Solving Overparametrized Systems of
Random Equations

Andrea Montanari

Stanford University

June 26, 2024

1/50



The optimization puzzle in modern machine learning

» Empirical Risk Minimization (ERM) is highly non-convex

» Gradient methods find global optima
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The optimization puzzle in modern machine learning

Working hypothesis

ERM becomes ‘easy’ if sufficiently overparametrized

Can we understand this in a simple model? J
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Outline

@ A simple model with a long history

© Gradient descent: Local analysis

© Hessian descent

@ Exact solutions
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A small experiment with a small neural net J
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An experiment: 2-Layer ELU network

m
Z ((wj,z) zeRP.

X ifx>0 Uk
o(x) = =7 W|Z = wil? <m.
(x) {ex_] oo W ;H illz <
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Empirical Risk Minimization via SGD

M = Ir/(1 4 epoch(k))'/2 W° ~ N(0, e?I,np /D), € = 0.03
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Data distribution

(z,y1) ~ N(0,Ip) @ Unif({+1,—1})
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Varying number of epochs; o« =n/mD

0.351 —— Ny = 1000
sl Nit= 2000
Ul —— Ny = 4000

0.8

> m=D =20, Ir=0.1

> Averages over 20 realizations; one std bands

1.0
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Varying learning rate; o« = n/mD

0.351 Ir = 0.05
Ir=0.10
0.30 Ir = 0.20

1.0

> m=D =20, N, = 2,000

> Averages over 20 realizations
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A simple model with a long history J
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General problem

Q@ Fp,...,Fp:RY - Riid. random functions.

@ Find x € S such that Fi(x) =0 for all i <n.
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Gaussian model

F; centered, rotation invariant (in distr) Gaussian processes

J

» Covariance

E[Fi(x")F(x?)] = 85 ((x',x%)).

> F(x) = (Fi(x), ..., Fa(x))".
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Cost function and approximate solutions

Rax) 1= 3 [FO0I3

> At a fixed xo € S¥T, Rn(x0) =né(1)/2+0o(n)

» Solutions
Soly,a(e) = {x e ST IF)|2 < ng() - g} .

> n,d — oo, n/d — «.
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Questions

Q1 Do exact solutions exist: Soly q(0) # (07

Do approximate solution exist, Soly 4(€) # 07

Q2 Can we find them in polytime?
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History: Classical (complex) setting

F:CY = C™, homogeneous, deg(F;) = p;
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History: Classical (complex) setting

F:CY = C™, homogeneous, deg(F;) = p;

Q1 Bezout’s theorem (1779)
For n = d — 1, deterministically:

[Soln,a(0) =] [ p
i=1

Q2
»> Smale 17th problem (1993-1998)

» Positive answer (Lairez, 2020)

» Homotopy methods
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History: Real setting

Q1 Homogeneous case, n =d — 1.
> Subag 2022: With high probability

n

[Soln,a(0)l = (T+o(1) [ ] vPs

i=1
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History: Real setting

Q1 Homogeneous case, n =d — 1.
» Subag 2022: With high probability

n

[Soln,a(0)l = (T+o(1) [ ] vPs

i=1

Q1 Non-homogeneous case, n/d — o € (0, 00).
» Next slide

Q2 The rest of this talk
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Ql: &£(q) = & + q'" (polynomial of degree 11)

p=11

—— Hessian Descent
== Lower bound
—— Upper Bound

12 \

101

» Above gray region, o > oyg(&): Soly a(e) =
» Below gray region, & < o 5(&): Soly 4(0) =

0
0

See paper for formal statements.
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Gradient descent: Local analysis )
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Projected Gradient Descent

Gradient descent

K+ _ Kk K
27 =x* =P, VR, (X9,
St

ket _ .
1241

Projected gradient flow

X(t) = =Py VRa(x(t)).
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Projected Gradient Descent

Gradient descent

kil _ ok K
27 =x* =P, VR, (X9,
St

ket _ .
1241

Projected gradient flow

X(t) = =Py VRa(x(t)).

Difficult to analyze sharply! J
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Local analysis: Taylor expand around initialization

\ A~ \\::::::
/| NN
/ =~ ™

/ \ \ Soln,a(0) :={x: F(x) =0}
|

H@d

State of the art in ML Theory: Jacot, Gabriel, Hongler, 2018; Du, Zhai, Poczos, Singh 2018;
Allen-Zhu, Li, Song 2018; Chizat, Bach, 2019; Arora, Du, Hu, Li, Salakhutdinov, Wang, 2019; Oymak,

Soltanolkotabi, 2019; ...
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Local analysis

o (E) = co&/(1)?
ST (MEM) (Tog(e (1) /8N V)

Theorem (M, Subag, 2023)
If o« < (&), andn < 1/(Cyd), then whp for allk > 1,

[F9)|3 < 2ng(1) ec2(Va-vmZink)
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Special case: &(q) = & + qP

QCGD(EOJ’) = E‘O Ing .

To be compared with

cen(Eop) = 8P (14 0p(1)) .
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Hessian descent )
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Problem with GD

» Need ||[VR,(xN)[2 > e.
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Problem with GD

» Need ||[VR,(xN)[2 > e.
» Cannot be true uniformly.

» = Local analysis :(
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Problem with GD

» Need ||[VR,(x¥)[]2 > e.
» Cannot be true uniformly.

» = Local analysis :(

Idea: Use Hessian )
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Problem with Hessian Descent

D?Rn(x) = V2R (X)l7(x) — (X, VRn(x))I

» D? = Riemannian Hessian
» V? = Euclidean Hessian

» T(x) = Tangent space at x
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Problem with Hessian Descent

D?Rn(x) = V2R (X)l7(x) — (X, VRn(x))I

» D? = Riemannian Hessian

» V2 = Euclidean Hessian

> T(x) = Tangent space at x

» Problem: (x, VR,(x)) does not concentrate
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Problem with Hessian Descent

D?Ry(x) = V2R (X) 7 x) — (%, VRe{x))T

Idea: Relax sphere constraint J

Subag, 2020 (spherical spin glasses)
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Algorithm: Sketch
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Algorithm: Orthogonal steps
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Algorithm: Simplified

Vmin (A) := eigenvector associated to smallest eigenvalue of A

Initialize x' ~ /3 - Unif(S41):

for k e {1,...,K:=1/6—-1}do
Compute v(xk) = vmin(szn (Xk)h'xk );
sk := sign((v(x*), VR (x¥)));
X =Xk — s VB v(x);

end

return x"° = xX;
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Full algorithm

Initialize x' ~ /& - Unif(S41);
for ke{l,...,K:=1/6—-1}do
Compute v = v(x*) € T« such that [|[v||; =1 and

(v, VIR (x*)V) < Aain (V2 Rn (X9 ) + d5 5

sy := sign((v(x*), VR, (x})));
X =x* —s1vV/Bv(x");
end
return x'° = xX;
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Analysis

Theorem (M, Subag, 2023)
For « € (0,1), a,b € R>, define

z.(e, a,b) := inf {l— ocb —i—azm}.
m>{m 1+4+bm

Let u(-;0, &) : [0,1] — R be the unique solution of the ODE
du

Then whp

TRu () < (0 8) + Cos.

(1) = e za (o I DB, £/(1)) , - l0) = 5£00).

Recall Ry (x) = |[F(x'™)||3/2.

35 /50




Where does this come from?
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Where does this come from?
Hessian

n

V2Rn(x) = ) Fi(x)V*Fi(x) + DF(x) 'DF(x)
(=1
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Where does this come from?
Hessian

n

V2Rn(x) = ) Fi(x)V*Fi(x) + DF(x) 'DF(x)
(=1

Distribution as x, ||x||* = q
VZRn(X)lrg) = VRa(X)E" ()W +E(q) 27Z,

(W,Z) ~GOE(d —1) ® GOE(n,d — 1)
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Where does this come from?
Hessian

V2Rn(x) = ) Fi(x)V*Fi(x) + DF(x) 'DF(x)
(=1

Distribution as x, ||x||* = q
VR (%) T = VRa(X)E"(q)W +E/(q) Z27Z,
(W,Z) ~GOE(d — 1) ® GOE(n,d — 1)

Decrease in value

o] o] ob
g @ min(Amd) =2 (06 @ )= G

+ a’m.
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Special case: &(q) = & + qP

Al —1) Alp—1)
——————— < oup(&o,p) < .
T T J

To be compared with
1
QCGD(QO,P) = £o logp y
|
oun(E0,p) = —2P . (14 0p(1)) -

&o
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—— Hessian Descent
\ == Lower bound
—— Upper Bound

0.0 0.2 0.4 0.6 0.8 1.0

> Above gray region, & > xyg(&o): Soln q(e) =0
» Below gray region, ot < &;p(&0): Soly,a(0) =0
» Red line: oyp (&0, p)
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—— Hessian Descent
Lower bound
— Upper Bound

Hessian Descent

2 == Lower bound
— Upper Bound
10
.
.
4
2
0.0 o o s s 10
a

&

p=7

— Hessian Descent
= Lower bound
—— Upper Bound

— Hessian Descent
= Lower bound
—— Upper Bound
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Is HD optimal (among polytime algs)?
» No! Suboptimal when F(x) has degree-1 term
» Soln,a(0) not centered at 0
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» See paper for the fix/general algorithm
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Is HD optimal (among polytime algs)?
» No! Suboptimal when F(x) has degree-1 term
» Soln,a(0) not centered at 0
» See paper for the fix/general algorithm

> Conjectured to be optimal among ‘stable algorithms’

_Ave

— Hesvan
Deset

Soutions
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What about exact solutions? )
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What is an exact solution?

Definition (Shub, Smale, 1993)

X, is an approzimate solution of F(x) = 0 if letting (x*)x>o be Newton
iterates with x° = x,., then, for all k

IFO) < IFOO)| - exp { —c - 2¢}.
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What is an exact solution?

Definition (Shub, Smale, 1993)

X, is an approzimate solution of F(x) = 0 if letting (x*)x>o be Newton
iterates with x° = x,., then, for all k

[F<)|| < [FO)|| - exp { —c - 2.

Smale 17th problem over the reals:
Can we find approzimate solutions in polytime?
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What is an exact solution?

Theorem (M, Subag, 2024)

Assume Fy homogeneous, arbitrary (possibly different) degrees. Then
there exists a deterministic polytime algorithm such that, if

n<d-Cy/dlogd,

then it return a an approzimate solution, with high probability wrt F.
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Conclusion #1
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Conclusion #1

» Random systems of nonlinear equations
» Rich computational /probabilistic structure

» Quantitative comparison with neural nets lanscape?
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Conclusion #2

It is an honor to celebrate Andrew!
Thanks! J
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Epilogue: Revisiting the original experiment J
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Empirical Risk Minimization

m

Z o((wj,z) zeRP.
Rn(W) —ii( —f(zz W)’
n = L Yy iy )
W[ <m
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Experiments vs Gaussian Theory: a =1

0351 —— Ir=0.10, Ny, = 1000
— Ir =0.10, Nj; = 2000
0.30 1
— Ir=0.10, Ny = 4000
0254 —— Gaussian Theory
B 020
~—
<
<
< 0.15
0.101
0.05 A
0.00 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Red: Approx matching covariance
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Experiments vs Gaussian Theory: a = 2

0.35 1 — Ir=0.02, Nj; = 2000
— Ir=0.02, Nj; = 4000
0.30 1
— Ir=0.02, Nj; = 8000
0.95 —— Gaussian Theory
2 0.20
~—
=
<
= 0.15
0.10 1
0.05
0.00 T T - :
0.0 0.2 0.4 0.6 0.8 1.0
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Experiments vs Gaussian Theory: a =5

0.35 1 — Ir = 0.10, Ny, = 2000
—— Ir = 0.05, Ny, = 4000
0.30 1
— Ir = 0.05, Nj; = 8000
095 —— Ir=0.02, Ny, = 8000
—— Gaussian Theory
2 0.20
~—
=
<
= 0.15
0.10
0.05
0.00 T T T r
0.0 0.2 0.4 0.6 0.8 1.0

50 /50



	A simple model with a long history
	Gradient descent: Local analysis
	Hessian descent
	Exact solutions

