The hidden clique problem and graphical models

Andrea Montanari

Stanford University

July 15, 2013

Outline

Finding a clique in a haystack

General Problem

G = (V, E) a graph.

 $S \subseteq V$ supports a clique (i.e. $(i,j) \in E$ for all $i,j \in S$)

Problem : Find *S*.

General Problem

- G = (V, E) a graph.
- $S \subseteq V$ supports a clique (i.e. $(i,j) \in E$ for all $i,j \in S$)

Problem : Find *S*.

General Problem

- G = (V, E) a graph.
- $S \subseteq V$ supports a clique (i.e. $(i,j) \in E$ for all $i,j \in S$)

Problem : Find *S*.

Example 1: Zachary's karate club

Fig. 2. Application of the eigenvector-based method to the karate club

A catchier name

Finding a terrorist cell in a social network

Toy example: 150 nodes, 15 highly connected

Here binary data: Can generalize...

Of course not the first 15...

Where are the highly connected nodes? 10²¹ possilities.

An efficient algorithm

- Choose $S \subseteq V$ with |S| = k uniformly at random.
- Add an edge (i, j) for each pair s.t. $i, j \in S$.
- Add an edge for each other pair (i, j) independently with prob p.

 $G \sim \mathbb{G}(n, p, k)$

• Choose $S \subseteq V$ with |S| = k uniformly at random.

- Add an edge (i, j) for each pair s.t. $i, j \in S$.
- Add an edge for each other pair (i, j) independently with prob p.

$$G \sim \mathbb{G}(n, p, k)$$

- Choose $S \subseteq V$ with |S| = k uniformly at random.
- Add an edge (i, j) for each pair s.t. $i, j \in S$.
- Add an edge for each other pair (i, j) independently with prob p.

$$G \sim \mathbb{G}(n, p, k)$$

- Choose $S \subseteq V$ with |S| = k uniformly at random.
- Add an edge (i, j) for each pair s.t. $i, j \in S$.
- Add an edge for each other pair (i, j) independently with prob p.

 $G \sim \mathbb{G}(n, p, k)$

- Choose $S \subseteq V$ with |S| = k uniformly at random.
- Add an edge (i, j) for each pair s.t. $i, j \in S$.
- Add an edge for each other pair (i, j) independently with prob p.

$$G \sim \mathbb{G}(n, p, k)$$

Question

How big k has to be for us to find the clique?

If you could wait forever

EXHAUSTIVE SEARCH

Input : Graph G = (V, E), Clique size k **Output :** Clique of size k

- 1: For all $S \subset V$, |S| = k;
- 3: Check if G_S is a clique;
- 4: Output all cliques found;

Works if $k > k_*$, typical size of largest clique in $G \sim \mathbb{G}(n, 1/2, k)$ that is not supported on S.

If you could wait forever

EXHAUSTIVE SEARCH

Input : Graph G = (V, E), Clique size k **Output :** Clique of size k

- 1: For all $S \subset V$, |S| = k;
- 3: Check if G_S is a clique;
- 4: Output all cliques found;

Works if $k > k_*$, typical size of largest clique in $G \sim \mathbb{G}(n, 1/2, k)$ that is not supported on S.

Largest clique that does not share any vertex with S

Equivalently $G \sim \mathbb{G}(n-k, 1/2, 0) \approx \mathbb{G}(n, 1/2, 0)$.

Idea: compute expected number of cliques of size k

Expected nb of cliques of size k

$$\mathbb{E} N(k) = \binom{n}{k} \mathbb{P}\{(1, \dots, k) \text{ form a clique}\}$$
$$= \binom{n}{k} 2^{-k(k-1)/2}$$
$$\leq \left(\frac{ne}{k}\right)^k 2^{-k(k-1)/2}$$
$$\leq \left(\frac{ne}{k} 2^{-(k-1)/2}\right)^k$$

 $k_*(n) \approx 2 \log_2 n$

Expected nb of cliques of size k

$$\mathbb{E} N(k) = \binom{n}{k} \mathbb{P}\{(1, \dots, k) \text{ form a clique}\}$$
$$= \binom{n}{k} 2^{-k(k-1)/2}$$
$$\leq \left(\frac{ne}{k}\right)^k 2^{-k(k-1)/2}$$
$$\leq \left(\frac{ne}{k} 2^{-(k-1)/2}\right)^k$$

 $k_*(n) \approx 2 \log_2 n$

Expected nb of cliques of size k

$$\mathbb{E} N(k) = \binom{n}{k} \mathbb{P}\{(1, \dots, k) \text{ form a clique}\}$$
$$= \binom{n}{k} 2^{-k(k-1)/2}$$
$$\leq \left(\frac{ne}{k}\right)^k 2^{-k(k-1)/2}$$
$$\leq \left(\frac{ne}{k} 2^{-(k-1)/2}\right)^k$$

 $k_*(n) \approx 2 \log_2 n$

Expected nb of cliques of size k

$$\mathbb{E} N(k) = \binom{n}{k} \mathbb{P}\{(1, \dots, k) \text{ form a clique}\}$$
$$= \binom{n}{k} 2^{-k(k-1)/2}$$
$$\leq \left(\frac{ne}{k}\right)^k 2^{-k(k-1)/2}$$
$$\leq \left(\frac{ne}{k} 2^{-(k-1)/2}\right)^k$$

 $k_*(n) pprox 2 \log_2 n$

Expected nb of cliques of size k

$$\mathbb{E} N(k) = \binom{n}{k} \mathbb{P}\{(1, \dots, k) \text{ form a clique}\}$$
$$= \binom{n}{k} 2^{-k(k-1)/2}$$
$$\leq \left(\frac{ne}{k}\right)^k 2^{-k(k-1)/2}$$
$$\leq \left(\frac{ne}{k} 2^{-(k-1)/2}\right)^k$$

 $k_*(n) \approx 2\log_2 n$

Can we do it in reasonable time?

NAIVE ALGORITHM

Input : Graph G = (V, E), Clique size k **Output :** Clique of size k

- 1: Sort vertices by degree;
- 2: Check if the *k* vertices with largest degree form a clique;
- 3: If yes, output them;

For $i \notin S$

$$d_i \sim \operatorname{Binom}(n-1,1/2) \approx \operatorname{Normal}(n/2,n/4)$$

$$\mathbb{P}\left\{d_i \ge \frac{n}{2} + \frac{n^{1/2}}{2}t\right\} \le e^{-t^2/2} \le \frac{1}{n^2} \quad \text{for } t \ge \sqrt{4\log n}$$

Proposition

With high probability

$$\max_{\substack{i \notin S}} d_i \leq \frac{n}{2} + \sqrt{n \log n}.$$
$$\min_{i \in S} d_i \geq \frac{n}{2} + k - 1 - \sqrt{n \log n}$$

For $i \notin S$

$$d_i \sim \operatorname{Binom}(n-1,1/2) \approx \operatorname{Normal}(n/2,n/4)$$

$$\mathbb{P}\left\{d_{i} \geq \frac{n}{2} + \frac{n^{1/2}}{2}t\right\} \leq e^{-t^{2}/2} \leq \frac{1}{n^{2}} \quad \text{for } t \geq \sqrt{4\log n}$$

Proposition

With high probability

$$\max_{\substack{i \notin S}} d_i \leq \frac{n}{2} + \sqrt{n \log n}.$$
$$\min_{\substack{i \in S}} d_i \geq \frac{n}{2} + k - 1 - \sqrt{n \log n}$$

For $i \notin S$

$$d_i \sim \operatorname{Binom}(n-1,1/2) \approx \operatorname{Normal}(n/2,n/4)$$

$$\mathbb{P}\left\{d_{i} \geq \frac{n}{2} + \frac{n^{1/2}}{2}t\right\} \leq e^{-t^{2}/2} \leq \frac{1}{n^{2}} \quad \text{for } t \geq \sqrt{4\log n}$$

Proposition

With high probability

$$\max_{i \notin S} d_i \leq \frac{n}{2} + \sqrt{n \log n}.$$
$$\min_{i \in S} d_i \geq \frac{n}{2} + k - 1 - \sqrt{n \log n}.$$

For $i \notin S$

$$d_i \sim \operatorname{Binom}(n-1,1/2) \approx \operatorname{Normal}(n/2,n/4)$$

$$\mathbb{P}\left\{d_{i} \geq \frac{n}{2} + \frac{n^{1/2}}{2}t\right\} \leq e^{-t^{2}/2} \leq \frac{1}{n^{2}} \quad \text{for } t \geq \sqrt{4\log n}$$

Proposition

With high probability

$$\max_{\substack{i \notin S}} d_i \leq \frac{n}{2} + \sqrt{n \log n}.$$
$$\min_{\substack{i \in S}} d_i \geq \frac{n}{2} + k - 1 - \sqrt{n \log n}.$$

A spectral algorithm

$$W_{ij} = \begin{cases} +1 & \text{if } (i,j) \in E, \\ -1 & \text{otherwise.} \end{cases}$$
$$(u_{S})_{i} = \begin{cases} +1 & \text{if } i \in S, \\ 0 & \text{otherwise.} \end{cases}$$

Want to find u_S from W.

$$W_{ij} = \begin{cases} +1 & ext{if } (i,j) \in E, \\ -1 & ext{otherwise.} \end{cases}$$

 $(u_S)_i = \begin{cases} +1 & ext{if } i \in S, \\ 0 & ext{otherwise.} \end{cases}$

Want to find u_S from W.

$$W_{ij} = \begin{cases} +1 & \text{if } (i,j) \in E, \\ -1 & \text{otherwise.} \end{cases}$$
$$(u_S)_i = \begin{cases} +1 & \text{if } i \in S, \\ 0 & \text{otherwise.} \end{cases}$$

Want to find u_S from W.

$$W = u_S u_S^{\mathsf{T}} + Z - Z_{S,S}$$

 $(Z_{ij})_{i < j}$ i.i.d.

 $Z_{ij} = \left\{egin{array}{cc} +1 & ext{with probability 1/2,} \ -1 & ext{with probability 1/2.} \end{array}
ight.$

 $(Z_{S,S})_{ij} = Z_{ij}$ if $i, j \in S$ and = 0 otherwise

$$W = u_S u_S^{\mathsf{T}} + Z - Z_{S,S}$$

 $(Z_{ij})_{i < j}$ i.i.d.

$$Z_{ij} = \left\{egin{array}{cc} +1 & ext{with probability } 1/2, \ -1 & ext{with probability } 1/2. \end{array}
ight.$$

 $(Z_{\mathcal{S},\mathcal{S}})_{ij} = Z_{ij}$ if $i,j \in S$ and = 0 otherwise

$$W = u_S u_S^{\mathsf{T}} + Z - Z_{S,S}$$

With overwhelming probability

$$\begin{aligned} \|u_{S}u_{S}\|_{2} &= k, \\ \|Z\|_{2} &\approx 2\sqrt{n}, \\ \|Z_{S,S}\|_{2} &\approx 2\sqrt{k} \ll \|Z\|_{2}. \end{aligned}$$

$$W = u_S u_S^{\mathsf{T}} + Z - Z_{S,S}$$

With overwhelming probability

$$\begin{aligned} \|u_{S}u_{S}\|_{2} &= k, \\ \|Z\|_{2} &\approx 2\sqrt{n}, \\ \|Z_{S,S}\|_{2} &\approx 2\sqrt{k} \ll \|Z\|_{2}. \end{aligned}$$

Use matrix perturbation theory

Unperturbed matrix

$$W_0 = u_S u_S^\mathsf{T} \,,$$

$$\lambda_1(W_0) = k, \ \lambda_2(W_0) = \cdots = \lambda_n(W_0) = 0$$

The sin theta theorem

 $\hat{u}_S = u_S / \sqrt{k}$ principal eigenvector of W_0 v principal eigenvector of W

$$\begin{aligned} \|v - \widehat{u}_{S}\|_{2} &\leq \sqrt{2} \sin \theta(v, \widehat{u}_{S}) \leq \frac{\sqrt{2} \|Z + Z_{S,S}\|_{2}}{\lambda_{1}(W_{0}) - \lambda_{2}(W)} \\ &\leq \frac{3\sqrt{n}}{k - 3\sqrt{n}} \end{aligned}$$

Summarizing

Proposition

For $k \geq 100\sqrt{n}$, whp

$$\|\boldsymbol{v}-\widehat{\boldsymbol{u}}_{\mathcal{S}}\|_2 \leq \frac{1}{10}$$

Let's check how does it work...

Histogram of eA\$val

eA\$val

 $n = 2000, \ k = 100$ July 15, 2013 25 / 39

Let's check how does it work...

 $n = 2000, \ k = 100$ July 15, 2013 26 / 39

Spectral algorithm: First attempt

NAIVE SPECTRAL ALGORITHM

Input : Graph G = (V, E), Clique size k **Output :** Clique of size k

- 1: Compute first eigenvector v of matrix W = W(G);
- 2: Sort vertices by value of $|v_i|$;
- 3: Check if the k vertices with largest value form a clique;
- 4: If yes, output them;

Where is the problem?

Spectral algorithm: First attempt

NAIVE SPECTRAL ALGORITHM

Input : Graph G = (V, E), Clique size k

Output : Clique of size k

- 1: Compute first eigenvector v of matrix W = W(G);
- 2: Sort vertices by value of $|v_i|$;
- 3: Check if the k vertices with largest value form a clique;
- 4: If yes, output them;

Where is the problem?

Spectral algorithm

Spectral Algorithm

Input : Graph G = (V, E), Clique size k **Output :** Clique of size k

- 1: Compute first eigenvector v of matrix W = W(G);
- 2: Sort vertices by value of $|v_i|$;
- 3: Let $R \subseteq V$ be the set of k vertices with largest value;
- 4: For $i \in V$
- 5: If $\deg_R(i) > 3k/4$, let $S \leftarrow S \cup \{i\}$;
- 6: Output *S*;

- By the perturbation bound R is roughly good: $R \cap S > 0.9 \cdot k$.
- All the vertices in *S* pass the test.
- For $i \notin S$, $\mathbb{E} \text{deg}_{\mathcal{R}}(i) = k/2$ and $\text{deg}_{\mathcal{R}}(i) < 3k/4$ whp.

Improving over the spectral algorithm

We proved this

Theorem

If $k \ge 100\sqrt{n}$ then spectral algorithm finds the clique.

Can we make 100 as small as we want?

We proved this

Theorem

If $k \ge 100\sqrt{n}$ then spectral algorithm finds the clique.

Can we make 100 as small as we want?

Not without a new idea...

Histogram of eA\$val

 $n = 2000, \ k = 30$ July 15, 2013 32 / 39

Andrea Montanari (Stanford University)

Not without a new idea...

 $n = 2000, \ k = 30$ July 15, 2013 33 / 39

Andrea Montanari (Stanford University)

Tight analysis

$$W = u_S u_S^{\mathsf{T}} + Z - Z_{S,S} \approx u_S u_S^{\mathsf{T}} + Z$$

Low-rank deformation of a random matrix (e.g. Knowles, Yin 2011)

Proposition

If
$$k > (1 + \epsilon)\sqrt{n}$$
, then $\langle u_S, v \rangle \ge \min(\epsilon, \sqrt{\epsilon})/2$.
Viceversa, if $k < (1 - \epsilon)\sqrt{n}$, then $|\langle u_S, v \rangle| \le n^{-1/2 + \delta}$.

ENHANCED SPECTRAL ALGORITHM

Input: Graph G = (V, E), Clique size k **Output**: Clique of size k1: For $T \subseteq V$, |T| = 2, T is a clique; 2: Let $V_T = \{i \in V \setminus T : \deg_T(i) = 2\}$ and let G_T be the induced graph; 3: Run SPECTRAL ALGORITHM $(G_T, k - 2)$; 4: If a clique S of size k - 2 is found, return $S \cup T$;

$$V_T' \approx \frac{n}{4}$$

Looking for clique of size k - 2.

If SPECTRAL succeeds for $k \ge c\sqrt{n}$, then ENHANCED SPECTRAL works for $k-2 \ge c\sqrt{n/4}$.

Equivalently for $k \ge c'\sqrt{n}$ with

c' = c/2 + 0.00001

$$V_T' pprox rac{n}{4}$$

Looking for clique of size k - 2.

If SPECTRAL succeeds for $k \ge c\sqrt{n}$, then ENHANCED SPECTRAL works for $k-2 \ge c\sqrt{n/4}$.

Equivalently for $k \ge c'\sqrt{n}$ with

c' = c/2 + 0.00001

$$V_T' pprox rac{n}{4}$$

Looking for clique of size k - 2.

If SPECTRAL succeeds for $k \ge c\sqrt{n}$, then ENHANCED SPECTRAL works for $k-2 \ge c\sqrt{n/4}$.

Equivalently for $k \ge c'\sqrt{n}$ with

c' = c/2 + 0.000001

Iterating the same idea

ENHANCED SPECTRAL ALGORITHM

Input : Graph G = (V, E), Clique size kOutput : Clique of size k1: For $T \subseteq V$, |T| = s, T is a clique; 2: Let $V_T = \{i \in V \setminus T : \deg_T(i) = 2\}$ and let G_T be the induced graph; 3: Run SPECTRAL ALGORITHM $(G_T, k - s)$;

4: If a clique S of size k - s is found, return $S \cup T$;

The state of the art for polynomial algorithms

Theorem

ENHANCED SPECTRAL(s) finds cliques of size $c2^{-s/2}\sqrt{n}$ in time $O(n^{s+c_0})$.

What about really efficient algorithms?

Theorem (Dekel, Gurel-Gurevitch, Peres, 2011)

If $k \ge 1.261\sqrt{n}$, then there exists an algorithm with complexity $O(n^2)$ that finds the clique with high probability.

Theorem (Deshpande, Montanari, 2013)

If $k \ge (1 + \epsilon)\sqrt{n/e}$, then there exists an algorithm with complexity $O(n^2 \log n)$ that finds the clique with high probability.

What about really efficient algorithms?

Theorem (Dekel, Gurel-Gurevitch, Peres, 2011)

If $k \ge 1.261\sqrt{n}$, then there exists an algorithm with complexity $O(n^2)$ that finds the clique with high probability.

Theorem (Deshpande, Montanari, 2013)

If $k \ge (1 + \epsilon)\sqrt{n/e}$, then there exists an algorithm with complexity $O(n^2 \log n)$ that finds the clique with high probability.

What about really efficient algorithms?

Theorem (Dekel, Gurel-Gurevitch, Peres, 2011)

If $k \ge 1.261\sqrt{n}$, then there exists an algorithm with complexity $O(n^2)$ that finds the clique with high probability.

Theorem (Deshpande, Montanari, 2013)

If $k \ge (1+\epsilon)\sqrt{n/e}$, then there exists an algorithm with complexity $O(n^2 \log n)$ that finds the clique with high probability.