertainty over τ. Since we have
no a priori reason to prefer one set of values for τ to another
we assume a uniform prior over the possible values—that is,
we apply the principle of indifference (Jaynes, 2003). Now
the prior probability is over both the formula and the produc-
tion probabilities: P(F, τ|G). However, since we are primar-
ily concerned with learning formulae F, we marginalize out
τ (see Appendix A). After some simplification this leads to
the expression:

P(F|G) =
∏

Y∈ non-terminals of G

β(CY (F) + 1)
β(1)

. (4)

Here β(c) is the multinomial beta function (or normaliz-
ing constant of the Dirichlet distribution, see Appendix A).
The vector CY (F) counts the uses of productions for non-
terminal Y: it has an entry for each production s of Y ,
equal to the number of times s was used in DerivF to re-
place Y . For instance, in the above derivation of the for-
mula ∀x `(x)⇔( f1(x)=0), the non-terminal D was expanded
once with derivation (2) and once with derivation (3). Thus
CD(F)=(1, 1), and D contributes β(2,2)

β(1,1) = 0.1667 to the prod-
uct in Eq. 4. In contrast, the non-terminal F2 is never
used in this derivation, so CF2 (F)=(0, 0), and F2 contributes
β(1,1)
β(1,1) = 1 (i.e. nothing) to the product.

This prior probability has several important properties,
which we now illustrate with examples. First, because the
multinomial beta function is monotonically decreasing in
each argument (over the domain which concerns us), this
prior will again have a complexity bias penalizing longer

3 There are multiple orders for any derivation, but this freedom
can be eliminated by always expanding the right-most non-terminal
first. We thus treat derivations as uniquely ordered, without loss of
generality.

4 To see this, note that it would change nothing to add additional
parentheses in productions (D1) and (C1), making the formulae
fully-parenthesized. The derivation of a formula could then be read
off the structure of its parentheses.
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derivations (hence longer formulae). For instance, we see
in Fig. 2 that the formula ∀x `(x)⇔( f1(x)=0) is derived by
applying productions S1, D1, D2, C1, C2, P1, and F12. The
prior probability of this formula is computed by applying
Eq. 4, which leads to the product:

S︷︸︸︷
β(2)
β(1)

×

D︷ ︸︸ ︷
β(2, 2)
β(1, 1)

×

C︷ ︸︸ ︷
β(2, 2)
β(1, 1)

×

P︷       ︸︸       ︷
β(2, 1, 1, 1)
β(1, 1, 1, 1)

×

F1︷ ︸︸ ︷
β(2, 1)
β(1, 1)

= 1.7 × 10−3.

(Each term of this product comes from the non-terminal
written over it; the remaining non-terminals are not used
for this formula.) In contrast the more complex formula
∀x `(x)⇔(( f1(x)=0∧ f3(x)=0)∨ ( f2(x)=0∧ f4(x)=0)) uses a
number of the productions repeatedly (as illustrated above),
and has prior probability:

S︷︸︸︷
β(2)
β(1)

×

D︷ ︸︸ ︷
β(3, 2)
β(1, 1)

×

C︷ ︸︸ ︷
β(5, 3)
β(1, 1)

×

P︷       ︸︸       ︷
β(2, 2, 2, 2)
β(1, 1, 1, 1)

×

F1︷ ︸︸ ︷
β(2, 1)
β(1, 1)

×

F2︷ ︸︸ ︷
β(2, 1)
β(1, 1)

×

F3︷ ︸︸ ︷
β(2, 1)
β(1, 1)

×

F4︷ ︸︸ ︷
β(2, 1)
β(1, 1)

= 5.9 × 10−8.

Again, this complexity bias follows from the monotonicity
of the beta functions, and is the dominant contribution to the
prior.

Another, subtler, contribution to the behavior of the prior
comes from the property: β(i, j, ...) < β(i + 1, j − 1, ...) if
i ≥ j. This means, in particular, that the prior favors reuse
of features over use of multiple features. For instance, if we
alter the above formula into ∀x `(x)⇔(( f1(x)=0∧ f3(x)=0)∨
( f1(x)=0 ∧ f4(x)=0)) (so that we use feature f1 twice, and f2
never), the formula receives a slightly higher prior probabil-
ity:

S︷︸︸︷
β(2)
β(1)

×

D︷ ︸︸ ︷
β(3, 2)
β(1, 1)

×

C︷ ︸︸ ︷
β(5, 3)
β(1, 1)

×

P︷       ︸︸       ︷
β(3, 1, 2, 2)
β(1, 1, 1, 1)

×

F1︷ ︸︸ ︷
β(3, 1)
β(1, 1)

×

F3︷ ︸︸ ︷
β(2, 1)
β(1, 1)

×

F4︷ ︸︸ ︷
β(2, 1)
β(1, 1)

= 1.6 × 10−7.

We will show below that this property of the prior allows us
to naturally capture certain “selective attention” effects ex-
hibited by human learners.

Likelihood: Evaluation and Outliers
We have given an informal description of the meaning of

formulae in our concept language—they are definitions in
disjunctive normal form. This meaning is captured formally
by the likelihood function P(E, `(E)|F), which specifies the

probability of a “world” of labeled examples, given a for-
mula. Here we present the likelihood function, with intuitive
justification; in Appendix B we provide a formal derivation
of this likelihood.

Our informal description above suggests that examples
should be labeled consistently with the classification rule,
so we might constrain P(E, `(E)|F) to be uniform on worlds
where the formula is true5, and zero otherwise. If we knew
that the observed labels were correct, and we required an ex-
planation for each observation, this constraint would deter-
mine the likelihood. However, we wish to allow concepts
that explain only some of the observations. For instance, it
seems unreasonable to ignore the definition D1 of Table 1,
which is quite simple and correctly predicts seven of the nine
examples (though it misses A5 and B1). Hence we assume
that there is a small probability that any given example is an
outlier (ie. an unexplainable observation which should be ex-
cluded from induction). For a given partition of the examples
into outliers and in-liers the likelihood will still be a simple
step function, but we must sum over outlier sets. This sum
produces an exponential gradient6 (see Appendix B), and the
likelihood becomes:

P(`(E),E|F) ∝ e−bQ`(F), (5)

where Q`(F) is the number of example objects which do not
satisfy the definition asserted by F. Note that this likelihood
decreases exponentially with the number of mislabeled ex-
amples, since they must be treated as outliers, but is never
zero. The probability that any given example is an outlier is
e−b—thus the parameter b is a measure of the a prior prob-
ability that an example is an outlier. (As we will see below,
multiple exposures to an example will effectively decrease
the probability that it is an outlier.)

Returning to the examples of Table 1, the simpler defi-
nition D1 incorrectly classifies examples A5 and B1, hence
P(`(E),E|FD1 ) ∝ e−2b. The complex definition D2 correctly
classifies all examples, hence P(`(E),E|FD2 ) ∝ 1.

The Rational Rules Model
The above likelihood and prior, combined using Bayes’

rule, constitute a model of concept learning, which we call
the Rational Rules model (RRDNF, to indicate the gram-
mar). The posterior probability of formula F according to
this model is:

P(F|E, `(E)) ∝

 ∏
Y∈ non-terminals of G

β(CY (F) + 1)

 e−bQ`(F).

(6)

In Table 2 we show the highest posterior formulae given the
examples in Table 1, according to the RRDNF model.

5 The concept language generates formulae of predicate logic.
Hence we inherit from the standard truth-functional semantics of
mathematical logic a procedure allowing us to decide whether the
formula is true.

6 This is similar to the derivation of Shepard’s Law of General-
ization (Shepard, 1987) by a sum over consequential regions.
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The generalization probability that a test object t has label
`(t)=1 is given by:

P(`(t)=1|E, `(E)) =
∑

F

P(`(t)=1|F)P(F|E, `(E)) (7)

where P(`(t)=1|F) reflects the classification predicted by for-
mula F (assuming t is not an outlier).

Let us summarize the ingredients of the Rational Rules
model. At the most general level, we have assumed (i) that
concepts are expressed in a grammatically defined concept
language; (ii) that the generative process of this grammar
leads to a prior over formulae in the language; and, (iii) that
there is a likelihood which captures evaluation of concepts
and allows that some examples may be outliers. These ingre-
dients are combined by the standard techniques of Bayesian
induction, and, all together, give a general framework for
“grammar-based induction” (N. D. Goodman, Tenenbaum,
Griffiths, & Feldman, In Press). The particular grammar we
have used, the DNF grammar, describes concepts as classifi-
cation rules: disjunctive normal form “definitions” for a con-
cept label. This grammar incorporates some structural prior
knowledge: labels are very special features (Love, 2002),
which apply to an object exactly when the definition is satis-
fied, and conjunctions of feature values are useful “entries”
in the definition. The final ingredient of the model is one
free parameter, the outlier probability, which describes the
prior probability that an example is an outlier which should
be ignored.

Each of the three intuitions about concepts and concept
learning that initially seeded our discussion is captured in the
posterior belief function of the Rational Rules model, Eq. 6.
First, each concept described in the concept language is a
classification rule that determines when its label can be ap-
plied. Since the posterior is seldom degenerate, there will
usually remain uncertainty about which rule corresponds to
a given concept label. Second, this posterior deals gracefully
with uncertainty by including a strong inductive bias, and
the possibility of treating some examples as outliers; these
two factors imply a trade-off between explanatory complete-
ness and conceptual parsimony. Finally, concepts which can
be expressed in the concept language are built by combining
primitive concepts (the feature predicates); and these combi-
nations are mirrored in the meaning of the concepts, through
the likelihood.

Bridging to Empirical Studies
In this section we present a few additional assumptions

and tools that we will need in order to bridge from the ratio-
nal model to experimental results.

Individuals and choice rules. The posterior and gener-
alization probabilities, Eqs. 6 and 7, capture the inferences
of an ideal learner. However, to make experimental pre-
dictions, we will require an auxiliary hypothesis—a choice
rule—describing the judgments made by individual learn-
ers on classification questions. One possibility, probability
matching, is to assume that individuals maintain (in some

sense) the full posterior over formulae, and match the ex-
pected probability of labels when it comes time to make a
choice. The expected portion of participants judging that a
test object “t is an `”, would then be equal to the general-
ization probability, Eq. 7. The probability matching assump-
tion is implicit in much of the literature on Bayesian learning
(e.g. Tenenbaum & Griffiths, 2001), and also prevalent in the
broader literature on decision making, via the Luce choice
rule (Luce, 1959).

A second possibility, hypothesis sampling, is that each ini-
dividual has one (or a few) hypotheses drawn from the pos-
terior over formulae. (That is, by the end of learning each
individual has acquired such a hypothesis—we may remain
agnostic about the process by which this is achieved.) Each
individual then gives the most likely response to any query,
given their hypothesis. The expected probability of general-
ization responses, averaged over a large enough population,
is again given by Eq. 7. Thus the prediction for the popula-
tion average of responses is identical between the probability
matching and hypothesis sampling assumptions.

We favor the hypothesis sampling assumption for three
reasons. First, it seems intuitively very plausible that indi-
viduals maintain only one, or a few, hypotheses rather than
an entire distribution. This allows for the possibility that the
process of learning resembles hypothesis testing, while se-
quentially sampling from the Bayesian posterior (as in San-
born, Griffiths, & Navarro, 2006). Second, maintaining a
small number of hypotheses is an efficient use of bounded
computational resources. Indeed, memory constraints were
a primary motivating consideration for the RULEX model.
Finally, there is some experimental evidence that supports
the idea that individuals in standard laboratory tasks learn a
small number of rules. For instance, the classification be-
havior exhibited by individuals in the experiments of Nosof-
sky et al. (1994); Nosofsky and Palmeri (1998); Johansen
and Palmeri (2002) are suggestive of hypothesis sampling
(and the idea of idiosyncratic rule formation discussed by
these authors is similar to the hypothesis sampling assump-
tion). Lamberts (2000), has shown that over a large num-
ber of transfer blocks individual participants respond with
far lower variance than expected based on the group average.
This is consistent with the idea that individuals learn a nearly
deterministic representation of concepts, such as a small set
of alternative rules.

Where it is useful to be explicit, we phrase our discussion
below in terms of the hypothesis sampling assumption. (The
wider implications of this assumption will be considered in
the General Discussion.) We further assume that each partici-
pant gives slightly noisy responses: there is a probability η of
giving the subjectively wrong answer. This captures simple
decision noise and a host of pragmatic effects (motor noise,
inattention, boredom, etc.), and is a common assumption in
models of concept learning (cf. Nosofsky et al., 1994; Smith
& Minda, 1998). The effect of this response noise on the
predicted (aggregate) response probability, Eq. 7, is a simple
linear transformation—this parameter is thus absorbed into
the correlation when R2 values are used to compare with hu-
man data. Below we explicitly fit η only when discussing the
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Table 2
The best formulae according to the RRDNF model (with posterior probabilities) for the examples of Table 1, at two different
values of the parameter b. (Only the “definition” part of the formulae are shown.) For small b the model favors single-feature
rules, weighted by their predictiveness; for larger b the model begins to favor complex formulae.

b=1
0.234 f3(x)=0
0.234 f1(x)=0
0.086 f4(x)=0
0.031 f2(x)=0

b=6
0.059 (( f1(x)=0) ∧ ( f3(x)=0)) ∨ (( f2(x)=0) ∧ ( f4(x)=0))
0.027 f1(x)=0
0.027 f3(x)=0
0.005 (( f1(x)=0) ∧ ( f4(x)=0)) ∨ ( f3(x)=0)

performance of individual participants.

Parameter fitting. The Rational Rules model described
above has two free parameters: the outlier parameter b,
and the response noise parameter η. In the results reported
below we have simulated the model for outlier parame-
ter b∈{1, . . . , 8} (these values were chosen for convenience
only). When only a single fit is reported it is the best
from among these eight parameter values. It is likely that
this rough optimization does not provide the best possible
fits of the RRDNF model to human data, but it is sufficient
to demonstrate the ability of the model predict human re-
sponses. Where η is explicitly fit, it is fit by grid search.

The model predictions were approximated by Monte
Carlo simulation (30,000 samples for each run, with five runs
averaged for most reported results). Details of the Monte
Carlo algorithm and simulation procedure can be found in
Appendix C.

Blocked-learning experiments. In many of the experi-
ments considered below participants were trained on the cat-
egory using a blocked-learning paradigm: each example in
the training set was presented once per block, and blocks
were presented until the training set could be classified ac-
curately (relative to a predetermined threshold). It is often
the case that different effects occur as training proceeds, and
these effects can be tricky to capture in a rational model. One
advantage of the Rational Rules model is that the effect of
repeated examples on the posterior is related to the value of
the outlier parameter b. Indeed, it is apparent from Eq. 6
that the Rational Rules model with outlier parameter b pre-
sented with N identical blocks of examples is equivalent to
the model presented with only one block, but with parameter
b′ = b·N. This makes intuitive sense: the more often an
example is seen, the less likely it is to be an outlier. Thus we
may roughly model the course of human learning by vary-
ing the b parameter—effectively assuming a constant outlier
probability while increasing the number of trials.

Two-category experiments. In several of the experiments
considered below participants were required to distinguish
between two categories, A and B, which were mutually ex-
clusive. (As opposed to distinguishing between a category
A and it’s complement “not A”.) For simplicity in fitting the
model we assume that the population is an even mixture of
people who take A to be the main category, and B the con-

trast category, with vice versa. Since these experiments have
similar numbers of A and B examples, this is probably a rea-
sonable initial assumption. (A more realistic treatment would
follow by treating these two categories as a system of inter-
related concepts (Goldstone, 1996)—we leave this extension
to future work.)

Descriptive measures of the posterior. We will shortly try
to understand the behavior of the model in various concept
learning experiments. Since the posterior (Eq. 6) describes
what has been learned by the model, it will be useful to have
a few descriptive measures of the posterior. In particular, we
would like to know the relative importance of formulae with
various properties.

The Boolean complexity of a formula (Feldman, 2000),
written cplx(F), is the number of feature predicates in the
formula: a good overall measure of syntactic complexity.
For example, ( f1(x)=1) has complexity 1, while ( f2(x)=0) ∧
( f1(x)=1) has complexity 2. The posterior weight of formu-
lae with complexity C is the total probability under the pos-
terior of such formulae:∑

F st. cplx(F)=C

P(F|E, `(E)). (8)

Define the weight of feature i in formula F to be count( fi∈F)
cplx(F) ,

that is, the number of times this feature is used divided by
the complexity of the formula. The posterior feature weight
is the posterior expectation of this weight:∑

F

count( fi∈F)
cplx(F)

P(F|E, `(E)). (9)

The posterior feature weights are a measure of the relative
importance of the features, as estimated by the model. In-
deed, it can be shown that Eq. 9 is related in a simple (mono-
tonic) way to the posterior expectation of the production
probability for production P→ Fi (see Appendix D).

Comparison with Human
Category Learning

In the preceding sections we have presented a Bayesian
analysis of concept learning assuming that concepts are rep-
resented in a concept language of rules. In this section we
begin to explore the extent to which this analysis captures hu-
man learning by comparing the RRDNF model to human data
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from several influential experiments. We consider four ex-
periments from the Boolean concept learning literature that
have often been used as tests of modeling efforts (e.g. Nosof-
sky et al., 1994), and one concept based on non-Boolean fea-
tures which has been used in a similar way (e.g. Nosofsky
& Palmeri, 1998). We close this section by considering the
within-participants pattern of generalization judgments – a
more refined test of the model.

We use data from human experiments in which physical
features were counter-balanced against logical features. So,
for instance, in an experiment with the two physical features
Length and Angle, half of participants would see Angle play-
ing the role of logical feature f1 and for the other half An-
gle would be f2. This counter-balancing allows us to focus
on foundational questions about concept formation, without
worrying over the relative saliency of the physical properties
used to represent features. Except where otherwise noted
physical features in these experiments were along psycho-
logically separable dimensions.

Prototype Enhancement and Typicality Effects

The second experiment of Medin and Schaffer (1978),
among the first studies of ill-defined categories, used the “5-
4” category structure shown in Table 3 (we consider the hu-
man data from the Nosofsky et al. (1994) replication of this
experiment, which counter-balanced physical feature assign-
ments). This experiment is a common first test of the ability
of a model to predict human generalizations on novel stimuli.

The overall fit of the Rational Rules model (Fig. 3) is
good: R2=0.98. Other models of concept learning are
also able to fit this data quite well: for instance R2=0.98
for RULEX, and R2=0.96 for the context model (Medin &
Schaffer, 1978). However, the Rational Rules model has
only a single parameter (the outlier parameter), while each
of these models has four or more free parameters; indeed,
the full RULEX model has nine free parameters.

The best (highest posterior probability) formulae accord-
ing to the Rational Rules model are shown in Table 2. For
small values of b (those that are more permissive of outliers),
the best formulae are single dimension rules. Note that the
posterior probabilities of these formulae reflect their predic-
tiveness on the training examples, and in particular that for-
mula f4(x)=0, though not the best, has significantly greater
posterior probability than formula f2(x)=0. In Fig. 4 we have
plotted the posterior complexity weights and the posterior
feature weights of the Rational Rules model for b=1. We see
that this pattern is maintained when considering the entire
posterior: most of the weight is on simple formulae along
features 1 and 3, followed by feature 4, then feature 2.

The object T3=0000 is the prototype of category A, in
the sense that most of the examples of category A are sim-
ilar to this object (differ in only one feature) while most of
the examples of category B are dissimilar. Though it never
occurs in the training set, the importance of this prototype
is reflected in the human transfer judgments (Table 3 and
Fig. 3): T3 is, by far, the most likely transfer object to be
classified as category A. The Rational Rules model predicts

this “prototype enhancement effect” (Posner & Keele, 1968).
This prediction results because the highest posterior proba-
bility formulae (Table 2) all agree on the categorization of
T3, so combine (together with lower probability formulae)
to enhance the probability that T3 is in category A.

The degree of typicality, or recognition rate for training
examples, is often taken as a useful proxy for category cen-
trality (Mervis & Rosch, 1981) because it correlates with
many of the same experimental measures (such as reaction
time). In Table 3 and Fig. 3, we see greater typicality for
the prototype of category B, the object B4=1111, than for
other training examples: though presented equally often it is
classed into category B far more often. The Rational Rules
model also predicts this typicality effect, in a manner simi-
lar to prototype enhancement: most high probability formu-
lae agree on the classification of B4, while fewer agree on
the classifications of the other training examples. However,
note that the typicality gradient of training examples is not
entirely determined by similarity to the prototypes. For in-
stance, training example A2 and A1 are equally typical of
category A and more typical than examples A4 and A5 (ac-
cording to both humans and the Rational Rules model), how-
ever A1, A3, and A4 are each more similar to the prototype,
T3, than is A2. This finding has often been taken as evidence
of exemplar memory (Medin & Schaffer, 1978). However,
for the Rational Rules model the enhancement of A2 reflects
the greater reliance on rules involving features 1 and 3 (which
support the classification of A2, but not of A4 or A5) and the
relative unimportance of feature 2 (the only feature on which
A1 and A2 differ).

In these model results graded typicality effects arise out of
deterministic rules by maintaining uncertainty over the rule
that defines the concept. Following the hypothesis sampling
assumption outlined above, we might expect a single indi-
vidual to learn a small set of rules, sampled from the pos-
terior. Objects which satisfy all these rules would be con-
sidered more typical of the concept (after all, they are part
of the concept under any of the competing definitions) than
objects which satisfy only some. (This is similar to the pro-
posal of Lakoff (1987), in which “idealized cognitive mod-
els” of a concept are composed of several “entries”; objects
which satisfy many entries are considered better examples
of the concept than those which satisfy few.) In this way
similar graded typicality judgments would be expected from
individuals, as from group averages.

Prototype and typicality effects led to great interest among
the psychological community in prototype-based models of
concept learning (e.g. Reed, 1972). Many such models
represent prototypes as points in a similarity space. Be-
cause the curve equidistant to two points in a metric space
is a line, these prototype models predict that linearly sep-
arable categories—those which admit a linear discriminant
boundary—will be easier to learn than those that are not lin-
early separable. Medin and Schwanenflugel (1981) tested
this prediction in four experiments, finding that linearly sep-
arable concepts could be harder for human participants to
learn than closely matched concepts which were not lin-
early separable. As an example, consider Medin and Schwa-
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Figure 4. (a) Posterior complexity distribution of the RRDNF model (b=1) for the category structure of Medin & Schaffer (1978), see
Table 3. (b) Posterior feature weights for this category structure. Together these weight distributions indicate that the RRDNF model focuses
on simple rules along features 1 and 3.

Table 3
The category structure of Medin & Schaffer (1978), with the
human data of Nosofsky et al. (1994), and the predictions of
the Rational Rules model (b=1).
Object Feature Values Human RRDNF

A1 0001 0.77 0.82
A2 0101 0.78 0.81
A3 0100 0.83 0.92
A4 0010 0.64 0.61
A5 1000 0.61 0.61
B1 0011 0.39 0.47
B2 1001 0.41 0.47
B3 1110 0.21 0.21
B4 1111 0.15 0.07
T1 0110 0.56 0.57
T2 0111 0.41 0.44
T3 0000 0.82 0.95
T4 1101 0.40 0.44
T5 1010 0.32 0.28
T6 1100 0.53 0.57
T7 1011 0.20 0.13

nenflugel (1981), Experiment 3, in which participants were
trained on the two concepts shown in Table 4, and tested on
classification accuracy for the training set. Concept LS is
linearly separable, Concept NLS is not, and the two concepts
have matched single dimension strategies (that is, any sin-
gle feature predicts category membership two thirds of the
time, in each concept). Throughout the experiment learners
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Figure 3. Comparison of human judgments with RRDNF model
predictions: mean probability of category A judgments after train-
ing on the category structure of Medin & Schaffer (1978), see Ta-
ble 3, for human and RRDNF model (b=1). The fit between model
and human data is R2=0.98.

make fewer errors on Concept NLS (Fig. 5a). In Fig. 5b we
see that the Rational Rules model provides good qualitative
agreement with the human data, predicting more errors on
the linearly separable concept (and note that no parameters
were fit in these model results). The RULEX model also pre-
dicts the relative difficulty of Concept LS over Concept NLS
(Nosofsky et al., 1994), which suggests that this is a rather
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Table 4
The two concepts from Medin & Schwanenflugel (1981).
Concept LS is linearly separable, Concept NLS is not.

Concept LS
Category A Category B

1000 0111
0001 1000
0110 1001

Concept NLS
Category A Category B

0011 1111
1100 1010
0000 0101

general prediction of rule-based models.
To understand this result, note that, though the two con-

cepts support equally informative complexity 1 rules (that
is single-feature strategies), Concept NLS supports more in-
formative rules of complexity 2, 3, and 4 than does Con-
cept LS. For example the complexity 4 formula ( f1(x)=0 ∧
f2(x)=0) ∨ ( f3(x)=0 ∧ f4(x)=0) discriminates perfectly for
Concept NLS, while there is no complexity 4 formula which
does so for Concept LS. The RRDNF model relies more heav-
ily on these rules of complexity 2, 3, and 4 for Concept NLS
than for Concept LS, see the plots of posterior complexity in
Fig. 6, which results in a difference in accuracy. The model
does not, however, simply use the most informative rules
(after all there are always perfectly predictive rules of very
high complexity), but balances predictive accuracy against
simplicity—it places weight on highly informative and mod-
erately complex rules for Concept NLS, but, finding no such
rules for Concept LS, places the majority of the weight on
very simple rules.

Selective Attention Effects

It is important to be able to ignore uninformative features
in a world, such as ours, in which every object has many
features, any of which may be useful for classification. This
motivates the long standing interest in selective attention in
human concept learning (Kruschke, 1992): the tendency to
consider as few features as possible to achieve acceptable
classification accuracy. We have seen a simple case of this
already predicted by the Rational Rules model: single feature
concepts were preferred to more complex concepts for the 5-
4 category structure (Fig. 4(a)). Indeed, each of the descrip-
tive measures described above (the complexity and feature
weights) is a measure of selective attention exhibited by the
model: the posterior complexity weights describe the extent
to which the model favors simpler formulae (which will have
fewer features), while the posterior feature weights directly
describe the informativeness of each feature, as estimated by
the model. It has been noted before (Navarro, 2006) that se-
lective attention effects emerge naturally from the Bayesian

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Complexity

Po
st

er
io

r 
pr

ob
ab

ili
ty

 

 

Concept LS
Concept NLS

Figure 6. Posterior complexity distribution of the RRDNF model
(b=3) on the two category structures from Medin & Schwanenflugel
(1981), see Table 4. The model shows greater dependence on simple
rules for Concept LS than Concept NLS.

framework. In our setting selective attention can be under-
stood as the effect of updating the uncertainty over produc-
tion probabilities as evidence accumulates. Indeed, as the
prior over τ—initially uniform—is updated, it will often con-
centrate, becoming tightly peaked on a subset of productions.
For instance, if only the first of three features is informa-
tive, the posterior distribution on production P → F1 will
become larger, while the posteriors on P → F2 and P → F3
will be small (and these values will be reflected in the pos-
terior feature weights, see Appendix D). The changing im-
portance of the productions τ have been marginalized away
in the summary prior Eq. 4, but the effects will still be felt in
model predictions. As a result the inferences of the Rational
Rules model will depend most sensitively on the informative
features—this is the manner in which Bayesian models im-
plement selective attention.

Shepard et al. (1961), in one of the first studies to demon-
strate selective attention effects, compared difficulty in learn-
ing the six concepts in Table 5 (these are the six concepts
with three Boolean features, four positive and four negative
examples). These concepts differ in the number of dimen-
sions which must be attended to, in the complexity of their
simplest perfect rule, and in the number of imperfect, but
useful, simple rules. To learn Concept I it is only necessary
to consider the first feature, that is, the rule ( f1(x)=0) per-
fectly predicts category membership, and the remaining fea-
tures are uninformative. For Concept II the first two features
are informative; for example the complexity 4 formula

(( f1(x)=1) ∧ ( f2(x)=1)) ∨ (( f1(x)=0) ∧ ( f2(x)=0))

is the simplest perfect rule for this concept. In contrast, all
three features are informative for Concepts III, IV, V, and VI.



A RATIONAL ANALYSIS OF RULE-BASED CONCEPT LEARNING 13

(a) (b)

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E
rr

or
 r

at
e

Block

 

 

Concept LS
Concept NLS

0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E
rr

or
 p

ro
ba

bi
lit

y

b

 

 

Concept LS
Concept NLS

Figure 5. (a) The human data from Medin & Schwanenflugel (1981) for the category structures in Table 4, showing that linearly separable
Concept LS was more difficult to learn than Concept NLS, which is not linearly separable. (b) Predictions of the RRDNF model: the
probability of an incorrect response vs. the outlier parameter b.

Concept III admits the relatively simple formula

(( f1(x)=0) ∧ ( f3(x)=0)) ∨ (( f2(x)=0) ∧ ( f3(x)=1)),

while Concepts IV, V, and VI don’t admit any perfect rules of
low complexity. However, IV, and V both admit imperfect,
but useful, rules of low complexity, while VI has no useful
simple rules at all.

A well replicated finding concerning human errors (Shep-
ard et al., 1961) is that these concepts vary reliably in dif-
ficulty, reflecting the above complexity and informativeness
considerations: I<II<III=IV=V<VI (ordered from least to
most difficulty, where “=” indicates no reliable difference in
difficulty). The RRDNF model predicts these qualitative find-
ings: error rates (via posterior probability, when b=3) of 0%,
17%, 24%, 24%, 25%, 48% for concepts I, II, III, IV, V, and
VI, respectively. This ordering is predicted for a fairly wide
range of parameter values, though an inversion is predicted
at b=1: concept II is then more difficult than concepts III, IV,
and V. It is intriguing that this inversion has been experimen-
tally observed in humans when the stimulus dimensions are
non-separable (Nosofsky & Palmeri, 1996), but further work
will be needed to determine whether this is an illuminating
or accidental prediction of the model. (This inversion, which
is also seen in rhesus monkeys (Smith, Minda, & Washburn,
2004), is predicted by the ALCOVE model when attention
learning is disabled.)

However, people are not bound to attend to the small-
est set of informative features—indeed, selective attention
is particularly interesting in light of the implied tradeoff be-
tween accuracy and number of features attended. Medin, Al-
tom, Edelson, and Freko (1982) demonstrated this balance by
studying the category structure shown in Table 6. This struc-
ture affords two strategies: each of the first two features are

Table 5
The six concepts with three features, four positive and four
negative examples, studied first in Shepard et al. (1961).

I II III IV V VI
+ 0 0 0 + 0 0 0 + 0 0 0 + 0 0 0 + 0 0 0 + 0 0 0
+ 0 0 1 + 0 0 1 + 0 0 1 + 0 0 1 + 0 0 1 - 0 0 1
+ 0 1 0 - 0 1 0 + 0 1 0 + 0 1 0 + 0 1 0 - 0 1 0
+ 0 1 1 - 0 1 1 - 0 1 1 - 0 1 1 - 0 1 1 + 0 1 1
- 1 0 0 - 1 0 0 - 1 0 0 + 1 0 0 - 1 0 0 - 1 0 0
- 1 0 1 - 1 0 1 + 1 0 1 - 1 0 1 - 1 0 1 + 1 0 1
- 1 1 0 + 1 1 0 - 1 1 0 - 1 1 0 - 1 1 0 + 1 1 0
- 1 1 1 + 1 1 1 - 1 1 1 - 1 1 1 + 1 1 1 - 1 1 1

individually diagnostic of category membership, but not per-
fectly so, while the correlation between the third and fourth
features is perfectly diagnostic. It was found that human
learners relied on the perfectly diagnostic, but more compli-
cated, correlated features. McKinley and Nosofsky (1993)
replicated this result, studying both early and late learning by
eliciting transfer judgments after both initial and final train-
ing blocks. They found that human participants relied pri-
marily on the individually diagnostic dimensions in the ini-
tial stage of learning, and confirmed human reliance on the
correlated features later in learning. The RRDNF model ex-
plains most of the variance in human judgments in the final
stage of learning, R2=0.95 when b=7; see Fig. 7. Correlation
with human judgments after one training block is also re-
spectable: R2=0.69 when b=1. By comparison RULEX has
R2=0.99 for final, and R2=0.67 for initial learning. We have
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plotted the posterior complexity of the RRDNF model against
b in Fig. 8, and the posterior feature weights in Fig. 9. When
b is small the Rational Rules model relies on simple rules, but
gradually switches as b increases to rely on more complex,
but more accurate, rules.
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Figure 7. Fit of the RRDNF model to human data (R2), for data from
initial and final learning blocks of McKinley & Nosofsky (1993),
see Table 6. The fits are shown for eight values of the outlier pa-
rameter b. (Error bars represent standard error over five independent
simulation runs.)
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Figure 8. Posterior complexity distribution of the RRDNF model
on the category structure of Medin et al. (1982), see Table 6, for
three values of the outlier parameter.

Concepts based on non-Boolean Features

We have focussed thus far on concepts with Boolean fea-
ture values, but the modular nature of the concept gram-
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Figure 9. Posterior feature weights of the RRDNF model on the
category structure of Medin et al. (1982), see Table 6, for three
values of the outlier parameter.

mar makes it quite easy to extend the model to other con-
cept learning settings. Indeed, when the features take values
on a continuous dimension we may, as described above, re-
place the simple boolean feature predicates with “decision
boundary” predicates, e.g. f1(x) < 3. This is quite similar to
the strategy taken in Nosofsky and Palmeri (1998) to extend
RULEX to continuous feature values. Indeed, the Nosofsky
and Palmeri (1998) version of RULEX is in some ways most
similar to the Rational Rules model. However the complica-
tions of the continuous RULEX model result in an awkward
modeling process: a set of likely rules is chosen by hand,
then the model is fit with several free parameters for each
rule. In contrast, the Rational Rules model is easily extended,
and acquires no additional free parameters or ad-hoc fitting
steps.

As an initial test we have compared the RRDNF model,
using decision boundary predicates, with human data for the
concept with two continuous features that first appeared in
Nosofsky, Clark, and Shin (1989), using the human data from
the Nosofsky and Palmeri (1998) replication. (The two ex-
periments of this replication were identical except they used
the two different assignments of logical dimensions to physi-
cal dimensions—we have averaged the results from these two
experiments to counterbalance the data). The result suggests
that the RRDNF model captures a significant amount of hu-
man learning also for concepts based on continuous feature
dimensions: R2 = 0.82 (for b=3).

All of the results discussed so far depend on the choice
of primitive feature predicates, but this is especially true of
predictions for continuous-dimension stimuli. Indeed, there
seems to be no a priori reason to choose two continuous
features f1 and f2 rather than alternative “rotated” features
f ′1 = f1 + f2 and f ′2 = f1 − f2. Yet the predictions of the Ra-
tional Rules model will differ significantly depending on the
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Table 6
The category structure of Medin et al. (1982), with initial and final block mean human responses of McKinley & Nosofsky
(1993), and the predictions of the Rational Rules model at b=1 and b=7.
Object Feature Values Human, initial block Human, final block RRDNF, b=1 RRDNF, b=7

A1 1111 0.64 0.96 0.84 1
A2 0111 0.64 0.93 0.54 1
A3 1100 0.66 1 0.84 1
A4 1000 0.55 0.96 0.54 0.99
B1 1010 0.57 0.02 0.46 0
B2 0010 0.43 0 0.16 0
B3 0101 0.46 0.05 0.46 0.01
B4 0001 0.34 0 0.16 0
T1 0000 0.46 0.66 0.2 0.56
T2 0011 0.41 0.64 0.2 0.55
T3 0100 0.52 0.64 0.5 0.57
T4 1011 0.5 0.66 0.5 0.56
T5 1110 0.73 0.36 0.8 0.45
T6 1101 0.59 0.36 0.8 0.44
T7 0110 0.39 0.27 0.5 0.44
T8 1001 0.46 0.3 0.5 0.43

set of features: simple concepts in terms of decision bounds
along f1 and f2 may be quite complicated in terms of f ′1 and
f ′2 . (This parallels the “grue/green” thought experiment often
used to illustrate the “new riddle of induction” (N. Goodman,
1955).) The psychological reality and importance of basis
features has been shown a number of ways. For instance,
the “Filtration” concept of Kruschke (1993) may be simply
describe as a decision bound along one dimensions, while
the “Condensation” concept cannot—though it is identical to
the Filtration concept but for a 45 degree rotation. Both hu-
man learners and the Rational Rules model find the Filtration
concept considerably easier to learn than the Condensation
concept.

It is likely that Rational Rules, viewed as a computational-
level model, can guide the resolution of some of the ad-hoc
assumptions in the existing process-level accounts of rule-
based learning for continuous features. Conversely, the mod-
eling assumptions used here to extend Rational Rules to con-
tinuous features can certainly be refined by incorporating
insights from the (extensive) literature on continuous cate-
gories. In particular, empirical evidence (e.g. Maddox &
Ashby, 1993) suggests that feature predicates capturing gen-
eral linear or quadratic decision boundaries may be appropri-
ate in some situations.

Individual Generalization Patterns

Nosofsky et al. (1994) investigated the pattern of gen-
eralizations made by individual participants, that is, they
reported the proportion of participants giving each set of
answers to the generalization questions. One may wonder
whether it is necessary to consider these generalization pat-
terns in addition to group averages for each question. As
noted in Nosofsky and Palmeri (1998), even the best bino-
mial model does very poorly at predicting individual gen-

eralization patterns (R2=0.24 in the case of Nosofsky et al.
(1994), Exp. 1), though, by construction, it perfectly predicts
the group average for each generalization question. There-
fore the pattern of generalizations provides an additional,
more fine grained, probe for testing concept learning models.

To understand how the Rational Rules model can predict
these generalization patterns, recall the hypothesis sampling
assumption discussed above: each individual has a single hy-
pothesis which is drawn from the posterior over formulae.
The pattern of judgments made by each individual is then de-
termined by this hypothesis, with additional response noise
η. If we assume a single value of the parameters (b and η)
for all participants, the best fit of the RRDNF model explains
R2=0.85 of the variance in human generalization for the 36
generalization patterns reported in (Nosofsky et al., 1994).
The RULEX model also does well, R2=0.86, but uses several
more free parameters. As with RULEX, the qualitative match
of the Rational Rules model to human judgments is good,
see Fig. 10. Also as with RULEX, the generalization pattern
ABABBAB is under-predicted by the model (cf. Johansen &
Palmeri, 2002).

An Experiment
In the previous section we have discussed several impor-

tant experiments from the concept learning literature, explor-
ing human learning of concepts based on relatively few fea-
tures. In each of these experiments participants were trained
on many, or all, of the objects in the feature space, leaving
only a few untrained objects available as transfer stimuli.
(In fact, none of these experiments had fewer than half of
possible objects as training examples.) In contrast, human
learners must often cope with both large feature spaces, and
relatively few labeled examples compared to the number of
unseen objects. In a more natural setting, one with many
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Figure 10. Individual generalization patterns: the probability of responding with the indicated categorizations for the seven transfer stimuli
of Table 3. Human data from Nosofsky et al. (1994), Experiment 1. The model values are for parameters b=4, η=0.09. Agreement of model
with human data is good: R2=0.85, rmsd=0.016.

features and sparse training examples, one might expect dif-
ferent aspects of concept learning to come to the fore. For
instance, when training examples are sparse, learning will be
less constrained by available information and the inductive
bias of the learning mechanism will play a relatively larger
role. Further, when there are many features, the memory de-
mands of remembering even a single exemplar become sig-
nificant, so it is important to focus on informative rules based
on a subset of the features. Given these considerations, it is
important to test models of concept learning against human
learning in settings with many features and sparse examples.

In addition, there is a danger of selecting the concepts
to be tested in a way that biases the results. Historically,
many concept learning experiments have used the same
hand-picked concept structures, e.g. the Medin and Schaf-
fer (1978) 5-4 concept, which has been used in dozens of
studies. It is extremely plausible that some learning tech-
niques work better on some types of concepts than others (see
Briscoe & Feldman, 2006; Feldman, 2003, 2004), leaving
doubt about whether performance on a small set of concepts
is a reliable indicator of success more generally. This was
one of the motivations for Shepard et al. (1961)’s famous
concept set, which constitutes an exhaustive (and thus in-
herently unbiased) survey of concepts with three dimensions
and four positive examples. When the number of features is
large, it is impossible to be similarly exhaustive, but we can
achieve a similar end by choosing our concepts randomly, so
that we are at least guaranteed that our choices will be unbi-
ased with respect to the performance of competing models—
a level playing field. Thus in the experiment described below,
the training set is a randomly selected subset of the complete
set of objects.

The complexity of patterns formed by chance should vary
with the number of examples: for example, with few exam-
ples there may be more “accidental” simple regularities. It

isn’t feasible to vary the number of examples systematically
over a wide range, but it is possible to do so for small num-
bers of examples. Hence, in the experiment that follows we
use a large set of Boolean features (D=7), yielding 27=128
objects total, of which a small randomly drawn set of 3 to
6 are presented as positive examples, and two are presented
as negative examples. (Some negative examples are neces-
sary to give the participant a sense of the range of positive
examples; for simplicity we always used two negative exam-
ples.) This leaves the vast majority of the space (at least 122
objects) as “transfer” objects. After brief training with the
example objects, participants were asked to classify all 128
objects in random order. The goal is to apply the model to
predict responses on the 128 generalization trials, as a func-
tion of the training set.

Method

Participants. Participants were 47 undergraduate students
enrolled in a Psychology class, participating in the study in
return for course credit. All were naive to the purposes of the
study.

Materials and procedure. Objects were amoeba-like
forms, each consisting of an outer boundary and one or more
“nuclei” (smaller shapes in the interior). The amoebas varied
along seven Boolean dimensions (body shape = rectangle or
ellipse; boundary = solid or fuzzy; nucleus shape = triangle
or circle; nucleus size = large or small; nucleus color = filled
or unfilled; nucleus number = 1 or 2; fins present or absent).
These features were chosen simply to be plainly perceptible
and salient to participants.

Participants were told they were to play the role of a bi-
ologist studying a new species of “amoeba”-like organisms.
They were instructed that they were to study a small number
of known examples of each new species, and then attempt to
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classify unknown examples as members or non-members of
the species.

Each concept session began with a training screen, divided
into top and bottom halves by a horizontal line. The top half
of the screen contained the P = 3, 4, 5 or 6 positive exam-
ple objects, drawn in a horizontal row in random order, and
labeled “Examples”; the bottom half contained the two neg-
ative examples, again drawn in a horizontal row in random
order, and labeled “NOT examples.” The training screen re-
mained up for a fixed period of time, equal to 5P seconds
(i.e. 15 – 30 seconds depending on the number of positives,
yielding a constant average learning time per positive object).

After the training screen disappeared, participants were
presented with a series of 128 individual classification trials
in random order. On each classification trial, a single object
was presented centrally, and participants were instructed to
classify it as a member of the species or a nonmember. No
feedback was given.

Each participant was run on several separate concepts, at
different values of P, in random order. It was emphasized to
participants that each new species (concept) was unrelated to
the preceding ones. The entire sequence took about an hour
per participant. In some cases we intentionally ran multi-
ple participants on the same concepts, to facilitate compar-
isons between participants on identical inputs, but this was
not pursued systematically. In total there were 140 partici-
pant/training set pairs, which we will refer to as individual
runs.

Results and Discussion
We consider several ways of analyzing the experimental

data, in order to address three main questions. First, to what
extent can the probabilistic rule-based approach describe hu-
man concept learning and generalization behavior in this rel-
atively unconstrained setting? Second, can we infer the spe-
cific rules that learners adopted on particular runs, and can
we make any general conclusions about the kinds of rules
they tend to use in this setting? Third, how well can we
predict the graded generalization probabilities of individual
learners for individual test objects? The RRDNF model pro-
vides our basic tool for answering each of these questions.

To assess the first question we consider the overall ability
of the RRDNF model to predict participants’ patterns of judg-
ments for the 128 test stimuli within each run. We measure
the fit of the model to human responses with the (natural)
log-likelihood of the pattern of responses in an individual run
according to the model:

ln(PRRDNF (response1, ..., response128|training examples)).

This is a measure of how likely the model considers the re-
sponse pattern given the training set (or, roughly, the amount
of information in the human data that cannot be accounted
for by the model). It is always negative, and numbers with
smaller magnitude indicate better fit. Without fitting any pa-
rameters, simply fixing η=0.1 and b=1, mean log-likelihood
across runs is -54. That is, using the model the probability of
correctly predicting responses to all 128 questions of a given

run is 34 orders of magnitude better than chance (chance is
ln( 1

2128 )= − 89). Moreover this predictive success is quite
broad: the response pattern of 85% of runs is predicted better
than chance, and the mean predictive success for runs in each
of the 43 unique training sets is above chance.
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Figure 11. Distribution of (natural) log-likelihood scores vs. best-
fit η parameter for each individual run. (Chance log-likelihood is
−89, since there are 128 binary choices in each run.)

In light of the results on individual generalization patterns
above, it makes sense to fit parameters η and b for each indi-
vidual run, hoping to capture individual differences in learn-
ing in addition to the differences in what is learned. (Fitting
parameters per run can quickly lead to over-fitting; however,
since we have 128 responses per run in this experiment, it is
not unreasonable to fit two parameters for each.) The mean
best log-likelihood for each run is -44. This log-likelihood
is significantly greater than that expected by a chance fit
(p<0.001 by permutation test7). The distribution of log-
likelihood scores against best-fit η values is shown in Fig. 11.
Note first that the majority of η values are relatively small,
indicating that behavior on most runs is best explained pri-
marily in terms of the rational rule-based inferences from the
examples participants saw rather than in terms of response
noise. Second, the tight correlation between log-likelihood
values and η values indicates that the amount of response
noise (as measured by the inferred value of η) is a primary
factor explaining the differences in fit between individual
runs. If there was another factor that distinguished runs and
explained differences in model fit, we would expect that fac-
tor to produce independent variance observable in Fig. 11.

The fit between model predictions and human data indi-
cates that participants’ performance may usefully be ana-
lyzed as probabilistic rule-based classification. Can we gain

7 For this test we randomly permuted the data within individual
runs. It is likely that the p-value is much smaller than 0.001: we
estimated the permutation test by Monte Carlo simulation of 1500
random permutations of the data, and found no permutations with
greater log-likelihood than the actual data.
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Figure 12. The distribution of logical forms of best formulae for individual runs with η < 0.1. The logical forms are schematic: f stands
for any feature predicate (e.g., f1=1). Runs with high b (less permissive outlier parameter) exhibit somewhat more complex classification
behavior.

Table 7
Two sample individual runs, showing the training examples,
best-fit parameters, and highest posterior formulae together
with their agreement with the participant’s responses (i.e. the
portion of the 128 transfer questions on which participants’
responses satisfy the formula). Formulae are listed in de-
scending order of posterior probability given the training ex-
amples.

label feature values
- 0 1 1 0 1 0 1
- 0 1 1 0 1 1 0
+ 1 0 0 0 1 0 1
+ 1 0 1 1 0 1 0
+ 1 1 1 0 0 1 1

best-fit b=1, η=0.03
formula agreement
( f1=1) 50%
( f2=0) 48%
( f5=0) 97%
( f6=1) 53%

label feature values
+ 0 0 0 0 0 0 1
- 0 0 0 0 1 1 0
+ 0 0 0 1 1 1 0
- 0 0 1 1 1 1 0
+ 1 0 1 1 1 1 0
+ 1 1 0 1 0 0 0

best-fit b=8, η=0.07
formula agreement

( f1=1) ∨ ( f5=0) 76%
( f1=1) ∨ ( f7=1) 88%
( f1=1) ∨ ( f3=0) 84%
( f1=1) ∨ ( f6=0) 77%
( f4=1) ∨ ( f7=1) 74%

further insight into which rules each participant used in each
run? The rules that participants were using cannot be read
off directly from their generalization behavior, but we can
use the RRDNF model to infer which rules they were likely to
be using. Consider two sample runs shown in Table 7, where
we have given the training set, the highest posterior formulae
according to the model under best-fitting parameters, and the
agreement between participants’ responses and the responses
predicted by these high posterior formulae. As exemplified
by the first run, some participants seem to pick a simple one-
feature rule and use it consistently to classify the test stimuli.

The rule chosen may be somewhat arbitrary, not necessarily
fitting the training examples perfectly or fitting them better
than alternative rules of equivalent complexity. In the first
run of Table 7, we see that a formula with high posterior
probability captures the vast majority of the participant’s re-
sponses but is not the formula with highest posterior proba-
bility; another simple rule exists ( f1=1) that can perfectly ex-
plain the training data. The inferred response noise (η) is low,
because the participant’s judgments are highly predictable.

Other participants, as illustrated by the second run shown
in Table 7, appear to be using slightly more complex rules
with multiple features, but these more complex rules may be
used less consistently. Here the agreement between gener-
alization behavior and any high-probability formula is less
strong, which the model attributes to greater intrinsic noise
(higher η). The agreement is also less tightly peaked, with
multiple formulae having similarlly high agreement levels
(largely because agreement between formulae forces corre-
lation in agreements with participants’ responses). Even in
these cases, however, responess may be still usefully cap-
tured by a single high-agreement formula.

To generalize this analysis beyond single case studies, we
define the “best” rule for each individual run to be the rule
with maximum posterior probability given the participant’s
responses8. In Fig. 12 we have plotted the distribution of
logical forms of the best formula for each of the individual
runs. Overall, participants focused primarily on rules that
use only one or two of the available seven features. This
finding is similar in spirit to the classic finding of Medin,
Wattenmaker, and Hampson (1987), that participants in un-
supervised classification tasks tend to classify based on a sin-

8 We may think of this as a Bayesian estimate of the rule used by
an individual, in which the prior is given by the model’s posterior
over rules, and the likelihood is based on how well each rule pre-
dicts the noisy classification behavior of that individual. We obtain
similar results if we define the “best” rule to be simply the formula
that best agrees with a participant’s responses, chosen from among
those formulae with high posterior according to the model.
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gle feature, even if the features of objects could also be ex-
plained by a family-resemblance category structure. Here,
we see that participants in a “lightly supervised” concept-
learning setting—in which there are relatively few examples,
and brief familiarization—classify mostly based on simple
one- or two-feature rules.

It is worth noting that runs which are best modeled with
a permissive outlier parameter (b<5) rely mostly on one or
two features, while runs with stricter outlier parameter val-
ues (b≥5) begin to exhibit more complex classification rules.
Because the value of the outlier parameter is an estimate of
how accurately participants have learned a concept consis-
tent with the training set, this provides an indication of the
course of learning (without manipulating it directly). The
difference between small and large b runs is suggestive of a
“representational shift” (Smith & Minda, 1998; Johansen &
Palmeri, 2002; Briscoe & Feldman, 2006), from simple rules
to more complex rules (or exemplar-type representations) as
training is extended. In future work, it would be interesting
to test whether this pattern of variation in representational
complexity would result from more systematic variation of
exposure time and number of examples relative to size of the
training set.

Finally, we turn to the question of how well the
RRDNF model can predict the graded generalization proba-
bilities of individual learners for individual test objects (as
opposed to entire generalization patterns). This assessment
is complicated by the fact that the model makes different
predictions for each participant on each question, depend-
ing on the training set they saw—and because of the large
number of training sets in this experiment only a few par-
ticipants saw each. Yet if the model accurately predicts in-
dividual responses, across participants and questions, then of
responses predicted with probability X% to be “yes”, roughly
X% should actually be answered “yes”. Thus, instead of do-
ing an object-by-object correlation as we did above for other
data sets, we first sort the responses according to predicted
probability of generalization—that is, we bin responses ac-
cording to the prediction of the model, given the training set
and the best-fit b and η. In Fig. 13(a) we have plotted the fre-
quency of “yes” responses against the predicted generaliza-
tion probability. We see that response frequencies are highly
correlated with model generalization probability (R2=0.97),
indicating that the model is a good predictor of individual
responses. Another way of interpreting Figs. 13(a) is that,
across judgments, the model correctly predicts human re-
sponses in proportion to how confident it is in that predic-
tion: when the model predicted a “yes” response with high
probability most people did say yes, and when the model
was unsure—assigning probability near 50%—people were
evenly split between “yes” and “no” responses.

To find out whether this trend holds at the level of in-
dividual runs we did a similar analysis for each run: we
binned the 128 responses in a run according to model poste-
rior, and computed the frequency of “yes” responses in each
bin. Fig. 13(b) shows the mean and standard error over runs,
demonstrating that the model is a good predictor of individ-
ual responses on individual runs. (Since each run is an indi-

vidual participant this indicates good fit for the responses of
individuals.)

One of the responsibilities of models of concept learning
is to describe the inferences that people make across a broad
range of natural situations. Thus it is important to verify that
a model fits human data not only on simple, well-controlled
concepts, but for more natural and generic circumstances.
We have found good agreement between the RRDNF model
and human judgments when the number of features is large,
the number of training examples small, and the specific train-
ing sets randomly generated. This is a necessary complement
to the results discussed above which show that the Ratio-
nal Rules model captures a number of well-known, specific
learning effects.

General Discussion
We have suggested an approach for analyzing human con-

cept learning: assume that concepts are represented in a con-
cept language, propose a specific grammar and semantics for
this language, then describe rational inference from exam-
ples to phrases of the language. Carrying out this scheme for
concepts which identify kinds of things, by using a grammar
for DNF formulae, we derived the Rational Rules (RRDNF)
model of concept learning. This model was shown to predict
human judgments in several key category learning experi-
ments, and to do so with only one, readily interpretable, pa-
rameter (and an additional, decision-noise, parameter for fits
to individual subjects). Several phenomena characteristic of
human concept learning—prototype enhancement, typicality
gradients, and selective attention—were demonstrated. The
model was used to predict categorization judgments based
on continuous features, and the the pattern of generalization
responses of individual learners. In a new experiment, we
investigated the ability of the model to predict human be-
havior in generic natural environments: natural in the sense
that there were many features and few training examples rel-
ative to the number of transfer stimuli, generic because these
training sets were randomly chosen. Human generalization
behavior was again well predicted by the model in this ex-
periment.

Relation to Other Models of Concept Learning
For most fits of the Rational Rules model to human data

we have provided a comparison with RULEX model fits.
This comparison has shown that the RRDNF model fits hu-
man data as well as one of the most successful existing mod-
els of concept learning, but it also shows how fits of the
RRDNF model generally parallel fits of RULEX, both better
and worse. This reinforces the interpretation of the Rational
Rules model as a computational-level analysis of the same
species of rule-based inductive inferences that RULEX at-
tempts to capture at the process level. Of course the RRDNF
model is not a rational analysis of RULEX per se, but rather
of a class of models for which RULEX is one prominent ex-
ample.

Our DNF representations are in some ways more sim-
ilar to the cluster-based representations of the SUSTAIN
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Figure 13. (a) Human categorization response frequency (proportion of “yes” judgments) against model posterior generalization probabil-
ity, R2=0.97; error bars represent standard error of frequency (assuming binomial distribution). (Frequencies are computed by first binning
responses according to model prediction.) (b) The mean of response frequencies (binned according to model prediction) computed for each
run separately; error bars represents standard error of the mean over runs; bars below each data point indicate number of runs contributing
to that bin (scale on right).

model (Love et al., 2004) than they are to representations
in RULEX; conjunctive blocks of RRDNF formulae are anal-
ogous to the clusters that SUSTAIN learns, with features that
are ommitted from a conjunctive clause analogous to fea-
tures that receive low attentional weights in SUSTAIN. All
three of these models—RULEX, SUSTAIN, and RRDNF—
navigate similar issues of representational flexibility, trade-
offs between conceptual complexity and ease of learning, and
generalization under uncertainty. The main advantages that
Rational Rules offers over the other two models come from
its focus on the computational-theory level of analysis and
the modeling power that we gain at that level: the ability
to work with a minimal number of free parameters and still
achieve strong quantitative data fits, the ability to separate
out the effects of representational commitments and induc-
tive logic from the search and memory processes that imple-
ment inductive computations, and the ability to seamlessly
extend the model to work with different kinds of predicate-
based representations, such as those appropriate for learning
concepts in continuous spaces, concepts defined by causal
implications (see N. D. Goodman et al., In Press), or con-
cepts defined by relational predicates (see below).

A central theme of our work is the complementary nature
of rule-based representations and statistical inference, and
the importance of integrating these two capacities in a model
of human concept learning. Other authors have written about
the need for both rule-based and statistical abilities—or of-

ten rules and similarity—in concept learning, and cognition
more generally (Sloman, 1996; Pinker, 1997; Pothos, 2005).
The standard approach to combining these notions employs
a “separate-but-equal” hybrid approach: endowing a model
with two modules or systems of representation, one special-
ized for rule-based representations and one for statistical or
similarity-based representations, and then letting these two
modules compete or cooperate to solve some learning task.
The ATRIUM model of Erickson and Kruschke (1998) is a
good example of this approach, where a rule module and a
similarity module are trained in parallel, and a gating module
arbitrates between their predictions at decision time.

We argue here for a different, more unified approach to
integrating rules and statistics. Rules expressed in a flexi-
ble concept language provide a single unitary representation;
statistics provides not a complementary form of representa-
tion, but the rational inductive mechanism that maps from
observed data to the concept language. We thus build on the
insights of Shepard (1987) and Tenenbaum (2000) that the
effects of similarity and rules can both emerge from a single
model: one with a single representational system of rule-like
hypotheses, learned via a single rational inductive mecha-
nism that operates according to the principles of Bayesian
statistics.
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Effect of the Specific Concept Grammar

Although we focused on one concept language, based on
a DNF representation, other concept languages are possible
and the choice of language should affect the performance of
a grammar-based induction model. For instance, grammars
which are incomplete (lacking conjunction, say, hence un-
able to capture all extensions) fail to predict the flexibility
of human learning. We focused here on only the DNF gram-
mar for simplicity of exposition, because our goal has been to
show the viability of a probabilistic grammar-based approach
to concept learning, but this should not be taken to imply
an endorsement of the DNF grammar as the correct concept
grammar. Other possibilities capture aspects of other pro-
posals about concepts and concept learning, which may be
appropriate for different settings.

For instance, there is increasing evidence that causal rela-
tionships play an important role in concept use and formation
(see e.g. Rehder, 2003; Sloman et al., 1998). We could at-
tempt to capture causal regularities amongst features by gen-
erating sets of “causal laws”: conjunctions of implications
amongst features (this representation for concepts was sug-
gested in Feldman (2006)). In Fig. 14(a) we indicate what a
grammar for this language might look like; see N. D. Good-
man et al. (In Press) for studies with this concept grammar.
Another possible grammar (Fig. 14(b)), inspired by the rep-
resentation learned by the RULEX model (Nosofsky et al.,
1994), represents concepts by a conjunctive rule plus a set of
exceptions. Finally, it is possible that context-free grammars
are not the best formalism in which to describe a concept
language: graph-grammars and categorial grammar, for in-
stance, both have attractive properties.

(a) (b)
S → ∀x `(x)⇔I S → ∀x `(x)⇔((C) ∧ E)
I → (C⇒P) ∧ I E → ¬(C) ∧ E
I → T E → T
C → P ∧C C → P ∧C
C → T C → T
P → Fi P → Fi
Fi → fi(x) = 1 Fi → fi(x) = 1
Fi → fi(x) = 0 Fi → fi(x) = 0

Figure 14. (a) An Implication Normal Form grammar. (b) A rule-
plus-exceptions grammar inspired by Nosofsky et al. (1994).

Rationality of Hypothesis Sampling

In the first part of this paper we gave a rational analysis
of rule-based concept learning, assuming that the output of
this learning was a posterior distribution on possible concept
meanings. In subsequent sections we showed that this ratio-
nal analysis predicted human behavior at the group and in-
dividual level, at least when supplemented by the additional
assumption of hypothesis sampling (that each learner arrives
at one or a small set of rules distributed according to the pos-
terior). What is the status of the supplemented analysis? We
may ask this along two dimensions: the level of analysis (in

the sense of Marr (1982)), and the claim of rationality. Thus
we have two questions: is hypothesis sampling a process-
level correction to the computational-level analysis, or an ex-
tension at the computational level of analysis? And, in either
case, is it a “rational” extension to the analysis?

There are at least two ways in which it is reasonable to
think of hypothesis sampling as a rational correction to the
Bayesian analysis. First, as the scale of the learning prob-
lem increases, exact evaluation of Bayesian analyses quickly
becomes intractable. This suggests that a rational analysis
should account for limited computational resources avail-
able to the organism by describing a rational process for ap-
proximating the Bayesian solution. Bounded-optimal algo-
rithmic approximation of this sort was an important com-
ponent of the rational model of Anderson (1991). In re-
cent years, Bayesian models in AI and machine learning
have relied heavily on methods for efficiently computing
approximate probabilities from complex models (Russell &
Norvig, 2002). The most general and straightforward ap-
proximation methods are based on Monte Carlo sampling—
a randomized procedure for constructing a set of hypothe-
ses that are drawn from the Bayesian posterior. The ubiq-
uity of sampling-based approximation methods suggests that
they could provide the basis for bounded-optimal analysis of
human learning (Sanborn et al., 2006)—an approach which
could be consistent with our findings that individual subjects’
behavior can be well explained as samples from the posterior.
One appealing version of this approach, explored by Sanborn
et al. (2006) for similarity-based representations, is based
on sequential Monte Carlo (or “particle filter”) algorithms
(Doucet, De Freitas, & Gordon, 2001). These algorithms up-
date a set of hypotheses in response to new evidence in a way
that looks very much like simple hypothesis testing, but the
details of the “hypothesis update” procedure guarantee that
the resulting hypotheses are samples from the full Bayesian
posterior. (The results for several simulations reported in this
paper were verified by using such a sequential Monte Carlo
algorithm, based on Chopin (2002), but we have not yet in-
vestigated the behavior of this algorithm in detail.) Thus, it is
possible that the hypothesis sampling assumption is rational
in the sense of being a rational process-level correction to the
computational-level rational analysis.

There may also be a deeper sense in which the hypothesis
sampling assumption corrects the Bayesian analysis, at the
computational level, by altering the competence that is being
described. If the output of the concept-learning competence
is a mental representation, not merely classification behavior,
then we must take care that the end result of a model of con-
cept learning is a reasonable candidate for mental represen-
tation. In particular, because the full distribution on formulae
in the Rational Rules model is infinite, the output representa-
tion can only be a summary of this distribution. The hypoth-
esis sampling assumption then embodies the claim that this
summary takes the form of a small set of rules—and that this
approximates the format of concepts in the mind.

Additional work will be required to establish either the
optimality of hypothesis sampling as a process-level approx-
imation, or the plausibility of sets of rules as a mental rep-
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resentation formed by concept learning. In the mean time,
viewing hypothesis sampling as a useful and intriguing aux-
iliary hypothesis to the rational analysis may be the best
course.

Limitations, Extensions, and Future Directions

Learning tasks. In this paper we have only modeled su-
pervised learning of a single concept. As pointed out in a
number of places (e.g. Love et al., 2004) it is important for
models of concept learning to account for human behavior
over a range of learning situations and a variety of inference
tasks.

It should be possible to extend the Rational Rules model
to unsupervised and semi-supervised learning tasks, by em-
ploying a “strong-sampling” likelihood (which assumes that
examples are sampled from those with a given label), as
in Tenenbaum and Griffiths (2001). Similar effects should
emerge as those found in other Bayesian models which use
strong-sampling (Tenenbaum, 1999a)—foremost a size prin-
ciple, favoring more restrictive hypotheses over more gen-
eral. This size principle also enables learning concepts from
only positive examples (Tenenbaum & Xu, 2000; Xu &
Tenenbaum, 2007).

We indicated earlier that the feature predicates used as
primitives throughout this paper should be thought of as just
one simple case of preexisting concepts that can be used
as atoms for new concepts. Indeed, compositionality sug-
gests that once a concept has been learned it is available as a
building block for future concepts—and this effect has been
demonstrated for human learning (Schyns & Rodet, 1997).
We may extend the Rational Rules model to systems of con-
cepts in exactly this way: by adding each learned concept as
a primitive predicate to the concept grammar used to learn
the next concept. This will predict certain synergies between
concepts which should be empirically testable. (For instance,
having learned that “daxes” are red squares, it might be easier
to learn that a “blicket” is a fuzzy dax than it would have been
to learn the meaning of blicket alone—a fuzzy red square.)
In such synergies we begin to see the real power of composi-
tional representations for concepts.

Process-level description. While we have not attempted
here to predict processing measures of concept learning,
there are natural approaches to bridge between our analysis
and such measures. For instance, it is likely that response
times for individual categorization decisions can be modeled
by making processing assumptions similar to those in Lam-
berts (2000). Specifically, we may assume that noisy percep-
tual observations of features are accumulated at a constant
rate, that the log-likelihood of a particular response given the
(set of) concept formulae and observations is accumulated
over time, and that a decision is made when this accumu-
lating log-likelihood reaches a confidence threshold. This
would result in a diffusion process (Luce, 1986; Ratcliff,
Zandt, & McKoon, 1999) in which the diffusion rate depends
on properties of the stimulus with respect to the concept lan-
guage. It is important to note that the speed-limiting step

in this process is perceptual information gathering, not eval-
uation of rules. Thus, contra Fodor (1998), we would not
expect that the representational complexity of concepts need
be reflected in response times.

Sequential effects in learning have been taken to be a par-
ticularly puzzling set of phenomena from the Bayesian point
of view (Kruschke, 2006). A parallel puzzle for our analy-
sis, is how individuals are able to arrive at a set of samples
from the posterior. Both of these puzzles may be addressed
by considering the process of learning over the course of an
experiment. Indeed, it is likely that rational process mod-
els, such as the sequential Monte Carlo models described
above, will be able to give a more detailed treatment of the
course of human learning. This includes refined learning
curves and explanations of sequential effects—such as the
greater weight of early examples in concept learning (An-
derson, 1990)—which might otherwise be puzzling from the
Bayesian point of view. A proper investigation of these ques-
tions could become a whole research program on its own.

Representation. One of the primary advantages of the Ra-
tional Rules model is the ease with which it can be extended
to incorporate new, more powerful, representational abilities.
We have already seen a simple case of this flexibility, when
we extended the Rational Rules model to continuous feature
dimensions by simply adding decision-boundary predicates
(e.g. f1(x) < c). In N. D. Goodman et al. (In Press) we have
explored concepts defined by their role in a relational system
(the importance of such concepts has been pointed out re-
cently (Markman & Stilwell, 2001; Gentner & Kurtz, 2005)).
For instance, the concept “poison” can be represented

∀x poison(x)⇔(∀y in(x, y)∧organism(y)⇒injured(y)),

or, “a poison is something that causes injury when introduced
into an organism”. To capture this rich set of concepts only a
simple extension of the concept grammar is needed (includ-
ing relational feature predicates and additional quantifiers).
One can imagine making similar alterations to the concept
language to include representations required, for instance, in
social cognition or naive physics.

Conclusion

Our work here can be seen as part of a broader theme
emerging in cognitive science, AI, and machine learning,
where logical representations and statistical inference are
seen as complementary rather than competing pararadigms.
In the context of concept learning, the integration of sta-
tistical learning and rule-based representations may help
us to understand how people can induce richly structured
concepts from sparse experience. This is crucial if con-
cepts are to play a foundational role in our understand-
ing of the mind: concepts must serve many purposes—
classification, theory building, planning, communication and
cultural transmission—which require the inferential flexibil-
ity of statistics and the representational power of mathemati-
cal logic.
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The proposal that concepts are represented by phrases in
a concept language is not new in cognitive science—indeed
this is a principal component of the language of thought hy-
pothesis (Fodor, 1975). Nor is the idea of analyzing cog-
nition by considering a rational Bayesian agent new: ideal
observers have been prominent in vision research (Geisler,
2003) and cognitive psychology (Shepard, 1987; Anderson,
1990; Chater & Oaksford, 1999). However, the combination
of these ideas leads to an exciting project not previously ex-
plored: Bayesian analysis of the language of thought. Al-
though this paper represents only the first steps in such a
program, we have shown that rigorous results are possible
and that they can provide accurate models of basic cognitive
processes.
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Appendix A
Derivation of the Prior

We begin with the expression for the prior probability of
a formula given production probabilities τ (Eq. 3):

P(F|G, τ) =
∏

s∈DerivF

τ(s), (10)

However, we wish to allow uncertainty over the values of the
production probabilities, thus:

P(F|G) =
∫

P(F, τ|G)dτ

=

∫
P(τ)P(F|τ,G)dτ

=

∫
P(τ)

 ∏
s∈DerivF

τ(s)

 dτ,

(11)

where P(τ) is the prior probability for a given set of produc-
tion probabilities. (Note that the integral of Eq. 11 is over
all production probabilities—a product of simplices.) Since
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we have no a priori reason to prefer one set of values for
τ to another, we apply the principle of indifference (Jaynes,
2003) to select the least informative prior: P(τ) = 1. The
probability of a formula becomes:

P(F|G) =
∫  ∏

s∈DerivF

τ(s)

 dτ. (12)

We may simplify this equation by recognizing the integral as
a Multinomial-Dirichlet form (see Gelman, Carlin, Stern, &
Rubin, 1995):

P(F|G) =
∏

Y∈ non-terminals of G

β(CY (F) + 1)
β(1)

. (13)

Here the expression CY (F) is the vector of counts of the
productions for non-terminal symbol Y in DerivF (and 1
is the vector of ones of the same length). The function
β(c1, c2, ..., cn) is the multinomial beta function (i.e. the nor-
malizing constant of the Dirichlet distribution for pseudo-
counts c1, c2, ..., cn, see Gelman et al. (1995)), which may
be written in terms of the Gamma function:

β(c1, c2, ..., cn) =
∏n

i=1 Γ(ci)
Γ(
∑n

i=1 ci)
(14)

Appendix B
Derivation of the Likelihood

In this appendix we will derive the likelihood func-
tion, Eq. 5. The DNF grammar generates a concept lan-
guage of formulae, and it will be useful in what follows
to write the formulae in two parts, the “quantified” part
∀x (`(x)⇔Def(x)), and the “definition” part Def(x), where
the definition part is a disjunction of conjunctions of predi-
cate terms.

We wish to define the truth-value of Def(x) for a given ob-
ject x. Following the usual approach in mathematical logic
(Enderton, 1972) the evaluation of Def(x) is given recur-
sively:

1. Def(x) is a term.
2. If a term is a feature predicate, such as f1(x)=0, then it

can be evaluated directly (presuming that we know the fea-
ture values for the object x).

3. If a term is a conjunction of other terms, A(x) ∧ B(x),
then it is True if and only if each of the other terms is True.

4. If a term is a disjunction of other terms, A(x) ∨ B(x),
then it is True if and only if any of the other terms is True.

At first this definition may appear vacuous, but it provides
a concrete procedure for reducing evaluation of Def(x) to
evaluation of (primitive) feature predicates. The steps of this
reduction exactly parallel the syntactic derivation from which
the formula was built, hence providing a compositional se-
mantics. (For a more careful treatment of the general issue
of compositionality in Bayesian models, see N. D. Goodman
et al. (In Press).) We now have an evaluation procedure that
assigns a truth value to the definition part of each formula for
each object; we write this truth value also as Def(x).

The natural reading of the “quantified” part of the formula
is “the formula is true if, for every example, the label is true if
and only if Def(x) is true”. Using this as the only constraint
on the likelihood, P(`(E),E|F) is nonzero only when F is
true, and otherwise uniform. (This is again an application of
the principle of indifference: we add no additional assump-
tions, and are thus indifferent among the worlds compatible
with the formula.) Thus, with logical True/False interpreted
as probability 1/0:

P(`(E),E|F) ∝
∧
x∈E

`(x)⇔Def(x). (15)

We needn’t worry about the constant of proportionality in
Eq. 15, because it is independent of the formula F (this holds
because there is exactly one labeling which makes the for-
mula true for each set of examples).

If we knew that the observed labels were correct, and we
required an explanation for each observation, we could stop
with Eq. 15. However, we assume that there is a proba-
bility e−b that any given example is an outlier (ie. an un-
explainable observation which should be excluded from in-
duction)9. Writing I for the set of examples which are not
outliers (which ranges over subsets of E), the likelihood be-
comes:

P(`(E),E|F) =
∑
I⊆E

P(I)P(`(I), I|F)

∝
∑
I⊆E

(1 − e−b)|I|(e−b)|E|−|I|
∧
x∈I

`(x)⇔Def(x)

=
∑

I⊆{x∈E|`(x)⇔Def(x)}

(1 − e−b)|I|(e−b)|E|−|I|

= e−bQ`(F),
(16)

where the last step follows from the Binomial Theorem. We
have used the abbreviation Q`(F) = |{x∈E|¬(`(x)⇔Def(x))}|
(this is the number of example objects which do not satisfy
the definition asserted by F).

Appendix C
A Grammar-based Monte Carlo

Algorithm

The expected generalization probability of Eq. 7 cannot
be directly evaluated, since the set of formulae is infinite.
However, this expectation may be approximated by impor-
tance sampling from the posterior distribution (Eq. 6). We
now sketch a Markov chain Monte Carlo algorithm for sam-
pling from the posterior distribution10. This algorithm ap-
plies generally for inference over a grammatically structured
hypothesis space.

9 We have written the outlier probability as an exponential
merely for later convenience.

10 Software implementing this algorithm is available from the au-
thors’ web site.
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We wish to define a Markov chain on the space of parse
trees (the grammatical derivations, up to order), in which
each step is compatible (in some intuitive sense) with the
structure of the grammar, G. We do so by the Metropolis-
Hastings procedure (Metropolis, Rosenbluth, Rosenbluth,
Teller, & Teller, 1953), using subtree-regeneration propos-
als which formalize the intuitive idea “generate a proposal
by changing a (syntactically coherent) part of the given for-
mula.”

First fix an auxiliary probabilistic CFG, to be used in pro-
posal generation, by choosing a convenient set of production
probabilities, σ, for G. Now the subtree-regeneration pro-
posal is generated from parse tree T as follows: select n ∈ T
uniformly at random from among the non-terminal nodes of
T , remove all nodes of T below n, now regenerate the tree
below n according to the stochastic rules of Gσ, to get pro-
posal T ′. (If T ′ = T , repeat the process.) Each proposal is
accepted with probability equal to the minimum of 1 and:

P(E, `(E)|FT ′ )
P(E, `(E)|FT )

·
P(T ′|G)
P(T |G)

·
|T |
|T ′|
·

P(T |G, σ)
P(T ′|G, σ)

. (17)

Where FT is the formula associated with parse T , and |T | is
the number of non-terminal symbols in T . For the Rational
Rules posterior each of the terms in Eq. 17 may be easily
evaluated: the likelihood by Eq. 5, the prior by Eq. 4, and
P(T ′|G, σ) by Eq. 3.

Detailed balance follows as usual in the Metropolis-
Hastings prescription, supplemented with some graph and
counting arguments. Since we could amputate at the root,
generating a completely new parse tree from the start sym-
bol, this proposal scheme is ergodic. From ergodicity and
detailed balance we may conclude that this Markov chain
converges to P(T |E, `(E),G) in distribution. By interpreting
each parse T as its formula FT we generate samples from the
Rational Rules posterior.

In the reported results the RRDNF model was approxi-
mated by using this Monte Carlo algorithm. Except where
otherwise noted 30,000 iterations were used to approximate
each reported value, and convergence of most approxima-
tions was verified by doing five independent simulations (re-
ported results are the mean of these five runs—hence an ag-
gregate of 150,000 samples—and error bars, where given,
are standard error over the five runs).

Appendix D
Derivation of Feature Weights

In the main text we have defined the posterior feature
weights by: ∑

F

count( fi∈F)
cplx(F)

P(F|E, `(E)), (18)

and used them as an intuitive measure of the importance of
each feature, as estimated by the model. We will now show
that these weights are related in a simple way to the posterior
expectations of the production probabilities for productions

P → Fi. Because these production probabilities determine
the relative importance of the features in generating a con-
cept, their posterior expectations capture the relative infor-
mativeness of the features.

The posterior probability of the production probabilities
τP for non-terminal P, given a formula, is:

P(τP|F) =
P(τP)P(F|τP)∫

P(τP)P(F|τP)dτP

=
P(F|τP)∫

P(F|τP)dτP

=

∏N
i=1(τP,i)count( fi∈F)∫ ∏N

i=1(τP,i)count( fi∈F)dτP

=

∏N
i=1(τP,i)count( fi∈F)

β(count( fi∈F) + 1)
.

(19)

Where 1 indicates the vector of all ones. The expected value
of production probability τPk (for production P→ Fk), given
formula F, is then:

EP(τP |F)(τPk) =
∫
τPkP(τP|F)dτP

=

∫
τPk
∏N

i=1(τP,i)count( fi∈F)dτP

β(count( fi∈F) + 1)

=
β(count( fi∈F) + 1 + δk)
β(count( fi∈F) + 1)

.

(20)

Where δk indicates the vector with a 1 in the k-place, and
zeros elsewhere. If we expand the beta functions in terms of
gamma functions, most terms cancel giving us:

EP(τP |F)(τPk) =
Γ(count( fk∈F) + 2) · Γ(N +

∑
i count( fi∈F))

Γ(count( fk∈F) + 1) · Γ(N + 1 +
∑

i count( fi∈F))

=
Γ(count( fk∈F) + 2) · Γ(N + cplx(F))
Γ(count( fk∈F) + 1) · Γ(N + 1 + cplx(F))

=
1 + count( fk∈F)

N + cplx(F)
(21)

where the last simplification follows from the recursion
Γ(z + 1) = zΓ(z). Finally, the posterior expectation for pro-
duction probability τPk is given by:

EP(τP |E,`(E))(τPk) =
∑

F

1 + count( fk∈F)
N + cplx(F)

P(F|E, `(E)) (22)

Thus the feature weights, Eq. 18, are monotonically related
to the posterior expectations of the production probabilities,
Eq. 22. The primary difference between the two, which is
unimportant for our purposes, is that features which are never
used will have non-zero posterior expectation, but zero pos-
terior weight.


