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The optimization puzzle in modern machine learning

▶ Empirical Risk Minimization (ERM) is highly non-convex

▶ Gradient methods find global optima

Working hypothesis

ERM becomes ‘easy’ if sufficiently overparametrized
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The optimization puzzle in modern machine learning

Working hypothesis

ERM becomes ‘easy’ if sufficiently overparametrized

Can we understand this in a simple model?
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1 A simple model with a long history

2 Gradient descent: Local analysis

3 Hessian descent

4 Exact solutions

4 / 50



Eliran Subag
Weizmann Institute
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A small experiment with a small neural net
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An experiment: 2-Layer ELU network

f(z;W) =
a√
m

m∑
j=1

si σ(⟨wj, z⟩) , z ∈ RD .

σ(x) =

{
x if x ≥ 0,
ex − 1 if x < 0.

, ∥W∥2F =
m∑
i=1

∥wi∥22 ≤ m.
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Empirical Risk Minimization via SGD

Rn(W) :=
1

2n

n∑
i=1

(
yi − f(zi;W)

)2
,

W̃
k+1

= Wk −
ηk
2

∑
i∈B(k)

∇w

(
yi − f(zi;W

k)
)2

,

Wk+1 = Proj(W̃
k+1

) .

ηk = lr/(1 + epoch(k))1/2 W0 ∼ N(0, ε2ImD/D), ε = 0.03
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Data distribution

(zi, yi) ∼ N(0, ID)⊗ Unif({+1,−1})
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Varying number of epochs; α = n/mD

0.0 0.2 0.4 0.6 0.8 1.0

α
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R̂
n
(w

)

Nit = 1000

Nit = 2000

Nit = 4000

▶ m = D = 20, lr = 0.1

▶ Averages over 20 realizations; one std bands
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Varying learning rate; α = n/mD
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▶ m = D = 20, Nit = 2, 000

▶ Averages over 20 realizations

11 / 50



A simple model with a long history
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General problem

1 F1, . . . , Fn : Rd → R i.i.d. random functions.

2 Find x ∈ Sd−1 such that Fi(x) = 0 for all i ≤ n.
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Gaussian model

Fi centered, rotation invariant (in distr) Gaussian processes

▶ Covariance
E
[
Fi(x

1)Fj(x
2)
]
= δijξ

(
⟨x1, x2⟩

)
.

▶ F(x) = (F1(x), . . . , Fn(x))
T.
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Cost function and approximate solutions

Rn(x) :=
1

2
∥F(x)∥22

▶ At a fixed x0 ∈ Sd−1, Rn(x0) = nξ(1)/2+ o(n)

▶ Solutions

Soln,d(ε) :=
{
x ∈ Sd−1 : ∥F(x)∥22 ≤ nξ(1) · ε

}
.

▶ n, d → ∞, n/d → α.
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Questions

Q1 Do exact solutions exist: Soln,d(0) ̸= ∅?

Do approximate solution exist, Soln,d(ε) ̸= ∅?

Q2 Can we find them in polytime?
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History: Classical (complex) setting

F : Cd → Cn, homogeneous, deg(Fi) = pi

Q1 Bezout’s theorem (1779)
For n = d− 1, deterministically:

|Soln,d(0)| =

n∏
i=1

pi

Q2
▶ Smale 17th problem (1993-1998)

▶ Positive answer (Lairez, 2020)

▶ Homotopy methods
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History: Real setting

Q1 Homogeneous case, n = d− 1.
▶ Subag 2022: With high probability

|Soln,d(0)| = (1+ o(1))

n∏
i=1

√
pi

Q1 Non-homogeneous case, n/d → α ∈ (0,∞).
▶ Next slide

Q2 The rest of this talk
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Q1: ξ(q) = ξ0 + q11 (polynomial of degree 11)

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

0

p = 11
Hessian Descent
Lower bound
Upper Bound

▶ Above gray region, α > αUB(ξ0): Soln,d(ε) = ∅
▶ Below gray region, α < αLB(ξ0): Soln,d(0) = ∅

See paper for formal statements.
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Gradient descent: Local analysis
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Projected Gradient Descent

Gradient descent

zk+1 = xk − ηPT,xk∇Rn(x
k) ,

xk+1 =
zk+1

∥zk+1∥2
.

Projected gradient flow

ẋ(t) = −PT,x(t)∇Rn(x(t)) .

Difficult to analyze sharply!
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Local analysis: Taylor expand around initialization

Rd

x0

x

Soln,d(0) := {x : F(x) = 0}

State of the art in ML Theory: Jacot, Gabriel, Hongler, 2018; Du, Zhai, Poczos, Singh 2018;

Allen-Zhu, Li, Song 2018; Chizat, Bach, 2019; Arora, Du, Hu, Li, Salakhutdinov, Wang, 2019; Oymak,

Soltanolkotabi, 2019; . . .
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Local analysis

αGD(ξ) :=
c0ξ

′(1)2

ξ ′′(1)ξ(1)
(
log(ξ ′′′(1)/ξ ′′(1))∨ 1

) .

Theorem (M, Subag, 2023)

If α < αGD(ξ), and η < 1/(C1d), then whp for all k ≥ 1,

∥F(xk)∥22 ≤ 2nξ(1) e−c2(
√
d−

√
n)2(ηk) .
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Special case: ξ(q) = ξ0 + qp

αGD(ξ0, p) ≍
1

ξ0 log p
.

To be compared with

αLB(ξ0, p) =
log p
ξ0

·
(
1+ op(1)

)
.
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Hessian descent

26 / 50



Problem with GD

▶ Need ∥∇Rn(x
k)∥2 ≥ ε.

▶ Cannot be true uniformly.

▶ ⇒ Local analysis :(
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Problem with GD

▶ Need ∥∇Rn(x
k)∥2 ≥ ε.

▶ Cannot be true uniformly.

▶ ⇒ Local analysis :(

Idea: Use Hessian
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Problem with Hessian Descent

D2Rn(x) = ∇2Rn(x)|T(x) − ⟨x,∇Rn(x)⟩I

▶ D2 = Riemannian Hessian
▶ ∇2 = Euclidean Hessian
▶ T(x) = Tangent space at x

▶ Problem: ⟨x,∇Rn(x)⟩ does not concentrate
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Problem with Hessian Descent

D2Rn(x) = ∇2Rn(x)|T(x) −(((((((⟨x,∇Rn(x)⟩I

Idea: Relax sphere constraint

Subag, 2020 (spherical spin glasses)
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Algorithm: Sketch
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Algorithm: Orthogonal steps
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Algorithm: Simplified

vmin(A) := eigenvector associated to smallest eigenvalue of A

Initialize x1 ∼
√
δ · Unif(Sd−1);

for k ∈ {1, . . . , K := 1/δ− 1} do
Compute v(xk) = vmin(∇2Rn(x

k)|T
xk
);

sk := sign(⟨v(xk),∇Rn(x
k)⟩);

xk+1 = xk − sk
√
δ v(xk);

end
return xHD = xK;
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Full algorithm

Initialize x1 ∼
√
δ · Unif(Sd−1);

for k ∈ {1, . . . , K := 1/δ− 1} do
Compute v = v(xk) ∈ Txk such that ∥v∥2 = 1 and

⟨v,∇2Rn(x
k)v⟩ ≤ λmin(∇2Rn(x

k)|T,xk) + dδ ;

sk := sign(⟨v(xk),∇Rn(x
k)⟩);

xk+1 = xk − sk
√
δ v(xk);

end
return xHD = xK;
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Analysis

Theorem (M, Subag, 2023)
For α ∈ (0, 1), a, b ∈ R≥0, define

z∗(α, a, b) := inf
m>0

{ 1

m
−

αb

1+ bm
+ a2m

}
.

Let u( · ;α, ξ) : [0, 1] → R be the unique solution of the ODE

du
dt

(t) = −
1

2α
z∗
(
α;

√
2αu(t)ξ ′′(t), ξ ′(t)

)
, u(0) =

1

2
ξ(0) .

Then whp

1

n
Rn(x

HD) ≤ u(1;α, ξ) + C0δ .

Recall Rn(x) := ∥F(xHD)
∥∥2

2
/2.
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Where does this come from?
Hessian

∇2Rn(x) =

n∑
ℓ=1

Fℓ(x)∇2Fℓ(x) +DF(x)TDF(x)

Distribution as x, ∥x∥2 = q

∇2Rn(x)|T(x) =
√

Rn(x)ξ ′′(q)W + ξ ′(q)ZTZ ,

(W,Z) ∼ GOE(d− 1)⊗ GOE(n, d− 1)

Decrease in value

lim
n,d→∞ 1

d
λmin(An,d) = −z∗(α, a, b) := − inf

m>0

1

m
−

αb

1+ bm
+ a2m.
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Special case: ξ(q) = ξ0 + qp

4(p− 1)

pξ0 + 4(p− 1)
≤ αHD(ξ0, p) ≤

4(p− 1)

pξ0
.

To be compared with

αGD(ξ0, p) ≍
1

ξ0 log p
,

αLB(ξ0, p) =
log p
ξ0

·
(
1+ op(1)

)
.
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Phase diagram (ξ(q) = ξ0 + q3)

0.0 0.2 0.4 0.6 0.8 1.0
0

1
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7

0

p = 3
Hessian Descent
Lower bound
Upper Bound

▶ Above gray region, α > αUB(ξ0): Soln,d(ε) = ∅
▶ Below gray region, α < αLB(ξ0): Soln,d(0) = ∅
▶ Red line: αHD(ξ0, p)
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Phase diagram (ξ(q) = ξ0 + qp)
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Is HD optimal (among polytime algs)?
▶ No! Suboptimal when F(x) has degree-1 term
▶ Soln,d(0) not centered at 0

▶ See paper for the fix/general algorithm
▶ Conjectured to be optimal among ‘stable algorithms’
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What about exact solutions?
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What is an exact solution?

Definition (Shub, Smale, 1993)

x∗ is an approximate solution of F(x) = 0 if letting (xk)k≥0 be Newton
iterates with x0 = x∗, then, for all k

∥F(xk)∥ ≤ ∥F(x0)∥ · exp
{
− c · 2k

}
.

Smale 17th problem over the reals:
Can we find approximate solutions in polytime?
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What is an exact solution?

Theorem (M, Subag, 2024)
Assume Fi homogeneous, arbitrary (possibly different) degrees. Then
there exists a deterministic polytime algorithm such that, if

n ≤ d− C
√
d logd ,

then it return a an approximate solution, with high probability wrt F.
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Conclusion #1

▶ Random systems of nonlinear equations

▶ Rich computational/probabilistic structure

▶ Quantitative comparison with neural nets lanscape?
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Conclusion #2

It is an honor to celebrate Andrew!
Thanks!
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Epilogue: Revisiting the original experiment
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Empirical Risk Minimization

f(z;W) =
a√
m

m∑
j=1

si σ(⟨wj, z⟩) , z ∈ RD .

Rn(W) :=
1

2n

n∑
i=1

(
yi − f(zi;W)

)2
,

∥W∥2F ≤ m.
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Experiments vs Gaussian Theory: a = 1
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(w

)

lr = 0.10, Nit = 1000

lr = 0.10, Nit = 2000

lr = 0.10, Nit = 4000

Gaussian Theory

Red: Approx matching covariance
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Experiments vs Gaussian Theory: a = 2
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Gaussian Theory
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Experiments vs Gaussian Theory: a = 5
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lr = 0.10, Nit = 2000

lr = 0.05, Nit = 4000

lr = 0.05, Nit = 8000

lr = 0.02, Nit = 8000

Gaussian Theory
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