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Eye Movements in Human Reading

The two young sea-lions took not the slightest interest

in our arrival. They were playing on the jetty, rolling

over and tumbling into the water together, entirely

ignoring the human beings edging awkwardly round

adapted from the Dundee corpus [Kennedy and Pynte, 2005]
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I Fixations static
I Saccades take 20–40 ms, no information obtained from text

I Fixation times vary from ≈ 100 ms to ≈ 300ms
I ≈ 40% of words are skipped

3 / 49



Eye Movements in Human Reading

The two young sea-lions took not the slightest interest

in our arrival. They were playing on the jetty, rolling

over and tumbling into the water together, entirely

ignoring the human beings edging awkwardly round

adapted from the Dundee corpus [Kennedy and Pynte, 2005]

I Fixations static
I Saccades take 20–40 ms, no information obtained from text
I Fixation times vary from ≈ 100 ms to ≈ 300ms

I ≈ 40% of words are skipped

4 / 49



Eye Movements in Human Reading

The two young sea-lions took not the slightest interest

in our arrival. They were playing on the jetty, rolling

over and tumbling into the water together, entirely

ignoring the human beings edging awkwardly round

adapted from the Dundee corpus [Kennedy and Pynte, 2005]

I Fixations static
I Saccades take 20–40 ms, no information obtained from text
I Fixation times vary from ≈ 100 ms to ≈ 300ms

I ≈ 40% of words are skipped

5 / 49



Eye Movements in Human Reading

The two young sea-lions took not the slightest interest

in our arrival. They were playing on the jetty, rolling

over and tumbling into the water together, entirely

ignoring the human beings edging awkwardly round

adapted from the Dundee corpus [Kennedy and Pynte, 2005]

I Fixations static
I Saccades take 20–40 ms, no information obtained from text
I Fixation times vary from ≈ 100 ms to ≈ 300ms
I ≈ 40% of words are skipped

6 / 49



Computational Models I

1. models of saccade generation in cognitive psychology
I EZ-Reader [Reichle et al., 1998, 2003, 2009]
I SWIFT [Engbert et al., 2002, 2005]
I Bayesian inference [Bicknell and Levy, 2010]

2. machine learning models trained on eye-tracking data [Nilsson
and Nivre, 2009, 2010, Hara et al., 2012, Matthies and Søgaard,
2013]

These models...

I involve theoretical assumptions about human eye-movements, or

I require selection of relevant eye-movement features, and

I estimate parameters from eye-tracking corpora
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Computational Models II: Surprisal

Surprisal(wi |w1...i−1) =− logP(wi |w1...i−1) (1)

I measures predictability of word in context

I computed by language model

I correlates with word-by-word reading times [Hale, 2001,
McDonald and Shillcock, 2003a,b, Levy, 2008, Demberg and
Keller, 2008, Frank and Bod, 2011, Smith and Levy, 2013]

I but cannot explain...
I reverse saccades
I re-fixations
I spillover
I skipping
≈ 40% of words are skipped
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Tradeoff Hypthesis

Goal
Build unsupervised models jointly accounting for reading times and
skipping

I reading is recent innovation in evolutionary terms

I humans learn it without access to other people’s eye-movements

Hypothesis
Human reading optimizes a tradeoff between

I Precision of language understanding:
Encode the input so that it can be reconstructed accurately

I Economy of attention:
Fixate as few words as possible
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Tradeoff Hypothesis

Approach: NEAT (NEural Attention Tradeoff)

1. develop generic architecture integrating
I neural language modeling
I attention mechanism

2. train end-to-end to optimize tradeoff between precision and
economy

3. evaluate on human eyetracking corpus
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Architecture I: Recurrent Autoencoder

w1 w2 w3 w1 w2 w3 $

R0 R1 R2 R3 D0 D1 D2 D3

Reader Decoder

15 / 49



Architecture II: Real-Time Predictions

w1 w2 w3

R0 R1 R2 R3 Decoder
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R0 R1 R2 R3 Decoder

I Humans constantly make predictions about the upcoming input

I Reader outpus probability distribution PR over the lexicon at each
time step

I Describes which words are likely to come next
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Architecture III: Skipping

w1 w2 w3A A A

R0 R1 R2 R3 Decoder

PR1 PR2 PR3

I Attention module shows word to R or skips it

I A computes a probability + draws a sample ω ∈ {READ,SKIP}
I R receives special ‘SKIPPED’ vector when skipping
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Implementing the Tradeoff Hypothesis

Training Objective
Solve prediction and reconstruction with minimal attention:

Loss on Prediction + Reconstruction # of fixated words

argθ min{Ew ,ωωω [L(ωωω|w ,θ)+α · ‖ωωω‖`1 ]}

I w is word sequence drawn from corpus

I ωωω sampled from attention module A

I α > 0: encourages NEAT to attend to as few words as possible
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Implementation and Training

I Implementation
I one-layer LSTM network with 1,000 memory cells
I attention network: one-layer feedforward network

I optimized by SGD + REINFORCE policy gradient method
[Williams, 1992]

I trained on corpus of newstext [Hermann et al., 2015]
I 195,462 articles from Daily Mail
I ≈ 200 million tokens

I Input data split into sequences of 50 tokens
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NEAT as a Model of Reading

I Attention module models fixations and skips

I NEAT surprisal models reading times of fixated words

w1 w2 w3A A A

R0 R1 R2 R3 Decoder

PR1 PR2 PR3
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NEAT as a Model of Reading

I Attention module models fixations and skips

I NEAT surprisal models reading times of fixated words

w1 w2 w3A A A

R0 R1 R2 R3 Decoder

PR1 PR2 PR3

The only ingredients are

I architecture

I objective

I unlabeled corpus

No eye-tracking data, lexicon, grammar, ... needed.
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Evaluation Setup

I English section of the Dundee corpus [Kennedy and Pynte, 2005]
I 20 texts from The Independent
I annotated with eye-movement data from ten English native

speakers who were asked to answer questions after each text.

I split into development (1–3) and test set (4–20)

I Size: 78,300 tokens (dev); 281,911 tokens (test)

I exclude from the evaluation words at the beginning or end of
lines, outliers, cases of track loss, out-of-vocabulary words

I Fixation rate: 62.1% (dev), 61.3% (test)
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Intrinsic Evaluation: Prediction and Reconstruction

Perplexity
Fix. Rate

Prediction Reconstruction
NEAT 180 4.5 60.4%
ω∼ Bin(0.62) 333 56 62.1%
Word Length 230 40 62.1%
Word Freq. 219 39 62.1%
Full Surprisal 211 34 62.1%
Human 218 39 61.3%
ω≡ 1 107 1.6 100%

I For Word Length, Word Frequency, Full Surprisal, we take
threshold predictions matching the fixation rate of the
development set.
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Evaluating Reading Times: Linear Mixed Models

FirstPassDuration = β0 + ∑
i∈Predictors

βixi + ∑
j∈RandomEffects

γjyj + ε

β SE t
(Intercept) 247.4 7.1 34.7*
Word Length 12.9 0.2 60.6*


Baseline
Predictors

Previous Word Freq. −5.3 0.3 −18.3*
Prev. Word Fixated −24.7 0.8 −30.6*
Obj. Landing Pos. −8.1 0.2 −41.3*
Word Pos. in Sent. −0.1 0.03 −3.0*
Log Word Freq. −1.6 0.2 −7.7*
Launch Distance −0.005 0.01 −0.4
Residualized NEAT Surprisal 2.8 0.1 23.7*
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I NEAT surprisal captures more than word length, frequency, ...
I even though it only has access to 60.4% of the words
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Evaluating Reading Times: Deviance

I Assume we have models M1, M2 for the same data

I They assign likelihoods P1 = P(Data|M1), P2 = P(Data|M2)

I Deviance

2× log
P2

P1

I Here:
M1: Model containing only baseline predictors
M2: Model including surprisal

Full surprisal ωωω≡ 1 980
NEAT surprisal ωωω≡ PA(w) 867
Random surprisal ωωω≡ Binom(0.604) 832
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Evaluating Fixations I: Heatmaps

H
U

M
A

N
of the Human Fertility and Authority (HFEA) to allow a couple
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consequences. The couple at the centre son who suffers

from a potentially fatal disorder and whose best hope is a
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Evaluating Fixations II: Accuracy

Acc F1fix F1skip

NEAT 63.7 70.4 53.0
Lower and Upper Bounds

Random Baseline 52.6 62.1 37.9
Intersubject Agreement 69.5 76.6 53.6

Feature-Based Models
Nilsson and Nivre [2009] 69.5 75.2 62.6
Matthies and Søgaard [2013] 69.9 72.3 66.1
Word Frequency 67.9 74.0 58.3
Word Length 68.4 77.1 49.0
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Fixations of Successive Words

I Humans more likely to fixate a word when the previous word was
skipped

P(ωi = READ|ωi−1 = READ)< P(ωi = READ)

I Ratio:

Setting P(ωi=READ|ωi−1=READ)
P(ωi=READ)

NEAT 0.81

Human 0.85

Word Frequency 0.91

Random 1.0

I Mixed models show effect beyond word frequency
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Fixation Rates by POS Categories

ADJ ADP ADV CONJ DET NOUNNUM PRON PRT VERB X

20

40

60

80

100

Human NEAT WordFreq
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Conclusion

I unsupervised model of reading predicting reading times and
skipping

I based on tradeoff between
precision of understanding⇔ economy of attention

I trained end-to-end without linguistic knowledge, eyetracking data,
or feature extraction

I Experiments on the Dundee corpus
I provides accurate predictions for human skipping behavior
I predicts reading times, while only accessing 60.4% of the words
I known qualitative properties of skipping emerge, without

specifying relevant features in advance
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Correlations with Known Predictors

Human NEAT
Restricted Surprisal 0.465 0.762
Full Surprisal 0.512 0.720
Log Word Freq. −0.608 −0.760
Word Length 0.663 0.521
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