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Vi(tjjl)(a:i) o H Zwﬂ(xi,xl) Vl(i)i(l‘l). (14.31)

1€DiNj =1

Simplified expressions can be derived in this case for the joint distribution of several
variables (see eqn (14.18)), as well as for the free entropy.

Exercise 14.7 Show that, for pairwise models, the free entropy given in eqn (14.27) can
be written as Fu(v) = >-,cy Fi(v) — X5y ep Fij) (0), where

Fi(y) = log [Z 1T (Z wu(m,xj)wﬂi(xj))] ;

T; jJEO z
Fij)(v) = log [Z Viesj (@) i (Ii,ﬂﬁj)%‘w(xa‘)] : (14.32)
Ti,T;

14.3 Optimization: Max-product and min-sum

Message-passing algorithms are not limited to computing marginals. Imagine that you
are given a probability distribution u(-) as in eqn (14.13), and you are asked to find
a configuration z which maximizes the probability p(z). Such a configuration is called
a mode of pu(-). This task is important in many applications, ranging from MAP
estimation (e.g. in image reconstruction) to word MAP decoding.

It is not hard to devise a message-passing algorithm adapted to this task, which
correctly solves the problem on trees.

14.3.1 Max-marginals

The role of marginal probabilities is played here by the max-marginals

M;(z}) = mgx{,u(g) cap =} (14.33)

In the same way as the tasks of sampling and of computing partition functions can
be reduced to computing marginals, optimization can be reduced to computing max-
marginals. In other words, given a black box that computes max-marginals, optimiza-
tion can be performed efficiently.

Consider first the simpler case in which the max-marginals are non-degenerate,
i.e., for each i € V, there exists an ] such that M;(z]) > M;(x;) (strictly) for any
x; # xj. The unique maximizing configuration is then given by z* = (z7,...,2%).

In the general case, the following ‘decimation’ procedure, which is closely related
to the BP-guided sampling algorithm of Section 14.2.4, returns one of the maximizing
configurations. Choose an ordering of the variables, say (1,...,N). Compute M;(z1),
and let 27 be one of the values maximizing it: z* € argmax M (x1). Fix z; to take this
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value, i.e. modify the graphical model by introducing the factor I(zy = x7) (this corre-
sponds to considering the conditional distribution p(z|x; = z7)). Compute My (z2) for
the new model, fix z3 to one value 23 € argmax Ma(x2), and iterate this procedure,
fixing all the x;’s sequentially.

14.3.2 Message passing

It is clear from the above that max-marginals need only to be computed up to a
multiplicative normalization. We shall therefore stick to our convention of denoting
equality between max-marginals up to an overall normalization by 2. Adapting the
message-passing update rules to the computation of max-marginals is not hard: it is
sufficient to replace sums with maximizations. This yields the following max-product
update rules:

W @) =2 T 5@, (14.34)
bedi\a

Dy (ws) = max { va(zo,) [] viZaa) p - (14.35)
Toan j€da\i

The fixed-point conditions for this recursion are called the max-product equations.
As in BP, it is understood that, when Jj \ a is an empty set, vj_,(z;) = 1 is the
uniform distribution. Similarly, if da \ j is empty, then U, ;(x;) = ¥, (z;). After any
number of iterations, an estimate of the max-marginals is obtained as follows:

v (@) = T o8P (). (14.36)
a€di

As in the case of BP, the main motivation for the above updates comes from the
analysis of graphical models on trees.

Theorem 14.4. (the max-product algorithm is exact on trees) Consider a tree-
graphical model with diameter t,.. Then:

1. Irrespective of the initialization, the maz-product updates (14.34) and (14.85) con-

verge after at most t* iterations. In other words, for any edge (i,a) and any t > t.,
()

Vita ™ Vza

a and VG,AVL = Va%l

2. The maz-marginals are estimated correctly, i.e., for any variable node i and any
t>t, v (2;) = Mi(z).

K3

The proof follows closely that of Theorem 14.1, and is left as an exercise for the reader.



Optimization: Max-product and min-sum 307

Exercise 14.8 The crucial property used in both Theorem 14.1 and Theorem 14.4 is the
distributive property of the sum and the maximum with respect to the product. Consider,
for instance, a function of the form f(x1,x2,%3) = ¥1(x1,x2)2(x1,x3). Then one can
decompose the sum and maximum as follows:

Z f(x1, @2, 23) = Z [(Z%(xl,xz)) <Z¢2(1’1,x3)>] , (14.37)

Z1,%22,T3 Z1

e f(x1, @2, 23) = ma [(nﬁx wl(xl,xz)) (n;e;x wz(xl,xg))] . (14.38)

Formulate a general ‘marginalization’ problem (with the ordinary sum and product substi-
tuted by general operations with a distributive property) and describe a message-passing
algorithm that solves it on trees.

The max-product messages v (-) and /V\Sii( -) admit an interpretation which is

1—a
analogous to that of sum-product messages. For instance, v (-) is an estimate of

i—a
the max-marginal of variable z; with respect to the modified graphical model in which
factor node a is removed from the graph. Along with the proof of Theorem 14.4, it is
easy to show that, in a tree-graphical model, fixed-point messages do indeed coincide
with the max-marginals of such modified graphical models.

The problem of finding the mode of a distribution that factorizes as in eqn (14.13)
has an alternative formulation, namely as minimizing a cost (energy) function that

can be written as a sum of local terms:

E(z) = Falz,) - (14.39)

a€F

The problems are mapped onto each other by writing 1, (z,,) = e #F(Zsa) (with 3
some positive constant). A set of message-passing rules that is better adapted to the
latter formulation is obtained by taking the logarithm of eqns (14.34) and (14.35).
This version of the algorithm is known as the min-sum algorithm:

B @)= Y B () +C, (14.40)
bedi\a

BV (wi) = min | Ea(zp,) + Y. BV ()| +C2, . (14.41)
l@a\’i

j€da\i

The corresponding fixed-point equations are also known in statistical physics as the
energetic cavity equations. Notice that, since the max-product marginals are rel-

evant only up to a multiplicative constant, the min-sum messages are defined up to

an overall additive constant. In the following, we shall choose the constants c®

and C\ EHD E® The

—; such that min,, F;"| ’(z;) = 0 and min,, E,” (x;) = 0, respectively. The
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analogue of the max-marginal estimate in eqn (14.36) is provided by the following
log-max-marginal:

B () = 3 B @)+ (14.42)
acdi

In the case of tree-graphical models, the minimum energy U, = minT E(z) can be

immediately written in terms of the fixed-point messages { E }. We obtain,

in fact,

i—a’ 7,~>(l

U

S Euzha) - (14.43)

zh, = arg mm{ (zy,) + Z ElHa } . (14.44)

i€0a

In the case of non-tree graphs, this can be taken as a prescription to obtain a max-

product estimate U ) 6f the minimum energy. One just needs to replace the fixed-
point messages in eqn (14.44) with the messages obtained after ¢ iterations. Finally,
a minimizing configuration x* can be obtained through the decimation procedure
described in the previous subsection.

Exercise 14.9 Show that U. is also given by Ux = >, c p €a+3 ey € — 2 (j0)e g €ia, Where

€a = min | Eq(zy,) + Z i —al ] , € = mln |:Z B, 1’1):| ,

e jEda a€di
€ia = min [E;a(xi) + E‘;Hi(mi)] . (14.45)
[Hints: (¢) Define z; (a) = arg min [E;HZ(:):Z) +E; ., (xz)], and show that the minima in

eqn (14.45) are achieved at x; = ] (a) (for ¢; and €q) and at 2, = {x](a)}icoa (for €a).
(¢6) Show that >, Eq_i(zi(a)) = 3, €]

14.3.3 Warning propagation

A frequently encountered case is that of constraint satisfaction problems, where the
energy function just counts the number of violated constraints:

0 if constraint a is satisfied,

1 otherwise. (14.46)

E(l (Eaa) = {
The structure of messages can be simplified considerably in this case. More precisely,
if the messages are initialized in such a way that BO ¢ {0,1}, this condition is

a—1

preserved by the min-sum updates (14.40) and (14.41) at any subsequent time. Let us



