Schubert polynomials and the inhomogeneous TASEP on a ring

Donghyun Kim

UC Berkeley/ Harvard

(joint work with Lauren Williams)
The asymmetric exclusion process (ASEP) is an important model from statistical mechanics which describes a system of particles on a lattice hopping left and right.
The asymmetric exclusion process (ASEP) is an important model from statistical mechanics which describes a system of particles on a lattice hopping left and right.

There are many variants of the ASEP and these were studied with various mathematical approaches, for example, Bethe Ansatz, quadratic algebras, combinatorics, orthogonal polynomials, random matrices, stochastic differential equations and hydrodynamic limits.
The asymmetric exclusion process (ASEP) is an important model from statistical mechanics which describes a system of particles on a lattice hopping left and right.

There are many variants of the ASEP and these were studied with various mathematical approaches, for example, Bethe Ansatz, quadratic algebras, combinatorics, orthogonal polynomials, random matrices, stochastic differential equations and hydrodynamic limits.

The ASEP has many applications in a broad range including protein synthesis, traffic flow, formation shocks, surface growth, and sequence alignments.
The inhomogenous TASEP definition

Consider a lattice with n sites arranged in a ring. Let $St(n)$ denote the $n!$ labelings of the lattice by distinct numbers $1, 2, \ldots, n$, where each number i is called a \textit{particle of weight} i.

Eg.) $1 \ 3 \ 2 \ 5 \ 4$

$\begin{align*} r_{1,3} &= x_1 - y_3 \ 2 \ 4 \ 5 \ 1 \ 3 \end{align*}$
Consider a lattice with \(n \) sites arranged in a ring. Let \(St(n) \) denote the \(n! \) labelings of the lattice by distinct numbers \(1, 2, \ldots, n \), where each number \(i \) is called a particle of weight \(i \).

The inhomogeneous TASEP on a ring of size \(n \) is a Markov chain with state space \(St(n) \) where at each time \(t \) a swap of two adjacent particles may occur: a particle of weight \(i \) on the left swaps its position with a particle of weight \(j \) on the right with transition rate \(r_{i,j} \) given by:

\[
 r_{i,j} = \begin{cases}
 x_i - y_{n+1-j} & \text{if } i < j \\
 0 & \text{otherwise.}
 \end{cases}
\]
The inhomogenous TASEP definition

- Consider a lattice with \(n \) sites arranged in a ring. Let \(St(n) \) denote the \(n! \) labelings of the lattice by distinct numbers 1, 2, \ldots, \(n \), where each number \(i \) is called a *particle of weight* \(i \).

- The *inhomogeneous TASEP on a ring of size* \(n \) *is a Markov chain with state space* \(St(n) \) *where at each time* \(t \) *a swap of two adjacent particles may occur: a particle of weight* \(i \) *on the left swaps its position with a particle of weight* \(j \) *on the right with transition rate* \(r_{i,j} \) *given by:

\[
 r_{i,j} = \begin{cases}
 x_i - y_{n+1-j} & \text{if } i < j \\
 0 & \text{otherwise.}
\end{cases}
\]

- Eg.)

\[
\begin{array}{c}
1 \\
3 \\
4 \\
5 \\
2 \\
\end{array} \quad r_{1,3} = x_1 - y_3 \\
\begin{array}{c}
3 \\
4 \\
5 \\
2 \\
1 \\
\end{array}
\]
Cantini proved that the inhomogenous TASEP is a solvable lattice model. ("Inhomogenous Multispecies TASEP on a ring with spectral parameters", 2016)
The inhomogeneous TASEP $n = 3$

Figure: The transition diagram for the inhomogeneous TASEP for $n = 3$
Renormalized steady state probabilities

- The steady state probabilities for \(n = 3 \) inhomogeneous TASEP
 States 123, 231, 312: \[\frac{x_1 - y_1}{6x_1 + 3x_2 - 6y_1 - 3y_2} \]
 States 132, 321, 213: \[\frac{x_1 + x_2 - y_1 - y_2}{6x_1 + 3x_2 - 6y_1 - 3y_2} \]
The steady state probabilities for $n = 3$ inhomogeneous TASEP States 123, 231, 312:

$$\frac{x_1 - y_1}{6x_1 + 3x_2 - 6y_1 - 3y_2}$$

States 132, 321, 213:

$$\frac{x_1 + x_2 - y_1 - y_2}{6x_1 + 3x_2 - 6y_1 - 3y_2}$$

- we multiply all steady state probabilities by the same constant, obtaining “renormalized” steady state probabilities ψ_w, so that

$$\psi_{123...n} = \prod_{i<j} (x_i - y_{n+1-j})^{j-i-1}.$$
Renormalized steady state probabilities

- The steady state probabilities for \(n = 3 \) inhomogeneous TASEP

 States 123, 231, 312: \(\frac{x_1 - y_1}{6x_1 + 3x_2 - 6y_1 - 3y_2} \)

 States 132, 321, 213: \(\frac{x_1 + x_2 - y_1 - y_2}{6x_1 + 3x_2 - 6y_1 - 3y_2} \)

- we multiply all steady state probabilities by the same constant, obtaining “renormalized” steady state probabilities \(\psi_w \), so that

 \[
 \psi_{123\ldots n} = \prod_{i < j} (x_i - y_{n+1-j})^{j-i-1}.
 \]

- \(n = 3 \)

 \[
 \begin{align*}
 \psi_{123} &= \psi_{123} = \psi_{123} = x_1 - y_1 \\
 \psi_{132} &= \psi_{321} = \psi_{213} = x_1 + x_2 - y_1 - y_2
 \end{align*}
 \]
Renormalized steady state probabilities

- The steady state probabilities for $n = 3$ inhomogeneous TASEP

 States 123, 231, 312: \[
 \psi_{123} = \psi_{123} = \psi_{123} = \frac{x_1 - y_1}{6x_1 + 3x_2 - 6y_1 - 3y_2}
 \]

 States 132, 321, 213: \[
 \psi_{132} = \psi_{321} = \psi_{213} = \frac{x_1 + x_2 - y_1 - y_2}{6x_1 + 3x_2 - 6y_1 - 3y_2}
 \]

- We multiply all steady state probabilities by the same constant, obtaining “renormalized” steady state probabilities ψ_w, so that

 \[
 \psi_{123...n} = \prod_{i<j}(x_i - y_{n+1-j})^{j-i-1}.
 \]

- $n = 3$

 \[
 \psi_{123} = \psi_{123} = \psi_{123} = x_1 - y_1
 \]

 \[
 \psi_{132} = \psi_{321} = \psi_{213} = x_1 + x_2 - y_1 - y_2
 \]

- Observation: ψ_w is a positive polynomial in x_i’s and -y_i’s!
Renormalized steady state probabilities

The steady state probabilities for $n = 3$ inhomogeneous TASEP

States 123, 231, 312:

$$\frac{x_1 - y_1}{6x_1 + 3x_2 - 6y_1 - 3y_2}$$

States 132, 321, 213:

$$\frac{x_1 + x_2 - y_1 - y_2}{6x_1 + 3x_2 - 6y_1 - 3y_2}$$

we multiply all steady state probabilities by the same constant, obtaining “renormalized” steady state probabilities ψ_w, so that

$$\psi_{123...n} = \prod_{i<j} (x_i - y_{n+1-j})^{j-i-1}.$$

$n = 3$

$$\psi_{123} = \psi_{123} = \psi_{123} = x_1 - y_1$$

$$\psi_{132} = \psi_{321} = \psi_{213} = x_1 + x_2 - y_1 - y_2$$

Observation: ψ_w is a positive polynomial in x_i’s and -y_i’s!

Schubert polynomials? $x_1 - y_1 = \mathcal{S}_{(2,1)}$, $x_1 + x_2 - y_1 - y_2 = \mathcal{S}_{(1,3,2)}$
Definition: double Schubert polynomials

For the longest permutation $\sigma_0 \in S_n$

$$\mathcal{G}_{\sigma_0}(x; y) = \prod_{i+j \leq n} (x_i - y_j)$$

for generic $\sigma \in S_n$

$$\mathcal{G}_{\sigma}(x; y) = \partial_{\sigma^{-1}\sigma_0} \mathcal{G}_{\sigma_0}(x; y)$$

where $\partial_{\sigma} = \partial_{i_1} \partial_{i_2} \cdots \partial_{i_l}$ ($s_{i_1} s_{i_2} \cdots s_{i_l}$ is a reduced decomposition of σ)

$$\left(\partial_{i} P\right)(x_1, \ldots, x_n) = \frac{P(\ldots, x_i, x_{i+1}, \ldots) - P(\ldots, x_{i+1}, x_i, \ldots)}{x_i - x_{i+1}}$$
<table>
<thead>
<tr>
<th>State w</th>
<th>Probability ψ_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>$(x_1 - y_1)^2(x_1 - y_2)(x_2 - y_1)$</td>
</tr>
<tr>
<td>1324</td>
<td>$(x_1 - y_1)S_{1432}$</td>
</tr>
<tr>
<td>1342</td>
<td>$(x_1 - y_1)(x_2 - y_1)S_{1423}$</td>
</tr>
<tr>
<td>1423</td>
<td>$(x_1 - y_1)(x_1 - y_2)(x_2 - y_1)S_{1243}$</td>
</tr>
<tr>
<td>1243</td>
<td>$(x_1 - y_2)(x_1 - y_1)S_{1342}$</td>
</tr>
<tr>
<td>1432</td>
<td>$S_{1423}S_{1342}$</td>
</tr>
</tbody>
</table>
Table $n = 5, y_i = 0$

<table>
<thead>
<tr>
<th>State w</th>
<th>Probability ψ_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>12345</td>
<td>$x^{(6,3,1)}$</td>
</tr>
<tr>
<td>12354</td>
<td>$x^{(5,2,0)}S_{13452}$</td>
</tr>
<tr>
<td>12435</td>
<td>$x^{(4,1,0)}S_{14532}$</td>
</tr>
<tr>
<td>12453</td>
<td>$x^{(4,1,1)}S_{14523}$</td>
</tr>
<tr>
<td>12534</td>
<td>$x^{(5,2,1)}S_{12453}$</td>
</tr>
<tr>
<td>12543</td>
<td>$x^{(3,0,0)}S_{14523}S_{13452}$</td>
</tr>
<tr>
<td>13245</td>
<td>$x^{(3,1,1)}S_{15423}$</td>
</tr>
<tr>
<td>13254</td>
<td>$x^{(2,0,0)}S_{15423}S_{13452}$</td>
</tr>
<tr>
<td>13425</td>
<td>$x^{(3,2,1)}S_{15243}$</td>
</tr>
<tr>
<td>13452</td>
<td>$x^{(3,3,1)}S_{15234}$</td>
</tr>
<tr>
<td>13524</td>
<td>$x^{(2,1,0)}(S_{164325} + S_{25431})$</td>
</tr>
<tr>
<td>13542</td>
<td>$x^{(2,2,0)}S_{15234}S_{13452}$</td>
</tr>
<tr>
<td>14235</td>
<td>$x^{(4,2,0)}S_{13542}$</td>
</tr>
<tr>
<td>14253</td>
<td>$x^{(4,2,1)}S_{12543}$</td>
</tr>
<tr>
<td>14325</td>
<td>$x^{(1,0,0)}(S_{1753246} + S_{265314} + S_{2743156} + S_{356214} + S_{364215} + S_{365124})$</td>
</tr>
<tr>
<td>14352</td>
<td>$x^{(1,1,0)}S_{15234}S_{14532}$</td>
</tr>
<tr>
<td>14523</td>
<td>$x^{(4,3,1)}S_{12534}$</td>
</tr>
<tr>
<td>14532</td>
<td>$x^{(1,1,1)}S_{15234}S_{14523}$</td>
</tr>
<tr>
<td>15234</td>
<td>$x^{(5,3,1)}S_{12354}$</td>
</tr>
<tr>
<td>15243</td>
<td>$x^{(3,1,0)}(S_{146325} + S_{24531})$</td>
</tr>
<tr>
<td>15324</td>
<td>$x^{(2,1,1)}(S_{15432} + S_{164235})$</td>
</tr>
<tr>
<td>15342</td>
<td>$x^{(2,2,1)}S_{15234}S_{12453}$</td>
</tr>
<tr>
<td>15423</td>
<td>$x^{(3,2,0)}S_{12534}S_{13452}$</td>
</tr>
<tr>
<td>15432</td>
<td>$S_{15234}S_{14523}S_{13452}$</td>
</tr>
</tbody>
</table>
Conjecture 1

The steady state probability ψ_w is a positive polynomial in x_i’s and $-y_i$’s

Lam and Williams in 2010 studied this model for $y_i = 0$ and made the above conjectures in that setting.

For $y_i = 0$, Conjecture 1 has been proved by Arita and Mallick in 2012 by giving a monomial expansion formula in terms of multiline queues as conjectured by Ayyer and Linusson.

Later, Cantini in 2016 generalized the model by putting y-parameters and established a solvability. Then he made the above conjectures.
Conjecture 1

The steady state probability ψ_w is a positive polynomial in x_i's and $-y_i$'s.

Conjecture 2

The steady state probability ψ_w is a positive sum of double Schubert polynomials.
Positivity Conjectures

Conjecture 1
The steady state probability ψ_w is a positive polynomial in x_i’s and -y_i’s

Conjecture 2
The steady state probability ψ_w is a positive sum of double Schubert polynomials.

- Lam and Williams in 2010 studied this model for $y_i = 0$ and made the above conjectures in that setting.
Positivity Conjectures

Conjecture 1

The steady state probability ψ_w is a positive polynomial in x_i’s and -y_i’s

Conjecture 2

The steady state probability ψ_w is a positive sum of double Schubert polynomials.

- Lam and Williams in 2010 studied this model for $y_i = 0$ and made the above conjectures in that setting.
- For $y_i = 0$, Conjecture 1 has been proved by Arita and Mallick in 2012 by giving a monomial expansion formula in terms of multiline queues as conjectured by Ayyer and Linusson.
Conjecture 1
The steady state probability ψ_w is a positive polynomial in x_i's and $-y_i$'s.

Conjecture 2
The steady state probability ψ_w is a positive sum of double Schubert polynomials.

- Lam and Williams in 2010 studied this model for $y_i = 0$ and made the above conjectures in that setting.
- For $y_i = 0$, Conjecture 1 has been proved by Arita and Mallick in 2012 by giving a monomial expansion formula in terms of multiline queues as conjectured by Ayyer and Linusson.
- Later, Cantini in 2016 generalized the model by putting y-parameters and established a solvability. Then he made the above conjectures.
A multiline queue Q is an $L \times n$ array in which each of the Ln positions is either vacant or occupied by a ball. The number of balls in each row is weakly increasing from top to bottom.
A multiline queue Q is an $L \times n$ array in which each of the Ln positions is either vacant or occupied by a ball. The number of balls in each row is weakly increasing from top to bottom.

We read off the type of a multiline queue by a bully-path algorithm.
A multiline queue Q is an $L \times n$ array in which each of the Ln positions is either vacant or occupied by a ball. The number of balls in each row is weakly increasing from top to bottom.

We read off the type of a multiline queue by a bully-path algorithm.

(Eg)

```
1
2 1 2 2
3 2 1 2 2
```

Type: (2, 2, 1, 4, 4, 4, 2, 3)
A vacancy in Q is called i — covered if it is traversed by a i-bully path, but not traversed by i'-bully path for $i' < i$.

Let $z_{r,i}$ be the number of i-covered vacancies on row r. We define a weight of a multiline queue Q as follows:

$$\text{weight}(Q) = \prod_{1 \leq i < r \leq L} (x_{r,i})^{z_{r,i}}.$$

(Eq)
Multiline queues

- A vacancy in Q is called i—covered if it is traversed by a i-bully path, but not traversed by i'-bully path for $i' < i$.
- Let $z_{r,i}$ be the number of i—covered vacancies on row r. We define a weight of a multiline queue Q as follows

$$weight(Q) = \prod_{1 \leq i < r \leq L} \left(\frac{x_r}{x_i} \right)^{z_{r,i}}$$
A vacancy in Q is called i-covered if it is traversed by a i-bully path, but not traversed by i'-bully path for $i' < i$.

Let $z_{r,i}$ be the number of i-covered vacancies on row r. We define a weight of a multiline queue Q as follows:

$$weight(Q) = \prod_{1 \leq i < r \leq L} \left(\frac{x_r}{x_i} \right)^{z_{r,i}}$$

(Eg)

$$weight(Q) = \left(\frac{x_2}{x_1} \right) \left(\frac{x_3}{x_1} \right)^2.$$
Theorem (Arita, Mallick)

The steady state probability ψ_w is proportional to a weighted sum over multiline queues of type w

$$\psi_w \propto \sum_{Q: \text{type } w \text{ multiline queue}} \text{weight}(Q).$$
Multiline queues

Theorem (Arita, Mallick)

The steady state probability ψ_w is proportional to a weighted sum over multiline queues of type w

$$\psi_w \propto \sum_{Q: \text{type } w \text{ multiline queue}} \text{weight}(Q).$$

Limits

- Cannot deal with the model with general y_i’s. It is an open problem to define a weight putting y_i’s.
Multiline queues

Theorem (Arita, Mallick)

The steady state probability ψ_w is proportional to a weighted sum over multiline queues of type w

$$\psi_w \propto \sum_{Q: \text{type } w \text{ multiline queue}} \text{weight}(Q).$$

Limits

- Cannot deal with the model with general y_i's. It is an open problem to define a weight putting y_i's.
- Hard to explain the appearance of Schubert polynomials except for a special case.
Special case (Inverse of Grassmannian permutations)

Theorem (K, Williams)

If w is an inverse of Grassmannian permutation that starts with 1, then there exists a (weight-preserving) bijection between multiline queues of type w and certain flagged semistandard Young tableaux.

- **Consequences**

 The steady state probability ψ_w is proportional to a certain flagged Schur function. Flagged Schur functions are Schubert polynomials for certain vexillary (2143-avoiding) permutations.

- **Definition: pattern avoidance**

 We say that a permutation π avoids a pattern σ, or σ-avoiding, if π does not contain a subsequence in a same relative order with σ. Eg. $(1, 4, 2, 6, 3, 5, 7)$ is not 2143-avoiding $\rightarrow (1, 4, 2, 6, 3, 5, 7)$
Special case (Inverse of Grassmannian permutations)

Theorem (K, Williams)

If \(w \) is an inverse of Grassmannian permutation that starts with 1, then there exists a (weight-preserving) bijection between multiline queues of type \(w \) and certain flagged semistandard young tableaux.

Consequences

- The steady state probability \(\psi_w \) is proportional to a certain flagged Schur function. Flagged Schur functions are Schubert polynomials for certain vexillary (2143-avoiding) permutations.
Special case (Inverse of Grassmannian permutations)

Theorem (K, Williams)

If \(w \) is an inverse of Grassmannian permutation that starts with 1, then there exists a (weight-preserving) bijection between multiline queues of type \(w \) and certain flagged semistandard young tableaux.

Consequences

- The steady state probability \(\psi_w \) is proportional to a certain flagged Schur function. Flagged Schur functions are Schubert polynomials for certain vexillary (2143-avoiding) permutations.

Definition: pattern avoidance

We say that a permutation \(\pi \) avoids a pattern \(\sigma \), or \(\sigma \)-avoiding, if \(\pi \) does not contain a subsequence in a same relative order with \(\sigma \). Eg. \((1, 4, 2, 6, 3, 5, 7)\) is not 2143-avoiding \(\rightarrow (1, \underline{4}, 2, 6, 3, 5, 7)\)
Bijection
Cantini introduced a family $\psi_w(z_1, \cdots, z_n)$ that recovers the steady-state probability ψ_w by taking the leading coefficient in z-variables (specializing to $z = \infty$). We call $\psi_w(z_1, \cdots, z_n)$ a z-deformed steady-state probability.
Cantini introduced a family $\psi_w(z_1, \cdots, z_n)$ that recovers the steady-state probability ψ_w by taking the leading coefficient in z-variables (specializing to $z = \infty$). We call $\psi_w(z_1, \cdots, z_n)$ a z-deformed steady-state probability.

- Let V be a vector space with formal basis e_1, \cdots, e_n where e_i represents the particle type i.
Cantini introduced a family $\psi_w(z_1, \cdots, z_n)$ that recovers the steady-state probability ψ_w by taking the leading coefficient in z-variables (specializing to $z = \infty$). We call $\psi_w(z_1, \cdots, z_n)$ a \textit{z-deformed steady-state probability}.

- Let V be a vector space with formal basis e_1, \cdots, e_n where e_i represents the particle type i.
- Consider $V_1 \otimes V_2 \otimes \cdots \otimes V_n$ ($V_i = V$), and represent each state of the inhomogeneous TASEP as a basis of this space.

\[
\begin{array}{c}
1 \\
4 \\
3 \\
5 \\
2 \\
\end{array} \quad e_1 \otimes e_3 \otimes e_2 \otimes e_5 \otimes e_4
\]
Integrability

Let W_n be the subspace of $V_1 \otimes V_2 \otimes \cdots \otimes V_n$ spanned by basis elements that represent possible states of the inhomogeneous TASEP.
Integrability

- Let W_n be the subspace of $V_1 \otimes V_2 \otimes \cdots \otimes V_n$ spanned by basis elements that represent possible states of the inhomogeneous TASEP.
- Let M be the Markov matrix of the inhomogenous TASEP, then $M = M_1 + M_2 + \cdots + M_n$ is the sum of local terms M_i. The matrix M_i acts on $V_1 \otimes V_2 \otimes \cdots \otimes V_n$ by acting locally on $V_i \otimes V_{i+1}$ parts.
Integrability

- Let W_n be the subspace of $V_1 \otimes V_2 \otimes \cdots \otimes V_n$ spanned by basis elements that represent possible states of the inhomogeneous TASEP.

- Let M be the Markov matrix of the inhomogenous TASEP, then $M = M_1 + M_2 + \cdots + M_n$ is the sum of local terms M_i. The matrix M_i acts on $V_1 \otimes V_2 \otimes \cdots \otimes V_n$ by acting locally on $V_i \otimes V_{i+1}$ parts.

Suppose we have an operator $R_i(a, b)$ for formal variables a and b acting locally on $V_i \otimes V_{i+1}$ such that

$$R_i(a, a) = 1, \quad \frac{dR_i(a, b)}{da} \bigg|_{a=b=\infty} \propto M_i$$

and a vector $\psi(z_1, \cdots, z_n)$ that satisfies

$$R_i(z_i, z_{i+1})\psi(z_1, \cdots, z_n) = s_i \psi(z_1, \cdots, z_n)$$

where s_i acts by exchanging z_i and z_{i+1}. We call the above equation, exchange equation.
Integrability

Claim

$\psi(z_1, \cdots, z_n)|_{z=\infty}$ is proportional to the steady state probability of the inhomogeneous TASEP.
Integrability

Claim

\[\psi(z_1, \cdots, z_n) \big|_{z=\infty} \] is proportional to the steady state probability of the inhomogeneous TASEP.

Proof.

Differentiating the exchange equation with \(z_i \) and plugging in \(z = \infty \) gives

\[\mathcal{M}_i \psi(z_1, \cdots, z_n) \big|_{z=\infty} = \partial_{i+1} \psi(z_1, \cdots, z_n) \big|_{z=\infty} - \partial_i \psi(z_1, \cdots, z_n) \big|_{z=\infty}. \]

Summing over \(i = 1 \) to \(n \) completes the proof.
Cantini found such operator $R_i(a, b)$ satisfying the additional two equations (unitary relation, braid Yang-Baxter equation)

$$R_i(a, b)R_i(b, a) = 1$$
$$R_i(b, c)R_{i+1}(a, c)R_i(a, b) = R_{i+1}(a, b)R_i(a, c)R_{i+1}(b, c).$$
Integrability

- Cantini found such operator $R_i(a, b)$ satisfying the additional two equations (unitary relation, braid Yang-Baxter equation)

$$R_i(a, b)R_i(b, a) = 1$$
$$R_i(b, c)R_{i+1}(a, c)R_i(a, b) = R_{i+1}(a, b)R_i(a, c)R_{i+1}(b, c).$$

- The vector $\psi(z_1, \cdots, z_n)$ is the common eigenvector of scattering matrices

$$S_i = \mathcal{R}R_{i-2}(z_i, z_{i-1}) \cdots R_{i+1}(z_i, z_{i+2})R_i(z_i, z_{i+1})$$

where \mathcal{R} acts by rotation

$$\mathcal{R}(v_1 \otimes v_2 \otimes \cdots \otimes v_n) = (v_n \otimes v_1 \otimes \cdots \otimes v_{n-1})$$
Cantini found such operator $R_i(a, b)$ satisfying the additional two equations (unitary relation, braid Yang-Baxter equation)

$$R_i(a, b)R_i(b, a) = 1$$

$$R_i(b, c)R_{i+1}(a, c)R_i(a, b) = R_{i+1}(a, b)R_i(a, c)R_{i+1}(b, c).$$

The vector $\psi(z_1, \cdots, z_n)$ is the common eigenvector of scattering matrices

$$S_i = \mathcal{R} R_{i-2}(z_i, z_{i-1}) \cdots R_{i+1}(z_i, z_{i+2}) R_i(z_i, z_{i+1})$$

where \mathcal{R} acts by rotation

$$\mathcal{R}(v_1 \otimes v_2 \otimes \cdots \otimes v_n) = (v_n \otimes v_1 \otimes \cdots \otimes v_{n-1})$$

S_i and S_j commute by braid Yang-Baxter equation
The exchange equation has a unique polynomial solution up to multiplication by a symmetric function of \(z \).

Expanding the exchange equation component by component gives

\[
\psi_{s_{i_{w}}} (z_1, \ldots, z_n) = \pi_{i_{w}} (w_i, w_{i+1}; n) \psi_{w} (z_1, \ldots, z_n)
\]

if \(w_i > w_{i+1} \),

where \(\pi_{i_{w}} (\beta, \alpha; n) \) is the isobaric divided difference operator defined by

\[
\pi_{i_{w}} (\beta, \alpha; n) G(z) = \left(z_i - y_{n+1} - \beta \right) \left(z_{i+1} - x_{\alpha} \right) - \left(z_i - z_{i+1} \right) G(z) - s_{i_{w}} G(z)
\]
Integrability

Theorem, Cantini

The exchange equation has a unique polynomial solution up to multiplication by a symmetric function of z.

The initial condition is given by

$$
\psi_{(1,2,\ldots,n)}(z_1, \ldots, z_n)
= \prod_{1 \leq i < j \leq n} (x_i - y_{n+1-j})^{j-i-1} \prod_{i=1}^{n} \left(\prod_{j=1}^{i-1} (z_i - x_j) \prod_{j=i+1}^{n} (z_i - y_{n+1-j}) \right)
$$
Theorem, Cantini

The exchange equation has a unique polynomial solution up to multiplication by a symmetric function of z.

The initial condition is given by

$$\psi_{(1,2,\ldots,n)}(z_1, \cdots, z_n)$$

$$= \prod_{1 \leq i < j \leq n} (x_i - y_{n+1-j})^{j-i-1} \prod_{i=1}^{n} \prod_{j=1}^{i-1} (z_i - x_j) \prod_{j=i+1}^{n} (z_i - y_{n+1-j})$$

Expanding the exchange equation component by component gives

$$\psi_{s_i w}(z_1, \cdots, z_n) = \pi_i(w_i, w_{i+1}; n) \psi_w(z_1, \cdots, z_n) \quad \text{if } w_i > w_{i+1},$$

where $\pi_i(\beta, \alpha; n)$ is the isobaric divided difference operator defined by

$$\pi_i(\beta, \alpha; n) G(z) = \frac{(z_i - y_{n+1-\beta})(z_{i+1} - x_\alpha)}{x_\alpha - y_{n+1-\beta}} \frac{G(z) - s_i G(z)}{z_i - z_{i+1}}.$$
We can compute every component $\psi_w(z_1, \cdots, z_n)$ of $\psi(z_1, \cdots, z_n)$ from the initial condition by applying sequences of isobarbic divided difference operators.

\[\psi(1, 2, 3)(z_1, z_2, z_3) = (x_1 - y_1)(z_1 - y_2)(z_1 - y_3)(z_2 - x_1)(z_2 - y_1)(z_3 - x_1)(z_3 - x_2)\]

\[\psi(3, 2, 1)(z_1, z_2, z_3) = \pi_3^3(3, 1; 3)\psi(1, 2, 3)(z_1, z_2, z_3)\]

Taking the leading coefficients in z-variables (specializing to $z_1 = \infty$) gives

\[\psi(1, 2, 3) = x_1 - y_1\]

and

\[\psi(3, 2, 1) = (x_1 + x_2 - y_1 - y_2)\]
We can compute every component $\psi_w(z_1, \cdots, z_n)$ of $\psi(z_1, \cdots, z_n)$ from the initial condition by applying sequences of isobarbic divided difference operators.

$$\psi_{(1,2,3)}(z_1, z_2, z_3) = (x_1 - y_1)(z_1 - y_2)(z_1 - y_1)(z_2 - x_1)(z_2 - y_1)(z_3 - x_1)(z_3 - x_2)$$
We can compute every component $\psi_w(z_1, \cdots, z_n)$ of $\psi(z_1, \cdots, z_n)$ from the initial condition by applying sequences of isobarbic divided difference operators.

\[\psi_{(1,2,3)}(z_1, z_2, z_3) = (x_1 - y_1)(z_1 - y_2)(z_1 - y_1)(z_2 - x_1)(z_2 - y_1)(z_3 - x_1)(z_3 - x_2) \]

\[\psi_{(3,2,1)}(z_1, z_2, z_3) = \pi_3(3, 1; 3)\psi_{(1,2,3)}(z_1, z_2, z_3) \]
\[= (z_1 - x_1)(z_2 - x_1)(z_2 - y_1)(z_3 - y_1) \times \]
\[((x_1 + x_2 - y_1 - y_2)z_3z_1 + (x_1x_2 - y_1y_2)(z_3 + z_1) - x_1x_2y_1 - x_1x_2y_2 + x_1y_1y_2) \]
$n = 3$ example

We can compute every component $\psi_w(z_1, \cdots, z_n)$ of $\psi(z_1, \cdots, z_n)$ from the initial condition by applying sequences of isobarbic divided difference operators.

$$\psi_{(1,2,3)}(z_1, z_2, z_3) = (x_1-y_1)(z_1-y_2)(z_1-y_1)(z_2-x_1)(z_2-y_1)(z_3-x_1)(z_3-x_2)$$

$$\psi_{(3,2,1)}(z_1, z_2, z_3) = \pi_3(3, 1; 3) \psi_{(1,2,3)}(z_1, z_2, z_3)$$

$$= (z_1 - x_1)(z_2 - x_1)(z_2 - y_1)(z_3 - y_1) \times ((x_1 + x_2 - y_1 - y_2)z_3z_1 + (x_1x_2 - y_1y_2)(z_3 + z_1) - x_1x_2y_1 - x_1x_2y_2 + x_1y_1y_2)$$

Taking the leading coefficients in z-variables (specializing to $z = \infty$) gives $\psi_{(1,2,3)} = x_1 - y_1$ and $\psi_{(3,2,1)} = (x_1 + x_2 - y_1 - y_2)$.

Donghyun Kim (UC Berkeley) - 21 / 30
Definition (K, Williams)

We say that $w \in S_n$ is a evil-avoiding, if: $w_1 = 1; w$ avoids the patterns 2413, 3214, 4132, and 4213. We say $w \in St(n, k)$ if w is evil-avoiding and w^{-1} has exactly k descents.
Main results

Definition (K, Williams)

We say that $w \in S_n$ is a *evil-avoiding*, if: $w_1 = 1$; w avoids the patterns 2413, 3214, 4132, and 4213. We say $w \in St(n, k)$ if w is evil-avoiding and w^{-1} has exactly k descents.

Theorem (K, Williams)

For $w \in St(n, k)$, the steady-state probability ψ_w is given as a trivial factor times product of k double Schubert polynomials.
Main results

Definition (K, Williams)

We say that $w \in S_n$ is a *evil-avoiding*, if: $w_1 = 1$; w avoids the patterns 2413, 3214, 4132, and 4213. We say $w \in St(n, k)$ if w is evil-avoiding and w^{-1} has exactly k descents.

Theorem (K, Williams)

For $w \in St(n, k)$, the steady-state probability ψ_w is given as a trivial factor times product of k double Schubert polynomials.

Eg) $w = (1, 2, 5, 4, 3)$, $w^{-1} = (1, 2, 5, 4, 3)$. $w \in St(5, 2)$.

$$\psi_w = (x_1 - y_1)(x_1 - y_2)(x_1 - y_3) \mathcal{G}_{(1,4,5,2,3)}(x; y) \mathcal{G}_{(1,3,4,5,2)}(x; y)$$
The number of evil-avoiding permutations in S_n is $\frac{(2+\sqrt{2})^{n-1}+(2-\sqrt{2})^{n-1}}{2}$. Previously the formula (explaining the appearance of (double) Schubert polynomials) for n out of $n!$ states were known by Cantini.
The number of evil-avoiding permutations in S_n is $\frac{(2+\sqrt{2})^{n-1}+(2-\sqrt{2})^{n-1}}{2}$. Previously the formula (explaining the appearance of (double) Schubert polynomials) for n out of $n!$ states were known by Cantini.

- Cantini gave an explicit formula for $\psi_w(z_1, \cdots, z_n)$ for the permutation w of the form $w(n, h) := (1, h + 1, h + 2, \ldots, n, h, h - 1, \ldots, 2)$
- We will present an explicit formula for $\psi_w(z_1, \cdots, z_n)$ for evil-avoiding permutations.
The number of evil-avoiding permutations in S_n is $\frac{(2+\sqrt{2})^{n-1}+(2-\sqrt{2})^{n-1}}{2}$. Previously the formula (explaining the appearance of (double) Schubert polynomials) for n out of $n!$ states were known by Cantini.

- Cantini gave an explicit formula for $\psi_w(z_1, \cdots, z_n)$ for the permutation w of the form $w(n, h) := (1, h + 1, h + 2, \ldots, n, h, h - 1, \ldots, 2)$
- We will present an explicit formula for $\psi_w(z_1, \cdots, z_n)$ for evil-avoiding permutations.
- We introduce z-Schubert polynomials $\zeta^n_{\lambda}(z; x; y)$ to do that.
Lemma, Double Schubert polynomials

Code $c(w) = (a_1, \cdots, a_n)$ of a permutation $w \in S_n$ is an integer vector such that a_i is the number of $w_i > w_j$ for $j > i$.

Example $c((5, 1, 3, 4, 2)) = (4, 0, 1, 1, 0)$ and $c((1, 3, 4, 2)) = (0, 1, 1, 0)$

Proposition (K, Williams)

Let w and w' be permutations such that $c(w) = (c_1, \ldots, c_n)$ and $c(w') = (M, c_1, \ldots, c_n)$. If M is "sufficiently big" then we have the equation

$$S_{w'}(x; y) = S_{w}(x_1; y) \prod_{k=1}^{M} (x_1 - y_k).$$

x_1 means we shift indices of x-variables by 1 ($x_1 \rightarrow x_2, x_2 \rightarrow x_3, \ldots$)

Example

$$S_{(5,1,3,4,2)} = S_{(1,3,4,2)}(x_1) \prod_{i=1}^{4} (x_1 - y_i)$$
z-Schubert polynomials $\mathcal{S}_\lambda^n(z; x; y)$

- We say that a partition λ is *valid* for n if λ is properly contained in a $\text{length}(\lambda) \times (n - \text{length}(\lambda))$ rectangle.
z-Schubert polynomials $\mathcal{G}_\lambda^n(z; x; y)$

- We say that a partition λ is valid for n if λ is properly contained in a $\text{length}(\lambda) \times (n - \text{length}(\lambda))$ rectangle.
- z-Schubert polynomial $\mathcal{G}_\lambda^n(z; x; y)$ is defined for λ that is valid for n
We say that a partition \(\lambda \) is **valid** for \(n \) if \(\lambda \) is properly contained in a \(\text{length}(\lambda) \times (n - \text{length}(\lambda)) \) rectangle.

\(z \)-Schubert polynomial \(\mathcal{G}_\lambda^n(z; x; y) \) is defined for \(\lambda \) that is valid for \(n \).

\(\mathcal{G}_\lambda^n(z; x; y) \) is defined recursively from \(\mathcal{G}_{\lambda'}^{n-1}(z; x; y) \) where \(\lambda' \) is the partition obtained by deleting the first part of \(\lambda \).

\[
\mathcal{G}_\lambda^n(z; x; y) = \partial_{n-\lambda_1-\text{mul}(\lambda)} \cdots \partial_1 \left(\mathcal{G}_{\lambda'}^{n-1}(\sigma^{\lambda_1-\lambda_2+1}z; x_1; y) \right)
\]

\[
\times \prod_{l=1}^{n-\text{mul}(\lambda)} (x_1 - y_l) \prod_{i=1}^{(\lambda_1-\lambda_2+1)n-\lambda_1-\text{mul}(\lambda)+1} \prod_{m=2} (z_i - x_m).
\]
We say that a partition λ is valid for n if λ is properly contained in a $\text{length}(\lambda) \times (n - \text{length}(\lambda))$ rectangle.

z-Schubert polynomial $\mathcal{S}_\lambda^n(z; x; y)$ is defined for λ that is valid for n.

$\mathcal{S}_\lambda^n(z; x; y)$ is defined recursively from $\mathcal{S}_{\lambda'}^{n-1}(z; x; y)$ where λ' is the partition obtained by deleting the first part of λ.

$$
\mathcal{S}_\lambda^n(z; x; y) = \partial_{n-\lambda_1-\text{mul}(\lambda)} \cdots \partial_1 \left(\mathcal{S}_{\lambda'}^{n-1}(\sigma^{\lambda_1-\lambda_2+1} z; x_1; y) \right)
\times \prod_{l=1}^{n-\text{mul}(\lambda)} (x_1 - y_l) \prod_{i=1}^{(\lambda_1-\lambda_2+1)} \prod_{m=2}^{n-\lambda_1-\text{mul}(\lambda)+1} (z_i - x_m) .
$$

$\sigma^a(z)$ means we shift indices of z variables by a.

Donghyun Kim (UC Berkeley)
Leading coefficient of $S^n_\lambda(z; x; y)$ (specializing to $z = \infty$) is a double Schubert polynomial. And there is a simple rule to get a code of the permutation indexing double Schubert polynomial.

(Eg.)

\[
S^4_{(1,1)}(z; x; y) \rightarrow S_{(1,3,4,2)}
\]

\[
S^5_{(2,1,1)}(z; x; y) \rightarrow S_{(1,3,5,4,2)}
\]
z-Schubert polynomials $S^n_\lambda(z; x; y)$

- Leading coefficient of $S^n_\lambda(z; x; y)$ (specializing to $z = \infty$) is a double Schubert polynomial. And there is a simple rule to get a code of the permutation indexing double Schubert polynomial. (Eg.)

$$S^4_{(1,1)}(z; x; y) \rightarrow S_{(1,3,4,2)}$$

$$S^5_{(2,1,1)}(z; x; y) \rightarrow S_{(1,3,5,4,2)}$$

- Recursive construction of z-Schubert polynomials is consistent with the equations of Schubert polynomials.

$$S_{(1,3,5,4,2)} = \partial_2 \partial_1(S_{(5,1,3,4,2)}) = \partial_2 \partial_1(S_{(1,3,4,2)}(x_\hat{i}) \prod_{i=1}^{4}(x_1 - y_i))$$

$$S^5_{(2,1,1)}(z; x; y) = \partial_2 \partial_1(S^4_{(1,1)}(z; x_\hat{i}; y) \prod_{i=1}^{4}(x_1 - y_i) \prod_{i=1}^{2} \prod_{m=2}^{3}(z_i - x_m))$$
For $w \in St(n, k)$, let $c(w^{-1}) = (c_1, \ldots, c_n)$; and denote descents positions by a_1, \ldots, a_k. For $1 \leq i \leq k$, define

$$\lambda^i = \left(n - a_i\right)^{a_i} - \left(0, \ldots, 0, c_{a_i - 1 + 1}, c_{a_i - 1 + 2}, \ldots, c_{a_i}\right)_{a_{i-1}}.$$
For \(w \in St(n, k) \), let \(c(w^{-1}) = (c_1, \ldots, c_n) \); and denote descents positions by \(a_1, \ldots, a_k \). For \(1 \leq i \leq k \), define
\[
\lambda^i = (n - a_i)^{a_i} - (0, \ldots, 0, c_{a_i-1+1}, c_{a_i-1+2}, \ldots, c_{a_i}).
\]

(Eg) \(w = (1, 2, 5, 4, 3) \in St(5, 2) \) with \(c(w^{-1}) = (0, 0, 2, 1, 0) \). So \(\lambda_1 = (2, 2) \) and \(\lambda_2 = (1, 1, 1) \).
Main results

For $w \in St(n, k)$, let $c(w^{-1}) = (c_1, \ldots, c_n)$; and denote descents positions by a_1, \ldots, a_k. For $1 \leq i \leq k$, define

$$\lambda^i = (n - a_i)^{a_i} - (0, \ldots, 0, c_{a_{i-1}+1}, c_{a_{i-1}+2}, \ldots, c_{a_i}).$$

(Eg) $w = (1, 2, 5, 4, 3) \in St(5, 2)$ with $c(w^{-1}) = (0, 0, 2, 1, 0)$. So $\lambda_1 = (2, 2)$ and $\lambda_2 = (1, 1, 1)$

Theorem (K, Williams)

For $w \in St(n, k)$ we have

$$\psi_w(z_1, \ldots, z_n) = \text{"Trivial Factor" } \times \prod_{i=1}^{k} G_{\lambda_i}^{n}(\sigma^{t_i}(z); x; y)$$
Main results

For $w \in St(n, k)$, let $c(w^{-1}) = (c_1, \ldots, c_n)$; and denote descents positions by a_1, \ldots, a_k. For $1 \leq i \leq k$, define

$\lambda^i = (n - a_i)^{a_i} - (0, \cdots, 0, c_{a_i-1+1}, c_{a_i-1+2}, \ldots, c_{a_i})$.

(Eg) $w = (1, 2, 5, 4, 3) \in St(5, 2)$ with $c(w^{-1}) = (0, 0, 2, 1, 0)$. So $\lambda_1 = (2, 2)$ and $\lambda_2 = (1, 1, 1)$

Theorem (K, Williams)

For $w \in St(n, k)$ we have

$$\psi_w(z_1, \cdots, z_n) = "\text{Trivial Factor}" \times \prod_{i=1}^{k} \mathfrak{S}_{\lambda_i}^n(\sigma^{t_i}(z); x; y)$$

→ As a corollary, we have that ψ_w for $w \in St(n, k)$ is given as a trivial factor times product of k Schubert polynomials.
Main Results

Proof idea

- We first prove the theorem for $St(n, 1)$. (Inverse of Grassmannian permutations that start with 1)
Main Results

Proof idea

- We first prove the theorem for $St(n, 1)$. (Inverse of Grassmannian permutations that start with 1)

- Use factorization theorem by Cantini
 \rightarrow Suppose that w splits as $w^{(1)}w^{(2)} \cdots w^{(k)}$ such that every component in $w^{(i)}$ is bigger than $w^{(j)}$ if $i > j$.
 Then $\psi_w(z) = \bar{\psi}_{w^{(1)}}(z)\bar{\psi}_{w^{(2)}}(z) \cdots \bar{\psi}_{w^{(k)}}(z)$
Future directions

- Give a combinatorial formula for $S^n_\lambda(z; x; y)$. Leading coefficient is a double Schubert polynomial for a vexillary permutation $(2143$-avoiding) \rightarrow flagged semistandard young tableau
Future directions

- Give a combinatorial formula for $S^n_\lambda(z; x; y)$. Leading coefficient is a double Schubert polynomial for a vexillary permutation (2143-avoiding) → flagged semistandard young tableau

- Put a parameter β to the inhomogeneous TASEP so that Schubert polynomials lift to β-Grothendieck polynomials
Future directions

- Give a combinatorial formula for $\mathcal{S}_\lambda^n(z; x; y)$. Leading coefficient is a double Schubert polynomial for a vexillary permutation (2143-avoiding) \rightarrow flagged semistandard young tableau

- Put a parameter β to the inhomogeneous TASEP so that Schubert polynomials lift to β-Grothendieck polynomials

- Define z-Schubert polynomials in a more general setting. And understand $\psi_w(z)$ for w other than evil-avoiding permutations (as a sum of z-Schubert polynomials). I have checked that this is possible for some states whose probability is a sum of two Schubert polynomials.
Give a combinatorial formula for $G^n_\lambda(z;x;y)$. Leading coefficient is a double Schubert polynomial for a vexillary permutation (2143-avoiding) \rightarrow flagged semistandard young tableau

Put a parameter β to the inhomogeneous TASEP so that Schubert polynomials lift to β-Grothendieck polynomials

Define z-Schubert polynomials in a more general setting. And understand $\psi_w(z)$ for w other than evil-avoiding permutations (as a sum of z-Schubert polynomials). I have checked that this is possible for some states whose probability is a sum of two Schubert polynomials.

Geometric interpretation?
Thanks for your attention!

Extended abstract is available (https://arxiv.org/abs/2102.00560)

