The hidden clique problem and graphical models

Andrea Montanari

Stanford University

July 15, 2013

Outline

(1) Finding a clique in a haystack
(2) A spectral algorithm
(3) Improving over the spectral algorithm

Finding a clique in a haystack

General Problem

$$
G=(V, E) \text { a graph. }
$$

$$
S \subseteq V \text { supports a clique (i.e. }(i, j) \in E \text { for all } i, j \in S \text {) }
$$

Problem : Find S.

General Problem

$$
G=(V, E) \text { a graph. }
$$

$S \subseteq V$ supports a clique (i.e. $(i, j) \in E$ for all $i, j \in S$)

General Problem

$$
G=(V, E) \text { a graph. }
$$

$S \subseteq V$ supports a clique (i.e. $(i, j) \in E$ for all $i, j \in S$)
Problem : Find S.

Example 1: Zachary's karate club

Fig. 2. Application of the eigenvector-based method to the karate club

A catchier name

Finding a terrorist cell in a social network

Toy example: 150 nodes, 15 highly connected

Here binary data: Can generalize...

Of course not the first $15 .$. .

Where are the highly connected nodes? 10^{21} possilities.

An efficient algorithm

The model [Alon,Krivelevich,Sudakov 1998]

- Choose $S \subseteq V$ with $|S|=k$ uniformly at random.
- Add an edge (i, j) for each pair s.t. $i, j \in S$.
- Add an edge for each other pair (i, j) independently with prob p.

$$
G \sim \mathbb{G}(n, p, k)
$$

Will assume $p=1 / 2$

The model [Alon,Krivelevich,Sudakov 1998]

- Choose $S \subseteq V$ with $|S|=k$ uniformly at random.
- Add an edge (i, j) for each pair s.t. $i, j \in S$.
- Add an edge for each other pair (i, j) independently with prob p.

The model [Alon,Krivelevich,Sudakov 1998]

- Choose $S \subseteq V$ with $|S|=k$ uniformly at random.
- Add an edge (i, j) for each pair s.t. $i, j \in S$.
- Add an edge for each other pair (i, j) independently with prob p.

The model [Alon,Krivelevich,Sudakov 1998]

- Choose $S \subseteq V$ with $|S|=k$ uniformly at random.
- Add an edge (i, j) for each pair s.t. $i, j \in S$.
- Add an edge for each other pair (i, j) independently with prob p.

The model [Alon,Krivelevich,Sudakov 1998]

- Choose $S \subseteq V$ with $|S|=k$ uniformly at random.
- Add an edge (i, j) for each pair s.t. $i, j \in S$.
- Add an edge for each other pair (i, j) independently with prob p.

$$
G \sim \mathbb{G}(n, p, k)
$$

Will assume $p=1 / 2$

Question

How big k has to be for us to find the clique?

If you could wait forever

> Exhaustive SEARCH
> Input: Graph $G=(V, E)$, Clique size k
> Output : Clique of size k
> 1: For all $S \subset V,|S|=k ;$
> 3: Check if $G S$ is a clique;
> 4: Output all cliques found;

If you could wait forever

> Exhaustive search
> Input : Graph $G=(V, E)$, Clique size k
> Output: Clique of size k
> 1: For all $S \subset V,|S|=k$;
> 3: \quad Check if G_{S} is a clique;
> 4: Output all cliques found;

Works if $k>k_{*}$, typical size of largest clique in $G \sim \mathbb{G}(n, 1 / 2, k)$ that is not supported on S.

Largest random clique

Largest clique that does not share any vertex with S
Equivalently $G \sim \mathbb{G}(n-k, 1 / 2,0) \approx \mathbb{G}(n, 1 / 2,0)$.

Idea: compute expected number of cliques of size k

Largest random clique

Expected nb of cliques of size k

$$
\mathbb{E} N(k)=\binom{n}{k} \mathbb{P}\{(1, \ldots, k) \text { form a clique }\}
$$

$$
k_{*}(n) \approx 2 \log _{2} n
$$

Largest random clique

Expected nb of cliques of size k

$$
\begin{aligned}
\mathbb{E} N(k) & =\binom{n}{k} \mathbb{P}\{(1, \ldots, k) \text { form a clique }\} \\
& =\binom{n}{k} 2^{-k(k-1) / 2} \\
& \leq\left(\frac{n e}{k}\right)^{k} 2^{-k(k-1) / 2} \\
& \leq\left(\frac{n e}{k} 2^{-(k-1) / 2}\right)^{k}
\end{aligned}
$$

Largest random clique

Expected nb of cliques of size k

$$
\begin{aligned}
\mathbb{E} N(k) & =\binom{n}{k} \mathbb{P}\{(1, \ldots, k) \text { form a clique }\} \\
& =\binom{n}{k} 2^{-k(k-1) / 2} \\
& \leq\left(\frac{n e}{k}\right)^{k} 2^{-k(k-1) / 2} \\
& \leq\left(\frac{n e}{k} 2^{-(k-1) / 2}\right)^{k}
\end{aligned}
$$

$$
k_{*}(n) \approx 2 \log _{2} n
$$

Largest random clique

Expected nb of cliques of size k

$$
\begin{aligned}
\mathbb{E} N(k) & =\binom{n}{k} \mathbb{P}\{(1, \ldots, k) \text { form a clique }\} \\
& =\binom{n}{k} 2^{-k(k-1) / 2} \\
& \leq\left(\frac{n e}{k}\right)^{k} 2^{-k(k-1) / 2} \\
& \leq\left(\frac{n e}{k} 2^{-(k-1) / 2}\right)^{k}
\end{aligned}
$$

Largest random clique

Expected nb of cliques of size k

$$
\begin{aligned}
\mathbb{E} N(k)= & \binom{n}{k} \mathbb{P}\{(1, \ldots, k) \text { form a clique }\} \\
= & \binom{n}{k} 2^{-k(k-1) / 2} \\
\leq & \left(\frac{n e}{k}\right)^{k} 2^{-k(k-1) / 2} \\
\leq & \left(\frac{n e}{k} 2^{-(k-1) / 2}\right)^{k} \\
& k_{*}(n) \approx 2 \log _{2} n
\end{aligned}
$$

Largest random clique

Can we do it in reasonable time?

Naive Algorithm
Input : Graph $G=(V, E)$, Clique size k Output : Clique of size k
1: Sort vertices by degree;
2: Check if the k vertices with largest degree form a clique;
3: If yes, output them;

When does naive work?

For $i \notin S$

$$
\begin{gather*}
d_{i} \sim \operatorname{Binom}(n-1,1 / 2) \approx \operatorname{Normal}(n / 2, n / 4) \\
\mathbb{P}\left\{d_{i} \geq \frac{n}{2}+\frac{n^{1 / 2}}{2} t\right\} \leq e^{-t^{2} / 2} \leq \frac{1}{n^{2}}
\end{gather*}
$$

Proposition

With high probability

Works for $k \geq 2 \sqrt{n \log n}$

When does naive work?

For $i \notin S$

$$
\begin{aligned}
& d_{i} \sim \operatorname{Binom}(n-1,1 / 2) \approx \operatorname{Normal}(n / 2, n / 4) \\
& \quad \mathbb{P}\left\{d_{i} \geq \frac{n}{2}+\frac{n^{1 / 2}}{2} t\right\} \leq e^{-t^{2} / 2} \leq \frac{1}{n^{2}} \quad \text { for } t \geq \sqrt{4 \log n}
\end{aligned}
$$

With high probability

When does naive work?

For $i \notin S$

$$
\begin{aligned}
& d_{i} \sim \operatorname{Binom}(n-1,1 / 2) \approx \operatorname{Normal}(n / 2, n / 4) \\
& \quad \mathbb{P}\left\{d_{i} \geq \frac{n}{2}+\frac{n^{1 / 2}}{2} t\right\} \leq e^{-t^{2} / 2} \leq \frac{1}{n^{2}} \quad \text { for } t \geq \sqrt{4 \log n}
\end{aligned}
$$

Proposition

With high probability

$$
\begin{aligned}
& \max _{i \notin S} d_{i} \leq \frac{n}{2}+\sqrt{n \log n} . \\
& \min _{i \in S} d_{i} \geq \frac{n}{2}+k-1-\sqrt{n \log n} .
\end{aligned}
$$

When does naive work?

For $i \notin S$

$$
\begin{aligned}
& d_{i} \sim \operatorname{Binom}(n-1,1 / 2) \approx \operatorname{Normal}(n / 2, n / 4) \\
& \quad \mathbb{P}\left\{d_{i} \geq \frac{n}{2}+\frac{n^{1 / 2}}{2} t\right\} \leq e^{-t^{2} / 2} \leq \frac{1}{n^{2}} \quad \text { for } t \geq \sqrt{4 \log n}
\end{aligned}
$$

Proposition

With high probability

$$
\begin{aligned}
& \max _{i \notin S} d_{i} \leq \frac{n}{2}+\sqrt{n \log n} . \\
& \min _{i \in S} d_{i} \geq \frac{n}{2}+k-1-\sqrt{n \log n} .
\end{aligned}
$$

Works for $k \geq 2 \sqrt{n \log n}$

A spectral algorithm

Idea

$$
W_{i j}= \begin{cases}+1 & \text { if }(i, j) \in E \\ -1 & \text { otherwise }\end{cases}
$$

Want to find u_{S} from W.

$$
\begin{aligned}
W_{i j} & = \begin{cases}+1 & \text { if }(i, j) \in E \\
-1 & \text { otherwise }\end{cases} \\
\left(u_{S}\right)_{i} & = \begin{cases}+1 & \text { if } i \in S \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Want to find u_{S} from W

Idea

$$
\begin{aligned}
W_{i j} & = \begin{cases}+1 & \text { if }(i, j) \in E \\
-1 & \text { otherwise }\end{cases} \\
\left(u_{S}\right)_{i} & = \begin{cases}+1 & \text { if } i \in S \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Want to find u_{S} from W.

Idea

$$
W=u_{S} u_{S}^{\top}+Z-Z_{S, S}
$$

Idea

$$
W=u_{S} u_{s}^{\top}+Z-Z_{s, S}
$$

$\left(Z_{i j}\right)_{i<j}$ i.i.d.

$$
Z_{i j}= \begin{cases}+1 & \text { with probability } 1 / 2 \\ -1 & \text { with probability } 1 / 2\end{cases}
$$

$\left(Z_{S, S}\right)_{i j}=Z_{i j}$ if $i, j \in S$ and $=0$ otherwise

Idea

$$
W=u_{S} u_{S}^{\top}+Z-Z_{S, S}
$$

With overwhelming probability

Idea

$$
W=u_{S} u_{S}^{\top}+Z-Z_{S, S}
$$

With overwhelming probability

$$
\begin{aligned}
\left\|u_{S} u_{S}\right\|_{2} & =k \\
\|Z\|_{2} & \approx 2 \sqrt{n} \\
\left\|Z_{S, S}\right\|_{2} & \approx 2 \sqrt{k} \ll\|Z\|_{2} .
\end{aligned}
$$

Use matrix perturbation theory

Unperturbed matrix

$$
\begin{aligned}
W_{0}= & u_{S} u_{S}^{\top}, \\
& \lambda_{1}\left(W_{0}\right)=k, \lambda_{2}\left(W_{0}\right)=\cdots=\lambda_{n}\left(W_{0}\right)=0
\end{aligned}
$$

The sin theta theorem

$\widehat{u}_{S}=u_{S} / \sqrt{k}$ principal eigenvector of W_{0} v principal eigenvector of W

$$
\begin{aligned}
\left\|v-\widehat{u}_{S}\right\|_{2} & \leq \sqrt{2} \sin \theta\left(v, \widehat{u}_{S}\right) \leq \frac{\sqrt{2}\left\|Z+Z_{S, S}\right\|_{2}}{\lambda_{1}\left(W_{0}\right)-\lambda_{2}(W)} \\
& \leq \frac{3 \sqrt{n}}{k-3 \sqrt{n}}
\end{aligned}
$$

Summarizing

Proposition

For $k \geq 100 \sqrt{n}$, whp

$$
\left\|v-\widehat{u}_{S}\right\|_{2} \leq \frac{1}{10}
$$

Let's check how does it work. . .

Histogram of eA\$val

$$
n=2000, k=100
$$

Let's check how does it work. . .

$$
n=2000, k=100
$$

Spectral algorithm: First attempt

Naive Spectral Algorithm
Input : Graph $G=(V, E)$, Clique size k
Output : Clique of size k
1: Compute first eigenvector v of matrix $W=W(G)$;
2: Sort vertices by value of $\left|v_{i}\right|$;
3: Check if the k vertices with largest value form a clique;
4: If yes, output them;

Spectral algorithm: First attempt

Naive Spectral Algorithm
Input : Graph $G=(V, E)$, Clique size k
Output : Clique of size k
1: Compute first eigenvector v of matrix $W=W(G)$;
2: Sort vertices by value of $\left|v_{i}\right|$;
3: Check if the k vertices with largest value form a clique;
4: If yes, output them;

Where is the problem?

Spectral algorithm

Spectral Algorithm

Input : Graph $G=(V, E)$, Clique size k
Output : Clique of size k
1: Compute first eigenvector v of matrix $W=W(G)$;
2: Sort vertices by value of $\left|v_{i}\right|$;
3: Let $R \subseteq V$ be the set of k vertices with largest value;
4: For $i \in V$
5: \quad If $\operatorname{deg}_{R}(i)>3 k / 4$, let $S \leftarrow S \cup\{i\}$;
6: Output S;

Why is this a good trick?

- By the perturbation bound R is roughly good: $R \cap S>0.9 \cdot k$.
- All the vertices in S pass the test.
- For $i \notin S, \mathbb{E d e g}_{R}(i)=k / 2$ and $\operatorname{deg}_{R}(i)<3 k / 4$ whp.

Improving over the spectral algorithm

We proved this

Theorem
If $k \geq 100 \sqrt{n}$ then spectral algorithm finds the clique.

We proved this

Theorem
If $k \geq 100 \sqrt{n}$ then spectral algorithm finds the clique.

Can we make 100 as small as we want?

Not without a new idea...

Histogram of eA\$val

$$
n=2000, k=30
$$

Not without a new idea...

$$
n=2000, k=30
$$

Tight analysis

$$
W=u_{S} u_{S}^{\top}+Z-Z_{S, S} \approx u_{S} u_{S}^{\top}+Z
$$

Low-rank deformation of a random matrix (e.g. Knowles, Yin 2011)

Proposition

If $k>(1+\epsilon) \sqrt{n}$, then $\left\langle u_{S}, v\right\rangle \geq \min (\epsilon, \sqrt{\epsilon}) / 2$.
Viceversa, if $k<(1-\epsilon) \sqrt{n}$, then $\left|\left\langle u_{S}, v\right\rangle\right| \leq n^{-1 / 2+\delta}$.

The test set idea

Enhanced Spectral Algorithm
Input : Graph $G=(V, E)$, Clique size k
Output : Clique of size k
1: For $T \subseteq V,|T|=2, T$ is a clique;
2: \quad Let $V_{T}=\left\{i \in V \backslash T: \operatorname{deg}_{T}(i)=2\right\}$
and let G_{T} be the induced graph;
3: \quad Run Spectral Algorithm $\left(G_{T}, k-2\right)$;
4: If a clique S of size $k-2$ is found, return $S \cup T$;

Why is this a good trick?

$$
V_{T}^{\prime} \approx \frac{n}{4}
$$

Looking for clique of size $k-2$.

```
If Spectral succeeds for }k\geqc\sqrt{}{n}\mathrm{ , then Enhanced Spectral works
for }k-2\geqc\sqrt{}{n/4}\mathrm{ .
Equivalently for k}\geq\mp@subsup{c}{}{\prime}\sqrt{}{n}\mathrm{ with
```

$$
c^{\prime}=c / 2+0.000001
$$

Why is this a good trick?

$$
V_{T}^{\prime} \approx \frac{n}{4}
$$

Looking for clique of size $k-2$.

If Spectral succeeds for $k \geq c \sqrt{n}$, then Enhanced Spectral works for $k-2 \geq c \sqrt{n / 4}$.

Equivalently for $k \geq c^{\prime} \sqrt{n}$ with $c^{\prime}=c / 2+0.000001$

Why is this a good trick?

$$
V_{T}^{\prime} \approx \frac{n}{4}
$$

Looking for clique of size $k-2$.

If Spectral succeeds for $k \geq c \sqrt{n}$, then Enhanced Spectral works for $k-2 \geq c \sqrt{n / 4}$.

Equivalently for $k \geq c^{\prime} \sqrt{n}$ with

$$
c^{\prime}=c / 2+0.000001
$$

Iterating the same idea

Enhanced Spectral Algorithm

Input : Graph $G=(V, E)$, Clique size k
Output : Clique of size k
1: For $T \subseteq V,|T|=s, T$ is a clique;
2: \quad Let $V_{T}=\left\{i \in V \backslash T: \operatorname{deg}_{T}(i)=2\right\}$ and let G_{T} be the induced graph;
3: Run Spectral Algorithm $\left(G_{T}, k-s\right)$;
4: If a clique S of size $k-s$ is found, return $S \cup T$;

The state of the art for polynomial algorithms

Theorem
Enhanced Spectral(s) finds cliques of size $c 2^{-s / 2} \sqrt{n}$ in time $O\left(n^{s+c_{0}}\right)$.

What about really efficient algorithms?

```
Theorem (Dekel, Gurel-Gurevitch, Peres, 2011)
If k}>1261\sqrt{}{n}\mathrm{ then there exists an algorithm with complexity O( }\mp@subsup{n}{}{2})\mathrm{ that
finds the clique with high probability.
```

Theorem (Deshpande, Montanari, 2013)
 $O\left(n^{2} \log n\right)$ that finds the clique with high probability.

What about really efficient algorithms?

Theorem (Dekel, Gurel-Gurevitch, Peres, 2011)

If $k \geq 1.261 \sqrt{n}$, then there exists an algorithm with complexity $O\left(n^{2}\right)$ that finds the clique with high probability.

What about really efficient algorithms?

Theorem (Dekel, Gurel-Gurevitch, Peres, 2011)

If $k \geq 1.261 \sqrt{n}$, then there exists an algorithm with complexity $O\left(n^{2}\right)$ that finds the clique with high probability.

Theorem (Deshpande, Montanari, 2013)
If $k \geq(1+\epsilon) \sqrt{n / e}$, then there exists an algorithm with complexity $O\left(n^{2} \log n\right)$ that finds the clique with high probability.

