Lattice models as Poincaré pairings
(aka "everything is geometry"
aka "yet another interpretation of
the lattice models for Whittaker
functions")

Katy Weber
University of Minnesota
May 12, 2021
Outline

1. Bird's eye view:
 bases of integrable systems = bases in p-adic representation = bases in equivariant cohomology

2. Some equivariant geometry

3. Example: Frozen pipes model for Schubert polynomials
4 Example: Colored & uncolored Whittaker lattice models

\text{dwahou}

\begin{align*}
\lambda + \rho \\
\langle \lambda + \rho, \tilde{\mathcal{M}}^\vee(Y(\omega)^0) \rangle
\end{align*}

\text{Spherical}

\begin{align*}
\lambda + \rho \\
\langle \lambda + \rho, \tilde{\mathcal{M}}(Y(1)) \rangle
\end{align*}

this vector \leftrightarrow Poincaré dual of $\tilde{\mathcal{M}}^\vee(Y(\omega)^0) / \tilde{\mathcal{M}}(Y(1))$

5 Future directions?
1. Bird's eye view of Schubert calculus

- One set of spectral parameters
- Five vertex models
- Over 6 vertex models
- Two sets of spectral parameters

Figure 1. Three "orthogonal" directions to generalize classical Schubert calculus

(not pictured: quantum Schubert calculus)

Source: Rimanyi, "h-deformed Schubert calculus in equivariant cohomology, K-theory, & elliptic cohomology"
Generalized equivariant cohomology \((H^*_T, K_T, E^{1,1}_T)\) \(\leftrightarrow\) Bethe algebra of quantum integrable systems

- fixed point basis (easy) \(\leftrightarrow\) Bethe basis (hard)

- geometric basis (Schubert classes / stable envelopes) (hard) \(\leftrightarrow\) spin basis (easy)

Defined by Maulik & Okounkov for general Nakajima quiver varieties — in particular, for \(X = T^*(G/B)\) (cotangent bundle)
Some equivariant geometry

Def. (Γ-equivariant cohomology)

If Γ acts freely on X,

$$H^*_\Gamma(X) := H^*(X/\Gamma)$$

Otherwise, let $E\Gamma$ be a contractible space w/ free Γ-action. Then

$$H^*_\Gamma(X) := H^*((X \times E\Gamma)/\Gamma).$$

Note that $H^*_\Gamma(pt) = H^*(E\Gamma/\Gamma)$ is not necessarily trivial! ($= B\Gamma$, classifying space of Γ)
For this talk, $\Gamma = T = (\mathbb{C}^\times)^n$, maximal torus of $G_t := \text{GL}_n(\mathbb{C})$.

First let $n=1$. Then we can take

$$ET = \left\{ (z_i)_{i>0} \mid z_i \in \mathbb{C}, \text{ finitely many} \right\}$$

so

$$ET/\Gamma = \mathbb{C}P^\infty \quad \& \quad H_T(pt) = \mathbb{Z}[y]$$

For general n,

$$H_T(pt) = \mathbb{Z}[y_1, \ldots, y_n].$$
Consider

\[\Pi : X \longrightarrow \text{pt} \]

This induces

\[\Pi^* : H^n_\pi(\text{pt}) \longrightarrow H^n_\pi(X) \]

(so \(H^n(X) \) is a \(H^n_\pi(\text{pt}) \)-module)

& (by Poincaré duality)

\[\Pi_* : H^n_\pi(X) \longrightarrow H^n_\pi(\text{pt}) \]

which we use to define the Poincaré/intersection pairing:

\[\langle a, b \rangle = \Pi_* (a \cup_{\text{prod}} b) \]
Equivariant K-theory

Similar, but now:

- $K^0(X)$ consists of equivariant vector bundles $E \to X$ (or, equivalently if X smooth, equivariant sheaves)

- $K^0(pt) \cong \text{Rep}(\Gamma)$

 \[\text{so } K^0(pt) = \mathbb{Z} \left[e^{\pm t_1}, \ldots, e^{\pm tr} \right] \]

 \[\text{(characters } \leftrightarrow \text{ basis of } \text{Lie}(\Gamma)) \]
Advantage of equivariant-ness:

Often, all the information about $H^*_\alpha(x)$ is captured by the cohomology of the fixed point locus X^α.
Example: Frozen pipes model

(exposition heavily influenced by Zinn-Justin,
"Lectures on Geometry, Quantum Integrability, &
Symmetric functions")

(can extend to)

we are here (+ connective K-theory)

focus today
(simplest case)

Figure 1. Three “orthogonal” directions to generalize classical Schubert calculus

Let

\[G = \text{GL}_n \]
\[B = (\bigotimes) \]
\[T = (\mathbb{C}^*)^n \]
\[X = G/B \text{ flag variety} \]

Then

\[X = \bigsqcup_{w \in S_n} C_w \quad \text{(Schubert cell / Bruhat decomp)} \]
\[X_w := \overline{C_w} = \bigsqcup_{v \leq w} C_w \quad \text{is a Schubert variety} \]
The Schubert classes \(S_w := [X_w] \) form an additive basis of \(\mathcal{H}^*_T(X) \) "equivariant parameters"

\[
\mathcal{H}^*_T(X) \cong \frac{\langle C[x_1, \ldots, x_n, y_1, \ldots, y_n] \rangle}{\langle f(x_1, \ldots, x_n) - f(y_1, \ldots, y_n) \mid \text{f \in H}_G(pt) \rangle}
\]

In this case, \([X_w] \rightarrow \text{Schubert polynomial} \)

\[
(K\text{-theory: Grothendieck poly})
\]

\[
(\text{connective K}\text{-theory: } \mathbb{Q}\text{-Grothendieck poly})
\]

In the equivariant theory, also have basis of twisted Schubert classes for every \(v \in S_n \):

\[
S_w^{(v)} := [\nu X_w \nu^{-1}]
\]
T- fixed points: coordinate flags

\[F_w = \frac{wB}{B} \quad (\leftarrow 0 \subset \langle e_{\omega(1)} \rangle \subset \langle e_{\omega(1)}, e_{\omega(2)} \rangle \subset \ldots \subset \mathbb{C}^n) \]

Localization

\[\tilde{H}_T^*(X) := \text{localize } H_T^*(X) \]
\[\text{at } H_T(pt) \]

Thm The classes \(l_\omega := [F_w] \) form a basis of \(\tilde{H}_T^*(X) \) as a vector space over \(\tilde{H}_T(pt) \).

How to actually decompose in this basis?
Thm \[[X] = \sum_{w \in S_n} \frac{[F_w]}{\text{weights of } T_{F_w}X \text{ acting on } T_{F_w}X} \text{ (tangent space)} \]

Now, how are we going to get a lattice model out of this??

Fix an \(n \)-dim'el vector ("ket") of colors \(\vec{c} = | \begin{array}{cccc} 0 & 0 & 0 & 0 \end{array} \rangle \in \mathbb{V}^n \)

Then
\[
\begin{bmatrix}
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\end{array}
\end{bmatrix}
\xleftrightarrow{w \vec{c}}
\rightarrow
S_w
\]

\[
\begin{bmatrix}
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\end{array}
\end{bmatrix}
\xleftrightarrow{w \vec{c}}
\rightarrow
\text{Poincaré dual to } S_w (= S_w^{(\omega_0)})
\]
& the Boltzmann weights will come from the change of basis matrix, \(R_v \), between \(\{ S_w \} \) & \(\{ S_w^{(v)} \} \):

\[
S_w = \sum_{u \in S_n} (R_v)_{uw} S_w^{(v)}
\]

Calculating \(R_{si} \), \(S_i = (i, i+1) \):

\[\text{Let } P_i = \{ \begin{pmatrix} \star & * \\ i+1 & \star \end{pmatrix} \} \]

Consider \(P_i \times_B X_w \)

\[\begin{array}{c}
\text{two fixed pts, } [1] \leftrightarrow [\square] \\
& \text{& } [s; i] \leftrightarrow [\square]
\end{array} \]
Then by the localization formula:

\[
[1^P] = \frac{[1]}{y_{i+1} - y_i} + \frac{[s_i]}{y_i - y_{i+1}}
\]

*divided difference operator!

So since

\[
f_* g^* [1] = [X_w]
\]

\[
f_* g^* [s_i] = [s_i \cdot X_w]
\]

\[
f_* g^* [1^P] = \begin{cases} [P_i \cdot X_w] & \text{if dim } P_i \cdot X_w = \text{dim } X_w + 1 \\ 0 & \text{else} \end{cases}
\]

we have

\[
[X_w] = [s_i \cdot X_w] + (y_{i+1} - y_i) [P_i \cdot X_w]_{\text{dim } P_i \cdot X_w = \text{dim } X_w + 1} + \sum_{i \neq j} \sum_{j \neq i} \sum_{s_i \neq s_j} S_{s_i(s_j)} W_{C_i < C_{i+1}}
\]

\[
= S_{s_i(w)}
\]
So R_{si} acts nontrivially only on the $i, i+1$ vector entries. If are the colors appearing in these spots, this nontrivial piece of R_{si} has the form:

$$
\begin{pmatrix}
1 & & & \\
0 & 1 & & \\
& 1 & y_{i+1} - y_i & \\
& & & 1
\end{pmatrix}
$$

\leftarrow Frozen pipes Boltzmann weights, e.g. (with $\beta = 0$, $y_j \rightarrow -y_j$)
& the row/column R-matrix weights.

\[\begin{align*}
\text{column} & : y_{i+1} - y_i \\
\text{row} & : x_{i+1} - x_i
\end{align*} \]

So... one way to analyze this lattice model is by applying operators to Schubert classes.
Another way: algebraic Bethe ansatz.

Think of one row of a lattice as an operator.

- "A" operator
- "B" operator
- "C" operator
- "D" operator
Yang–Baxter eqn \Rightarrow commutation relations between these.

The operators + their relations generate a "Yang–Baxter algebra"

(\sim degeneration of Yangian / quantum gp; special case of Maulik Okounkov construction)

Bethe ansatz: Look @

$$B_1(x_1) \cdots B_n(x_n) |\phi\rangle$$

$$= \begin{array}{c}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{array}$$

y_1 y_n

$\text{top boundary not specified yet}$
Use commutations to find conditions on x_1, \ldots, x_n so that this is an eigenvector of the transfer matrix $T(u) = \sum_{i=1}^{n} D_{ii}(u)$

\[\exists \]

need $\exists x_1, \ldots, x_n$ to be a permutation of $\exists y_1, \ldots, y_n$

Further,

\[y_1 \quad y_n \]

\[\begin{array}{c}
 y_{w(1)} \\
 y_{w(2)} \\
 \vdots \\
 y_{w(n)}
\end{array} \]

\[\leftrightarrow \quad l_w \quad \text{fixed pt class} \]

& the partition function is the expansion of l_w into S_v's: $\sum_{v \in S_n} \langle l_w, S_v \rangle S_v$
So picking a top boundary \(\vec{c} \) implies calculating the coefficient

\[
\langle l_w, S_\nu \rangle \in H^*_{\nu}(pt) \\
\cong \mathbb{Z}[y_1, \ldots, y_n]
\]

aka the double Schubert polynomial evaluated at \(\{ x_i \mapsto y_{w(i)} \} \).

Cartoons:

\[
\begin{array}{cccc}
\text{id} & y_1 & y_2 & \cdots & y_n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
y_{w(1)} & \ldots & \ldots & \ldots & y_{w(n)} \\
l_w & \phi & \phi & \phi \\
\end{array}
\]

\[
\begin{array}{cccc}
\phi & \phi & \phi & \phi \\
\langle l_w, S_\nu \rangle & \phi & \phi & \phi \\
\end{array}
\]
Example: Colored & uncolored Whittaker function lattice models

In lattice model world, we will be here:

\[K_T(T^*X) \text{ (or really, } K_T(pt) \cong R(T)) \]

Figure 1. Three “orthogonal” directions to generalize classical Schubert calculus
Quick review of Whittaker functions

Take $G = \text{GL}_n(F)$, F non-archimedean field, \mathfrak{o} ring of integers of F, $\mathfrak{p} = \langle \omega \rangle$ maximal ideal of \mathfrak{o}, $\mathfrak{o}/\mathfrak{p} = \mathbb{F}_q$ the residue field, $\{((\mathfrak{o}:\mathfrak{p})\}, = J$ Iwahori subgroup.

$$y_z : \left(\begin{array}{cccc} \omega^{\lambda_1} & & & \\ & \ddots & & \\ & & \omega^{\lambda_n} \\ & & & \omega^{\lambda_n} \end{array} \right) \mapsto z^\lambda = \prod_{i=1}^n z_i^{\lambda_i}$$

unramified character of torus $T(F)$

The principal series representation $(\pi, \mathcal{I}(z))$ is:

$$\mathcal{I}(z) := \text{Ind}_{B(F)}^{G(F)} (\phi^{\frac{1}{2}} J_z)$$

with π the right regular action of G.
The space $I(z)^T$ of Iwahori-fixed vectors generates $I(z)$ as a G-module, has size $|S_n|$, & has two well-known bases:

1. Standard basis $\{ \overline{\chi}_w \}_{w \in S_n}$ of characteristic functions on the orbits of $G = \bigsqcup_w BwT$

2. Casselman's basis $\{ f_w \}$ defined as dual to intertwining operators $A_w : I(z) \to I(\omega z)$:

$$A_w (f_v)(1) = S_{\omega, v}$$
Aluffi, Mihalcea, Schürmann, & Su define an isomorphism \(\psi \) between

\[
\widetilde{K}_T(G/B)[q] \otimes_{K_T(pt)} \mathbb{C} \mathbb{J}_\mathbb{Z}
\]

\&

\(I(\mathbb{Z}) \mathbb{J} \)

such that

\[
\psi(MC^\vee(y(w)^0) \otimes 1) = \Omega_{\omega} \mathbb{Z}
\]

\&

\[
\psi(\omega) = f_{\omega}
\]
Brubaker, Bump, Buciumas, & Gustafsson (2020) define a colored lattice model that computes the Whittaker functions

\[\tilde{Z}^\lambda \cdot \phi_{\omega, \lambda} (z) := \tilde{Z}^\lambda \cdot \sum_{\omega} \left(\prod_{i=1}^{\omega} \omega_i \right) \Phi_{\omega}^{z^{-1}} \]

Whittaker functional \(\lambda + \varphi \)

\(\omega \tilde{C} \)
& the sum
\[
\sum_{\mathcal{w}} \phi_{\mathcal{w}, \lambda}(z)
\]

computes the spherical Whittaker function \leftrightarrow uncolored “Tokuyama” lattice model.

Like with the Frozen Pipes model, we have two ways of analyzing the Tokuyama model, one of which \leftrightarrow Schubert-like basis & the other \leftrightarrow fixed point basis.
Two ways of calculating:

1. As sum of colored Iwahori partition functions
 "Macro YBE" proof

\[\sum_n \sum_{\pi} \chi_{\pi} \]

Calculate using Demazure-Whittaker operators via train argument in geometry:

\[\sum_n \langle L_{\lambda+p}, (-q)^{l(w_0)} \text{MC}^\vee(y(w)^\circ) \rangle \]

= \langle L_{\lambda+p}, \text{MC}^\vee(y(1)) \rangle

2. Using algebraic Bethe ansatz inspired method
 "Micro YBE" proof

get Weyl character-like formula

\[\prod_{i<j} \frac{z_i - q^{-1}z_j}{z_i - z_j} \sum_w (-1)^{l(w)} z_w^{\lambda+p} \]

in geometry:

\[\sum (-q)^{l(w_0)} \prod_{\omega > 0} \frac{1 - q^{-1}e^\xi}{1 - e^\xi} \langle L_{\lambda+p}, b_{\omega} \rangle \]

\[\sum (-q)^{l(w_0)} \prod_{\omega < 0} \langle L_{\lambda+p}, b_{\omega} \rangle \]

\[\text{Casselman basis vector } f_w \]
proof of these geometric interpretations: very careful formal geometric manipulations & convention matching 😊

• Can extract from this a (modified version of) the Langlands–Gindikin–Karpelevich formula expanding \(\Phi^- \) into the bw's.

(& its geometric version, expanding \(\widetilde{MC}(Y(1)) \) into fixed pts.)

• Also have these cartoons now:

\[
\begin{array}{c}
\text{Owahou} \\
\lambda + \varrho
\end{array}
\]

\[
\begin{array}{c}
\langle \lambda + \varrho, \widetilde{MC}(Y(\omega)^0) \rangle
\end{array}
\]

\[
\begin{array}{c}
\text{Spherical} \\
\lambda + \varrho
\end{array}
\]

\[
\begin{array}{c}
\langle \lambda + \varrho, \widetilde{MC}(Y(1)) \rangle
\end{array}
\]
A picture to give the idea of the algebraic Bethe ansatz - like method in the simplest case:

Take each state of the model: & commute columns separately until all A's & D's are below B's:

\[\begin{align*}
\text{factor from commutation} & \quad \text{weight } z_1 = z \\
B \leftrightarrow D & \\
\end{align*} \]

\[\begin{align*}
\text{factor from commutation} & \quad \text{weight } z_2 = z \omega (\chi + p) \\
B \leftrightarrow A & \\
\end{align*} \]
Future directions?

Initially, I hoped to find a lattice proof of the Bump-Naruse-Nakasuji conjecture describing the expansion

$$
\Phi_n = \sum_w M_{u,w} f_w.
$$

$$
\left(\leftrightarrow \quad MC'(\gamma(\omega)^c) = \sum_w M_{u,w} b_w \right)
$$

It is potentially extractable from a formula of Borodin & Wheeler obtained via the nested Bethe ansatz:
non-symmetric Hall-Littlewood poly specializes to [factor of (-1)^s] \times (1 + 1)

sum over fixed pts?

\[
\Pi \left(\prod_{i=2}^{n} \Sigma_{\sigma_{i}} \left(\prod_{j=1}^{\sigma_{i}(n)} x_{\sigma_{i}(j)} \right) \right)
\]

would need to collapse this inner sum

\[
\sum_{\sigma_{1} \in S_{1}} \prod_{i=2}^{n} \sum_{\sigma_{i} \in S_{i}} \left(\prod_{j=1}^{\sigma_{i}(n)} x_{\sigma_{i}(j)} \right)
\]

\[
\left(x_{\sigma_{1}(1)} - x_{\sigma_{1}(n)} \right) \left(x_{\sigma_{2}(1)} - x_{\sigma_{2}(n)} \right) \cdots \left(x_{\sigma_{n}(1)} - x_{\sigma_{n}(n)} \right)
\]

Ch. 7: Bowdoin & Wheeler 2018
Other ideas...? 😊