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Outline

1 Finding a clique in a haystack

2 A spectral algorithm

3 Improving over the spectral algorithm
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Finding a clique in a haystack
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General Problem

G = (V ,E ) a graph.

S ⊆ V supports a clique (i.e. (i , j) ∈ E for all i , j ∈ S)

Problem : Find S .
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Example 1: Zachary’s karate club
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A catchier name

Finding a terrorist cell in a social network
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Toy example: 150 nodes, 15 highly connected

0.0
0.2

0.4
0.6

0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0

Here binary data: Can generalize. . .
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Of course not the first 15. . .
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Where are the highly connected nodes? 1021 possilities.
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An efficient algorithm
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The model [Alon,Krivelevich,Sudakov 1998]

Choose S ⊆ V with |S | = k uniformly at random.

Add an edge (i , j) for each pair s.t. i , j ∈ S .

Add an edge for each other pair (i , j) independently with prob p.

G ∼ G(n, p, k)

Will assume p = 1/2
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Question

How big k has to be for us to find the clique?
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If you could wait forever

Exhaustive search

Input : Graph G = (V ,E ), Clique size k
Output : Clique of size k
1: For all S ⊂ V , |S | = k;
3: Check if GS is a clique;
4: Output all cliques found;

Works if k > k∗, typical size of largest clique in G ∼ G(n, 1/2, k) that is
not supported on S .
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Largest random clique

Largest clique that does not share any vertex with S

Equivalently G ∼ G(n − k, 1/2, 0) ≈ G(n, 1/2, 0).

Idea: compute expected number of cliques of size k
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Largest random clique

Expected nb of cliques of size k

E N(k) =

(
n

k

)
P
{
(1, . . . , k) form a clique

}
=

(
n

k

)
2−k(k−1)/2

≤
(ne

k

)k
2−k(k−1)/2

≤
(ne

k
2−(k−1)/2

)k

k∗(n) ≈ 2 log2 n
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Largest random clique
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Can we do it in reasonable time?

Naive Algorithm

Input : Graph G = (V ,E ), Clique size k
Output : Clique of size k
1: Sort vertices by degree;
2: Check if the k vertices with largest degree form a clique;
3: If yes, output them;

Andrea Montanari (Stanford University) Lecture 6 July 15, 2013 16 / 39



When does naive work?

For i 6∈ S

di ∼ Binom(n − 1, 1/2) ≈ Normal(n/2, n/4)

P
{

di ≥
n

2
+

n1/2

2
t
}
≤ e−t2/2 ≤ 1

n2
for t ≥

√
4 log n

Proposition

With high probability

max
i 6∈S

di ≤
n

2
+

√
n log n .

min
i∈S

di ≥
n

2
+ k − 1−

√
n log n .

Works for k ≥ 2
√

n log n
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A spectral algorithm

Andrea Montanari (Stanford University) Lecture 6 July 15, 2013 18 / 39



Idea

Wij =

{
+1 if (i , j) ∈ E ,
−1 otherwise.

(uS)i =

{
+1 if i ∈ S ,
0 otherwise.

Want to find uS from W .
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Idea

W = uSuT
S + Z − ZS ,S

(Zij)i<j i.i.d.

Zij =

{
+1 with probability 1/2,
−1 with probability 1/2.

(ZS ,S)ij = Zij if i , j ∈ S and = 0 otherwise
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Idea

W = uSuT
S + Z − ZS ,S

With overwhelming probability

‖uSuS‖2 = k ,

‖Z‖2 ≈ 2
√

n ,

‖ZS ,S‖2 ≈ 2
√

k � ‖Z‖2 .
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Use matrix perturbation theory

Unperturbed matrix

W0 = uSuT
S ,

λ1(W0) = k, λ2(W0) = · · · = λn(W0) = 0
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The sin theta theorem

ûS = uS/
√

k principal eigenvector of W0

v principal eigenvector of W

‖v − ûS‖2 ≤
√

2 sin θ(v , ûS) ≤
√

2‖Z + ZS ,S‖2
λ1(W0)− λ2(W )

≤ 3
√

n

k − 3
√

n

Andrea Montanari (Stanford University) Lecture 6 July 15, 2013 23 / 39



Summarizing

Proposition

For k ≥ 100
√

n, whp

‖v − ûS‖2 ≤
1

10
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Let’s check how does it work. . .

Histogram of eA$val

eA$val

F
re

qu
en

cy

−50 0 50 100

0
20

40
60

n = 2000, k = 100
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Spectral algorithm: First attempt

Naive Spectral Algorithm

Input : Graph G = (V ,E ), Clique size k
Output : Clique of size k
1: Compute first eigenvector v of matrix W = W (G );
2: Sort vertices by value of |vi |;
3: Check if the k vertices with largest value form a clique;
4: If yes, output them;

Where is the problem?
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Spectral algorithm

Spectral Algorithm

Input : Graph G = (V ,E ), Clique size k
Output : Clique of size k
1: Compute first eigenvector v of matrix W = W (G );
2: Sort vertices by value of |vi |;
3: Let R ⊆ V be the set of k vertices with largest value;
4: For i ∈ V
5: If degR(i) > 3k/4, let S ← S ∪ {i};
6: Output S ;
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Why is this a good trick?

By the perturbation bound R is roughly good: R ∩ S > 0.9 · k.

All the vertices in S pass the test.

For i 6∈ S , EdegR(i) = k/2 and degR(i) < 3k/4 whp.
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Improving over the spectral algorithm
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We proved this

Theorem

If k ≥ 100
√

n then spectral algorithm finds the clique.

Can we make 100 as small as we want?
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Not without a new idea. . .

Histogram of eA$val

eA$val
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Tight analysis

W = uSuT
S + Z − ZS ,S ≈ uSuT

S + Z

Low-rank deformation of a random matrix (e.g. Knowles, Yin 2011)

Proposition

If k > (1 + ε)
√

n, then 〈uS , v〉 ≥ min(ε,
√

ε)/2.
Viceversa, if k < (1− ε)

√
n, then |〈uS , v〉| ≤ n−1/2+δ.
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The test set idea

Enhanced Spectral Algorithm

Input : Graph G = (V ,E ), Clique size k
Output : Clique of size k
1: For T ⊆ V , |T | = 2, T is a clique;
2: Let VT = {i ∈ V \ T : degT (i) = 2}

and let GT be the induced graph;
3: Run Spectral Algorithm(GT , k − 2);
4: If a clique S of size k − 2 is found, return S ∪ T ;
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Why is this a good trick?

V ′
T ≈

n

4

Looking for clique of size k − 2.

If Spectral succeeds for k ≥ c
√

n, then Enhanced Spectral works
for k − 2 ≥ c

√
n/4.

Equivalently for k ≥ c ′
√

n with

c ′ = c/2 + 0.000001
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Iterating the same idea

Enhanced Spectral Algorithm

Input : Graph G = (V ,E ), Clique size k
Output : Clique of size k
1: For T ⊆ V , |T | = s, T is a clique;
2: Let VT = {i ∈ V \ T : degT (i) = 2}

and let GT be the induced graph;
3: Run Spectral Algorithm(GT , k − s);
4: If a clique S of size k − s is found, return S ∪ T ;
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The state of the art for polynomial algorithms

Theorem

Enhanced Spectral(s) finds cliques of size c2−s/2√n in time
O(ns+c0).
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What about really efficient algorithms?

Theorem (Dekel, Gurel-Gurevitch, Peres, 2011)

If k ≥ 1.261
√

n, then there exists an algorithm with complexity O(n2) that
finds the clique with high probability.

Theorem (Deshpande, Montanari, 2013)

If k ≥ (1 + ε)
√

n/e, then there exists an algorithm with complexity
O(n2 log n) that finds the clique with high probability.
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