Modeling Human Reading with Neural Attention

Michael Hahn Stanford University mhahn2@stanford.edu

Frank Keller University of Edinburgh keller@inf.ed.ac.uk

EMNLP 2016

The two young sea-lions took not the slightest interest in our arrival. They were playing on the jetty, rolling over and tumbling into the water together, entirely ignoring the human beings edging awkwardly round

The two young sea-lions took not the slightest interest in our arrival. They were playing on the jetty, rolling over and tumbling into the water together, entirely ignoring the human beings edging awkwardly round

- Fixations static
- Saccades take 20–40 ms, no information obtained from text

The two young sea-lions took not the slightest interest in our arrival. They were playing on the jetty, rolling over and tumbling into the water together, entirely ignoring the human beings edging awkwardly round

- Fixations static
- Saccades take 20–40 ms, no information obtained from text
- Fixation times vary from pprox 100 ms to pprox 300ms

The two young sea-lions took not the slightest interest in our arrival. They were playing on the jetty, rolling over and tumbling into the water together, entirely ignoring the human beings edging awkwardly round

- Fixations static
- Saccades take 20–40 ms, no information obtained from text
- Fixation times vary from pprox 100 ms to pprox 300ms

The two young sea-lions took not the slightest interest in our arrival. They were playing on the jetty, rolling over and tumbling into the water together, entirely ignoring the human beings edging awkwardly round

- Fixations static
- Saccades take 20–40 ms, no information obtained from text
- Fixation times vary from pprox 100 ms to pprox 300ms
- \blacktriangleright \approx 40% of words are **skipped**

Computational Models I

- 1. models of saccade generation in cognitive psychology
 - EZ-Reader [Reichle et al., 1998, 2003, 2009]
 - SWIFT [Engbert et al., 2002, 2005]
 - Bayesian inference [Bicknell and Levy, 2010]
- machine learning models trained on eye-tracking data [Nilsson and Nivre, 2009, 2010, Hara et al., 2012, Matthies and Søgaard, 2013]

Computational Models I

1. models of saccade generation in cognitive psychology

- EZ-Reader [Reichle et al., 1998, 2003, 2009]
- SWIFT [Engbert et al., 2002, 2005]
- Bayesian inference [Bicknell and Levy, 2010]
- machine learning models trained on eye-tracking data [Nilsson and Nivre, 2009, 2010, Hara et al., 2012, Matthies and Søgaard, 2013]

These models...

- involve theoretical assumptions about human eye-movements, or
- require selection of relevant eye-movement features, and
- estimate parameters from eye-tracking corpora

Computational Models II: Surprisal

$$\operatorname{Surprisal}(w_i | \boldsymbol{w}_{1...i-1}) = -\log P(w_i | \boldsymbol{w}_{1...i-1})$$
(1)

- measures predictability of word in context
- computed by language model

Computational Models II: Surprisal

$$\operatorname{Surprisal}(w_i | \boldsymbol{w}_{1...i-1}) = -\log P(w_i | \boldsymbol{w}_{1...i-1})$$
(1)

- measures predictability of word in context
- computed by language model
- correlates with word-by-word reading times [Hale, 2001, McDonald and Shillcock, 2003a,b, Levy, 2008, Demberg and Keller, 2008, Frank and Bod, 2011, Smith and Levy, 2013]
- but cannot explain...
 - reverse saccades
 - re-fixations
 - spillover
 - skipping
 - \approx 40% of words are skipped

Tradeoff Hypthesis

Goal

Build unsupervised models jointly accounting for **reading times** and **skipping**

Tradeoff Hypthesis

Goal

Build unsupervised models jointly accounting for **reading times** and **skipping**

- reading is recent innovation in evolutionary terms
- humans learn it without access to other people's eye-movements

Tradeoff Hypthesis

Goal

Build unsupervised models jointly accounting for **reading times** and **skipping**

- reading is recent innovation in evolutionary terms
- humans learn it without access to other people's eye-movements

Hypothesis

Human reading optimizes a tradeoff between

- Precision of language understanding: Encode the input so that it can be reconstructed accurately
- Economy of attention:
 Fixate as few words as possible

Tradeoff Hypothesis

Approach: NEAT (NEural Attention Tradeoff)

- 1. develop generic architecture integrating
 - neural language modeling
 - attention mechanism
- 2. train end-to-end to optimize tradeoff between precision and economy
- 3. evaluate on human eyetracking corpus

Architecture I: Recurrent Autoencoder

Architecture II: Real-Time Predictions

Architecture II: Real-Time Predictions

Humans constantly make predictions about the upcoming input

Architecture II: Real-Time Predictions

- Humans constantly make predictions about the upcoming input
- Reader outpus probability distribution P_R over the lexicon at each time step
- Describes which words are likely to come next

Architecture III: Skipping

Attention module shows word to R or skips it

Architecture III: Skipping

- Attention module shows word to R or skips it
- ► A computes a probability + draws a sample $\omega \in \{\text{READ}, \text{SKIP}\}$
- R receives special 'SKIPPED' vector when skipping

Implementing the Tradeoff Hypothesis

Training Objective

Solve prediction and reconstruction with minimal attention:

$$\arg_{\theta} \min \{ \mathsf{E}_{\boldsymbol{w}, \boldsymbol{\omega}} [L(\boldsymbol{\omega} | \boldsymbol{w}, \theta) + \alpha \cdot \|\boldsymbol{\omega}\|_{\ell_1}] \}$$

Loss on Prediction + Reconstruction # of fixated words

Implementing the Tradeoff Hypothesis

Training Objective

Solve prediction and reconstruction with minimal attention:

- **w** is word sequence drawn from corpus
- ω sampled from attention module A
- α > 0: encourages NEAT to attend to as few words as possible

Implementation and Training

Implementation

- one-layer LSTM network with 1,000 memory cells
- attention network: one-layer feedforward network
- optimized by SGD + REINFORCE policy gradient method [Williams, 1992]
- trained on corpus of newstext [Hermann et al., 2015]
 - 195,462 articles from Daily Mail
 - \blacktriangleright pprox 200 million tokens
- Input data split into sequences of 50 tokens

NEAT as a Model of Reading

- Attention module models fixations and skips
- NEAT surprisal models reading times of fixated words

NEAT as a Model of Reading

- Attention module models fixations and skips
- NEAT surprisal models reading times of fixated words

NEAT as a Model of Reading

- Attention module models fixations and skips
- NEAT surprisal models reading times of fixated words

The only ingredients are

- architecture
- objective
- unlabeled corpus

No eye-tracking data, lexicon, grammar, ... needed.

Evaluation Setup

- English section of the Dundee corpus [Kennedy and Pynte, 2005]
 - > 20 texts from The Independent
 - annotated with eye-movement data from ten English native speakers who were asked to answer questions after each text.
- split into development (1–3) and test set (4–20)
- Size: 78,300 tokens (dev); 281,911 tokens (test)
- exclude from the evaluation words at the beginning or end of lines, outliers, cases of track loss, out-of-vocabulary words
- Fixation rate: 62.1% (dev), 61.3% (test)

Intrinsic Evaluation: Prediction and Reconstruction

	Pe	Eix Bata	
	Prediction	Reconstruction	FIX. Hale
NEAT	180	4.5	60.4%
ω \sim Bin(0.62)	333	56	62.1%
Word Length	230	40	62.1%
Word Freq.	219	39	62.1%
Full Surprisal	211	34	62.1%
Human	218	39	61.3%
$\omega \equiv 1$	107	1.6	100%

For Word Length, Word Frequency, Full Surprisal, we take threshold predictions matching the fixation rate of the development set.

Intrinsic Evaluation: Prediction and Reconstruction

	Pe	Eix Bato	
	Prediction	Reconstruction	FIX. Hale
NEAT	180	4.5	60.4%
$\omega \sim \textit{Bin}(0.62)$	333	56	62.1%
Word Length	230	40	62.1%
Word Freq.	219	39	62.1%
Full Surprisal	211	34	62.1%
Human	218	39	61.3%
$\omega \equiv 1$	107	1.6	100%

For Word Length, Word Frequency, Full Surprisal, we take threshold predictions matching the fixation rate of the development set.

$$\mathsf{FirstPassDuration} = \beta_0 + \sum_{i \in \mathsf{Predictors}} \beta_i x_i + \sum_{j \in \mathsf{RandomEffects}} \gamma_j y_j + \varepsilon$$

$$\mathsf{FirstPassDuration} = \beta_0 + \sum_{i \in \mathsf{Predictors}} \beta_i x_i + \sum_{j \in \mathsf{RandomEffects}} \gamma_j y_j + \varepsilon$$

	β	SE	t	
(Intercept)	247.4	7.1	34.7*	
Word Length	12.9	0.2	60.6*	
Previous Word Freq.	-5.3	0.3	-18.3*	
Prev. Word Fixated	-24.7	0.8	-30.6*	Destruction
Obj. Landing Pos.	-8.1	0.2	-41.3*	Baseline
Word Pos. in Sent.	-0.1	0.03	-3.0*	Predictors
Log Word Freq.	-1.6	0.2	-7.7*	
Launch Distance	-0.005	0.01	-0.4	
Residualized NEAT Surprise	al 2.8	0.1	23.7*	

$$\mathsf{FirstPassDuration} = \beta_0 + \sum_{i \in \mathsf{Predictors}} \beta_i x_i + \sum_{j \in \mathsf{RandomEffects}} \gamma_j y_j + \varepsilon$$

	β	SE	t	
(Intercept)	247.4	7.1	34.7*	
Word Length	12.9	0.2	60.6*)	
Previous Word Freq.	-5.3	0.3	-18.3*	
Prev. Word Fixated	-24.7	0.8	-30.6*	D
Obj. Landing Pos.	-8.1	0.2	-41.3*	Baseline
Word Pos. in Sent.	-0.1	0.03	-3.0*	Predictors
Log Word Freq.	-1.6	0.2	-7.7*	
Launch Distance -	-0.005	0.01	—0.4 J	
Residualized NEAT Surprisal	2.8	0.1	23.7*	

$$\mathsf{FirstPassDuration} = \beta_0 + \sum_{i \in \mathsf{Predictors}} \beta_i x_i + \sum_{j \in \mathsf{RandomEffects}} \gamma_j y_j + \varepsilon$$

	β	SE	t	_
(Intercept)	247.4	7.1	34.7*	—
Word Length	12.9	0.2	60.6*)	
Previous Word Freq.	-5.3	0.3	-18.3*	
Prev. Word Fixated	-24.7	0.8	-30.6*	Deceline
Obj. Landing Pos.	-8.1	0.2	-41.3* }	Duedieteur
Word Pos. in Sent.	-0.1	0.03	-3.0*	Predictors
Log Word Freq.	-1.6	0.2	-7.7*	
Launch Distance -	-0.005	0.01	—0.4 J	
Residualized NEAT Surprisal	2.8	0.1	23.7*	

► NEAT surprisal captures more than word length, frequency, ...

even though it only has access to 60.4% of the words

Evaluating Reading Times: Deviance

- Assume we have models M₁, M₂ for the same data
- ▶ They assign likelihoods $P_1 = P(\text{Data}|M_1), P_2 = P(\text{Data}|M_2)$
- Deviance

$$2 \times \log \frac{P_2}{P_1}$$

Evaluating Reading Times: Deviance

- Assume we have models M₁, M₂ for the same data
- ▶ They assign likelihoods $P_1 = P(\text{Data}|M_1), P_2 = P(\text{Data}|M_2)$
- Deviance

$$2 \times \log \frac{P_2}{P_1}$$

Here:

 M_1 : Model containing only baseline predictors M_2 : Model including surprisal

Full surprisal	$\omega \equiv 1$	980
NEAT surprisal	$\boldsymbol{\omega}\equiv P_{\mathcal{A}}(\boldsymbol{w})$	867
Random surprisal	$\mathbf{\omega} \equiv \textit{Binom}(0.604)$	832

Evaluating Fixations I: Heatmaps

HUMAN

Evaluating Fixations I: Heatmaps

HUMAN

	Acc	$F1_{\mathrm{fix}}$	F1 _{skip}
NEAT	63.7	70.4	53.0
Lower and Upp	er Bou	nds	
Random Baseline	52.6	62.1	37.9
Intersubject Agreement	69.5	76.6	53.6
Feature-Based	d Mode	els	
Nilsson and Nivre [2009]	69.5	75.2	62.6
Matthies and Søgaard [2013]	69.9	72.3	66.1
Word Frequency	67.9	74.0	58.3
Word Length	68.4	77.1	49.0

	Acc	$F1_{\mathrm{fix}}$	F1 _{skip}
NEAT	63.7	70.4	53.0
Lower and Upp	er Bou	nds	
Random Baseline	52.6	62.1	37.9
Intersubject Agreement	69.5	76.6	53.6
Feature-Based	d Mode	els	
Nilsson and Nivre [2009]	69.5	75.2	62.6
Matthies and Søgaard [2013]	69.9	72.3	66.1
Word Frequency	67.9	74.0	58.3
Word Length	68.4	77.1	49.0

NEAT outperforms random baseline

	Acc	$F1_{\mathrm{fix}}$	F1 _{skip}
NEAT	63.7	70.4	53.0
Lower and Upp	er Bou	nds	
Random Baseline	52.6	62.1	37.9
Intersubject Agreement	69.5	76.6	53.6
Feature-Based Models			
Nilsson and Nivre [2009]	69.5	75.2	62.6
Matthies and Søgaard [2013]	69.9	72.3	66.1
Word Frequency	67.9	74.0	58.3
Word Length	68.4	77.1	49.0

- NEAT outperforms random baseline
- supervised models at upper limit

	Acc	$F1_{fix}$	F1 _{skip}
NEAT	63.7	70.4	53.0
Lower and Uppe	er Bou	nds	
Random Baseline	52.6	62.1	37.9
Intersubject Agreement	69.5	76.6	53.6
Feature-Based	d Mode	ls	
Nilsson and Nivre [2009]	69.5	75.2	62.6
Matthies and Søgaard [2013]	69.9	72.3	66.1
Word Frequency	67.9	74.0	58.3
Word Length	68.4	77.1	49.0

- NEAT outperforms random baseline
- supervised models at upper limit
- bulk of data explained by word length/frequency predictors

Fixations of Successive Words

 Humans more likely to fixate a word when the previous word was skipped

$$P(\omega_i = \mathsf{READ} | \omega_{i-1} = \mathsf{READ}) < P(\omega_i = \mathsf{READ})$$

Fixations of Successive Words

 Humans more likely to fixate a word when the previous word was skipped

$$P(\omega_i = \mathsf{READ} | \omega_{i-1} = \mathsf{READ}) < P(\omega_i = \mathsf{READ})$$

Ratio:

Setting	$\frac{P(\omega_i = READ \omega_{i-1} = READ)}{P(\omega_i = READ)}$
NEAT	0.81
Human	0.85
Word Frequency	0.91
Random	1.0

Fixations of Successive Words

 Humans more likely to fixate a word when the previous word was skipped

$$P(\omega_i = \mathsf{READ} | \omega_{i-1} = \mathsf{READ}) < P(\omega_i = \mathsf{READ})$$

Ratio:

Setting	$\frac{P(\omega_i = READ \omega_{i-1} = READ)}{P(\omega_i = READ)}$
NEAT	0.81
Human	0.85
Word Frequency	0.91
Random	1.0

Mixed models show effect beyond word frequency

Fixation Rates by POS Categories

Conclusion

- unsupervised model of reading predicting reading times and skipping
- ► based on tradeoff between precision of understanding ⇔ economy of attention
- trained end-to-end without linguistic knowledge, eyetracking data, or feature extraction
- Experiments on the Dundee corpus
 - provides accurate predictions for human skipping behavior
 - predicts reading times, while only accessing 60.4% of the words
 - known qualitative properties of skipping emerge, without specifying relevant features in advance

References I

- K. Bicknell and R. Levy. A rational model of eye movement control in reading. In Proceedings of the 48th annual meeting of the association for computational linguistics, pages 1168–1178. Association for Computational Linguistics, 2010. URL http://dl.acm.org/citation.ofm?id=1858800.
- V. Demberg and F. Keller. Data from eye-tracking corpora as evidence for theories of syntactic processing complexity. Cognition, 109(2):193–210, 2008. URL http://www.sciencedirect.com/science/article/pii/S0010027708001741.
- R. Engbert, A. Longtin, and R. Kliegl. A dynamical model of saccade generation in reading based on spatially distributed lexical processing. Vision research, 42(5):621–636, 2002. URL http://www.sciencedirect.com/science/article/pii/S0042698901003017.
- R. Engbert, A. Nuthmann, E. M. Richter, and R. Kliegl. SWIFT: A Dynamical Model of Saccade Generation During Reading. *Psychological Review*, 112(4):777–813, 2005. URL http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X.112.4.777.
- S. Frank and R. Bod. Insensitivity of the human sentence-processing system to hierarchical structure. Psychological Science, 22: 829–834, 2011.
- J. Hale. A Probabilistic Earley Parser as a Psycholinguistic Model. In Proceedings of NAACL, volume 2, pages 159–166, 2001.
- T. Hara, D. M. Y. Kano, and A. Alzawa. Predicting word fixations in text with a CFF model for capturing general reading strategies among readers. In Proceedings of the First Workshop on Eye-tracking and Natural Language Processing, pages 55–70, 2012. URL http://anthology.aclweb.org/w/W12/W12/W12-49.pdf#page=65.
- K. M. Hermann, T. Kočiský, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, and P. Blunsom. Teaching machines to read and comprehend. arXiv preprint arXiv:1506.03340, 2015. URL http://arxiv.org/abs/1506.03340.
- A. Kennedy and J. Pynte. Parafoveal-on-foveal effects in normal reading. Vision Research, 45(2):153–168, January 2005. URL http://linkinghub.elsevier.com/retrieve/pii/S0042698904003979.
- R. Levy. Expectation-based syntactic comprehension. Cognition, 106(3):1126–1177, March 2008. URL http://linkinghub.elsevier.com/retrieve/pii/S0010027707001436.
- F. Matthies and A. Søgaard. With Blinkers on: Robust Prediction of Eye Movements across Readers. In EMNLP, pages 803–807, 2013. URL http://www.aclweb.org/website/old_anthology/D/D13/D13-1075.pdf.
- S. A. McDonald and R. C. Shillcock. Eye movements reveal the on-line computation of lexical probabilities during reading. Psychological Science, 14(6):648–652, November 2003a.

References II

- S. A. McDonald and R. C. Shillcock. Low-level predictive inference in reading: the influence of transitional probabilities on eye movements. *Vision Research*, 43(16):1735–1751, July 2003b. URL http://www.sciencedirect.com/science/article/pii/S0042698903002372.
- M. Nilsson and J. Nivre. Learning where to look: Modeling eye movements in reading. In Proceedings of the Thirteenth Conference on Computational Natural Language Learning, pages 93–101. Association for Computational Linguistics, 2009. URL http://dl.acm.org/citation.cfm?id=1596392.
- M. Nilsson and J. Nivre. Towards a data-driven model of eye movement control in reading. In Proceedings of the 2010 workshop on cognitive modeling and computational linguistics, pages 63–71. Association for Computational Linguistics, 2010. URL http://dl.acm.org/citation.cfm?id=1870073.
- E. D. Reichle, A. Pollatsek, D. L. Fisher, and K. Rayner. Toward a model of eye movement control in reading. *Psychological Review*, 105(1):125–157, January 1998.
- E. D. Reichle, K. Rayner, and A. Pollatsek. The EZ Reader model of eye-movement control in reading: Comparisons to other models. *Behavioral and brain sciences*, 26(04):445–476, 2003. URL http://journals.cambridge.org/abstract_S0140525X03000104.
- E. D. Reichle, T. Warren, and K. McConnell. Using E-Z Reader to model the effects of higher level language processing on eye movements during reading. *Psychonomic Bulletin & Review*, 16(1):1–21, February 2009. URL http://www.springerlink.com/index/10.3758/PBR.16.1.1.
- N. J. Smith and R. Levy. The effect of word predictability on reading time is logarithmic. Cognition, 128(3):302–319, September 2013. URL http://linkinghub.elsevier.com/retrieve/pii/S0010027713000413.
- R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4): 229–256, 1992. URL http://link.springer.com/article/10.1007/BF00992696.

Correlations with Known Predictors

	Human	NEAT
Restricted Surprisal	0.465	0.762
Full Surprisal	0.512	0.720
Log Word Freq.	-0.608	-0.760
Word Length	0.663	0.521