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ABSTRACT
Integrated approaches for pharmacology are required for the
mechanism-based predictions of adverse drug reactions that
manifest due to concomitant intake of multiple drugs. These
approaches require the integration and analysis of biomedi-
cal data and knowledge from multiple, heterogeneous sources
with varying schemas, entity notations, and formats. To
tackle these integrative challenges, the Semantic Web com-
munity has published and linked several datasets in the
Life Sciences Linked Open Data (LSLOD) cloud using es-
tablished W3C standards. We present the PhLeGrA plat-
form for Linked Graph Analytics in Pharmacology in this
paper. Through query federation, we integrate four sources
from the LSLOD cloud and extract a drug–reaction network,
composed of distinct entities. We represent this graph as a
hidden conditional random field (HCRF), a discriminative
latent variable model that is used for structured output pre-
dictions. We calculate the underlying probability distribu-
tions in the drug–reaction HCRF using the datasets from
the U.S. Food and Drug Administration’s Adverse Event
Reporting System. We predict the occurrence of 146 ad-
verse reactions due to multiple drug intake with an AUROC
statistic greater than 0.75. The PhLeGrA platform can be
extended to incorporate other sources published using Se-
mantic Web technologies, as well as to discover other types
of pharmacological associations.

Keywords
graph analysis; federated querying; data mining; semantic
web; drug–drug interactions

1. INTRODUCTION
The “Semantic Web” vision of the World Wide Web Con-

sortium (W3C) has provided a unique opportunity towards
web-scale computation, seamless integration of big data and
structured querying of multiple heterogeneous sources si-
multaneously. Semantic Web technologies can be used to
develop refined approaches to address complex, biomedical
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challenges, where traditional computational methods are not
scalable. However, the structural heterogeneity of the Se-
mantic Web makes the task of serendipitously discovering
implicit associations illusive. In this paper, we present the
PhLeGrA platform – Linked Graph Analytics in Pharmacology.
The PhLeGrA platform provides an approach to tackle the
structural heterogeneity in the biomedical Semantic Web
and discover newer pharmacological associations.

1.1 Systems Pharmacology
Adverse drug reactions (ADR) often result in the hospital-

ization or serious injury of more than 2 million individuals
in the United States, with more than 100,000 deaths annu-
ally [27]. Hence, ADRs are the 4th leading cause of death
ahead of diabetes, AIDS, and pneumonia [8]. The costs of
drug-related morbidity and mortality in the United States
alone was estimated to be US$177.4 billion in 2000, and
has been rising ever since [13]. A majority of these ADRs
are caused due to polypharmacy, a situation where multi-
ple concomitant drugs are administered to one patient in
a short span of time to treat multiple medical conditions
[9]. Drug–drug interactions (DDI) due to polypharmacy are
potentially avoidable, if detected early [36].

Post-marketing surveillance is carried out to detect unan-
ticipated DDIs and ADRs. Several studies, which often
use the US Food and Drug Administration (FDA) Adverse
Event Reporting System (FAERS) [16] or electronic med-
ical records [19], have inferred new DDIs and the ADRs
that manifest on the account of those interactions. How-
ever, these studies do not systematically demonstrate how
the drugs interact within the biological system of the pa-
tient, leading to a particular adverse reaction. “Mechanism-
based prediction” of DDIs and ADRs can provide a better
understanding of the underlying biological mechanisms be-
hind the DDIs [2]. Moreover, this understanding can lead
clinicians to prescribe drugs that can cure the same medical
conditions in a patient while minimizing the risk of DDIs
due to different mechanisms of those drugs.

Newer approaches of integrative pharmacology, termed
“systems pharmacology”, are required to attain the objec-
tive of mechanism-based prediction and evaluation of DDIs
and ADRs [2]. These approaches rely on an exhaustive sys-
tems network. Such a network must possess knowledge on
the drug-induced perturbations of the physiological func-
tions in a biological system as well as knowledge on the un-
derlying biological interactions (e.g. metabolic pathways).
However, the data and knowledge to generate such a net-
work exists in several databases and knowledge bases that
may be fragmented across the Web. These sources, if avail-



able for download, may: i) use varying schemas to structure
the data, ii) use different entity notations (e.g. Proteins

referenced using HGNC [31] or KEGG [25] identifiers), and
iii) use different formats (e.g. XML, CSV, etc.). An ad hoc
integration approach by downloading and integrating each
source independently, and performing manual entity recon-
ciliation and disambiguation, is non-trivial, non-scalable and
is often redundant for different tasks.

1.2 Semantic Web Technologies
The Semantic Web was conceived with the vision that

a decentralized, distributed and heterogeneous data space,
extending over the traditional Web, can reveal hidden asso-
ciations that were not directly observable [5]. Any domain
user can query this Web of Data, often called Linked Open
Data cloud [6], without being concerned about the underly-
ing heterogeneity and representation. Due to the challenges
of integrative bioinformatics, biomedical researchers have
been the earliest adopters of Semantic Web technologies
and linked data principles to create the Life Sciences Linked
Open Data (LSLOD) cloud [7]. Semantic Web technologies
include the W3C standards Resource Description Frame-
work (RDF) [26] and the SPARQL graph query language
[32]. Biomedical data and knowledge sources are converted
to graphs using the triple-based RDF model. SPARQL
can use specific expression patterns, termed triple pattern
fragments (TPF), to query these RDF graphs.

Substantial work has been carried out to publish and link
biomedical data and knowledge in the LSLOD cloud by sev-
eral different efforts [10, 20]. Several sources that may be
relevant to systems pharmacology, such as the Compara-
tive Toxicogenomics Database [12] and DrugBank [38], are
made available through the LSLOD cloud. However, the
task of serendipitously discovering hidden associations from
the LSLOD cloud is still non-trivial, and far from complete.
We define the term association as a mapping between a set
of inputs and an outcome. Hence, the indication that mul-
tiple drugs may interact to cause an adverse drug reaction
is an association ({Drug}n → ADR).

Biomedical RDF graphs still exist either as RDF data
dumps, or are exposed through isolated SPARQL endpoints
on the web. Querying multiple isolated SPARQL endpoints
simultaneously over the web requires a scalable SPARQL
query federation method [35]. An example of the process
of a query federation method is shown in Figure 1a. Gen-
erally, the method evaluates each TPF in a SPARQL query
precisely and queries the relevant source where the TPF may
exist, before reconciliation of entities and relations.

In some cases, the same relation may be expressed in dif-
ferent RDF graphs using different semantics, or using dif-
ferent graph patterns entirely (e.g. Figure 1b). A user
who wishes to aggregate such relations from multiple graphs
must be aware of the underlying semantics and the data
model. One of the key principles for Linked Data is the use
of HTTP-derefenceable Uniform Resource Identifiers (URIs)
for entity reconciliation. Empirically, we observe that
most data publishers create their own URIs to represent en-
tities. In the pharmacological domain, the same drug may
be represented using different URIs in different sources and
they need to be reconciled during retrieval. This is not pos-
sible through current query federation methods.

Using best principles to simply link all data and deploying
a robust querying infrastructure is however not sufficient for

Figure 1: SPARQL Query Federation: a) Methods:
Each Triple Pattern Fragment in the SPARQL query
is evaluated for each source, before federation. b)
Challenges: Different RDF graphs may use differ-
ent semantics (e.g. drug-target and target). Differ-
ent graph patterns may be used to depict the same
relation, while capturing additional details.

association discovery. An analytics framework that uses
the linked data to compute the probability of an association
between two types of entities (inputs→ outcome) in differ-
ent data sources is required. The framework needs to deal
with the facts that, i) there may be intermediate entities
on a path for which there are no observed data, and ii) a
combination of inputs may be associated with an outcome.

In this paper, we present the PhLeGrA1 platform – Linked
Graph Analyics in Pharmacology. The PhLeGrA platform
combines graph analytics with query federation over the
LSLOD cloud to discover hidden associations between en-
tities that have no explicit relations. The key contributions
of this research can be described as follows:

1. We develop a pattern-based query federation method
over the Web of Linked Data, and demonstrate the
extraction of a k-partite network composed of distinct
entities and relations from multiple sources.

2. We propose and implement a graph analytics method,
based on Hidden Conditional Random Fields (HCRF)
[33], to discover implicit associations between the dif-
ferent entities in the k-partite network.

3. We develop a provenance-enabled visualization inter-
face that allows a user to search and explore the inter-
connecting paths between drugs and ADRs.

4. Finally, we critique on the current state of the LSLOD
cloud and discuss the challenges encountered while min-
ing the LSLOD cloud to discover new associations.

The paper is organized as follows: Section 2 gives a
brief overview on biomedical projects that use Semantic Web
technologies. Section 3 outlines the methodology used for
query federation and graph analytics framework. Section
4 lists the set of data sources used for developing a pro-
totype of the PhLeGrA platform. Section 5 presents the
results of our prototype. Finally, in Section 6 we discuss
the limitations of our approach and challenges faced.

1Phlegra is a spider genus of the Salticidae family, com-
monly termed jumping spiders.



All results and methods of this paper, as well as all devel-
oped visualization tools, are available online at:
http://onto-apps.stanford.edu/phlegra.

2. RELATED WORK
Entity reconciliation in the biomedical domain is a major

problem, as there is often no agreement on a unique repre-
sentation of a given entity. Many biomedical entities are re-
ferred to by multiple labels, and same labels may be used to
refer different entities. To resolve this problem, efforts such
as Bio2RDF [10] and Linking Open Drug Data [20] have
released guidelines for using x-ref attributes rather than us-
ing the same URI. Similar entities in different sources are
mapped to each other, or all similar entities are mapped to
a common terminology using x-ref attributes [29].

Most query federation methods do not take x-ref attributes
into account, and rely only on the URIs of the entities. Fed-
eration engines may use an index linking all possible URIs
to a particular string term, but such an index can be diffi-
cult to maintain [35]. Rule-based federation engines, on the
other hand, can use a set of ‘patterns’ to determine which
SPARQL endpoints and URIs to query for a particular class
(e.g. Drug) or an entity (e.g. Lepirudin) [22]. However,
only semi-automated methods can generate such patterns
to query for a particular class in different sources. Gener-
ating patterns to query similar entities requires significant
manual intervention [17], and is tedious.

There has been a lot of research to predict DDIs, or pre-
dict ADRs that manifest due to concomitant intake of multi-
ple drugs, by mining spontaneous reporting systems such as
FAERS or electronic medical records [16, 19]. Systems phar-
macology methods have also been explored in the context of
drug-ADR association discovery or drug repurposing (use of
existing drugs to treat new conditions) [2]. These methods
generally combine databases and knowledge bases manually
without the use of Semantic Web technologies. CauseNet
combines four biomedical sources into a k-partite network
for generating new drug repurposing hypotheses [28]. While
this approach is similar to our approach, we argue that
our query federation method over the LSLOD cloud will be
faster, and help generate such k-partite networks easily.

Recently, there has been some research to leverage the
LSLOD cloud for discovering new DDIs. Tiresias processes
various sources of drug-related data and knowledge as inputs
and predicts new DDIs using large-scale similarity match-
ing [14]. The Translational Ontology-anchored Knowledge
discovery Engine (TOKEn) evaluates induced associations
between proteins and phenotypes, using ontological hierar-
chies and DrugBank [38], to find drugs for skin cancer [34].
However, most approaches consider binary drug pairs and
not multiple drug interactions [4], they ignore the underly-
ing molecular mechanisms, and they may not associate the
adverse drug reactions with the DDIs [3].

3. METHODS
The PhLeGrA platform relies on a data model that cap-

tures all the relevant pharmacological relations required for
developing a systems pharmacology network (Section 3.1).
This data model is used by our query federation method
(Section 3.2) to retrieve entities and relations from multi-
ple sources in the LSLOD cloud and populate our k-partite
network. Our analytics framework inspired from Hidden

Figure 2: Platform for Linked Graph Analyics in
Pharmacology (PhLeGrA). Using the Data Model
(a) and mappings rules, the query federation mod-
ule (b) extracts a k-partite HCRF network from the
LSLOD Cloud. It uses an external database of inputs
and outcomes to predict the probabilities of associ-
ations (c). A visualization interface allows the do-
main user to navigate the k-partite network (d).

Conditional Random Fields performs inference over this k-
partite network (Section 3.3). The query federation method
and the graph analytics framework are bundled in the ar-
chitecture of the PhLeGrA platform (Figure 2).

3.1 Data Model
Our data model aims to provide an abstract representa-

tion of the molecular mechanisms behind DDIs in the bi-
ological system of a patient. There are several underlying
mechanisms through which two drugs can interact [21]. For
example, most drugs are metabolized to their inactive or ac-
tive forms by particular proteins2, termed enzymes. When
the expression of these enzymes is inhibited by another drug,
this can lead to increased toxicity (Figure 3a) or decreased
effect (Figure 3b) of the former drug respectively. Inhibi-
tion of the expression of drug transporters (specialized pro-
teins) can alter the absorption (Figure 3c) and elimination
(Figure 3d) of drugs in the body. Different drugs can target
the same protein resulting in either an additive or a nega-
tive effect (Figure 3e). A pathway is a series of actions
among proteins in a cell that leads to changes in the cell or
production of other proteins. A drug targeting an upstream
protein can affect the activity of another drug targeting a
downstream protein in a pathway (Figure 3f).

We simplify these mechanisms to a more abstract repre-
sentation. We have four different types of biological enti-
ties — (E1) Drug, (E2) Protein, (E3) Pathway, and (E4)
Phenotype (adverse drug reaction). We also have five dif-
ferent types of biological relations — (R1) Drug hasTarget
Protein, (R2) Drug hasEnzyme Protein, (R3) Drug has-
Transporter Protein, (R4) Protein isPresentIn Pathway,

2We use the generic term ‘proteins’ to represent different
biological concepts, such as ‘genes’, ‘proteins’, ‘enzymes’ and
‘transporters’ throughout this paper.

http://onto-apps.stanford.edu/phlegra


and (R5) Pathway isImplicatedIn Phenotype. The entities
and relations, retrieved from the LSLOD cloud, form a k -
partite network — a network whose nodes can be partitioned
into k different independent sets (k = 4). A visual depiction
of the model is shown below, in Figure 4.

Figure 3: Several underlying mechanisms for drug–
drug interactions. a, b) The inhibition of enzymes
that metabolize a drug to its inactive or active state.
c, d) The inhibition of transporters can decrease the
absorption or elimination of a drug. e) Two drugs
target the same protein to reduce the effect of one
drug. f) Two drugs target proteins in the same path-
way to increase the effect of both drugs.

Figure 4: A visual depiction of the data model used
for generating a k-partite network

3.2 Query Federation
During query federation, SPARQL queries are decomposed

into Triple Pattern Fragments (TPF) and each fragment is
executed individually across several sources (Figure 1a).
This decomposition of SPARQL queries can be governed
through mapping rules [22]. PhLeGrA uses a modified TPF
query engine [37] with the inputs: i) the set of SPARQL
endpoints, ii) the data model, and iii) mapping rules.

A mapping rule, in this work, maps an entity type (e.g.
E1) or a relation type (e.g. R1) in our data model to a graph
pattern observed in an RDF graph, if the relevant element
or relation exists in the graph. For example, DrugBank [38],
a data source that contains information on drugs, contains
entities of type E1 (Drug) and relations of type R1 (Drug
hasTarget Protein). Then, the graph patterns observed in
DrugBank RDF graph are mapped as follows:

E1 := ?E1
rdf :type−−−−−→ drugbank:Drug

R1 := ?E1
drug←−−− drugbank:Target-Relation

target−−−−→ ?E2

These mapping rules are manually curated by observing
the vocabularies of the LSLOD sources used in our proto-

type. These mapping rules are described using an extension
of the Vocabulary of Interlinked Datasets (VoID) [1, 17].
They are used by our query federation module to populate
the k-partite graph from the LSLOD sources.

The query federation module also deals with reconcili-
ation of similar entities expressed using different URIs in
different RDF graphs. For each entity, the module col-
lects specific x-ref attributes provided by the biomedical
data publishers. These attributes may link similar entities
in different graphs to each other, or may link similar en-
tities to a unique term in a designated terminology. For
instance, retrieving information on the drug Lepirudin and
the protein Prothrombin from two sources requires differ-
ent patterns: drugbank:DB00001→ kegg:D06880 and drug-
bank:BE0000048 → hgnc:3535 ← kegg:HSA 2147. In the
latter case, the different proteins are mapped to the Hugo
Gene Nomenclature Committee terms (HGNC) [31].

To generate the k-partite network, the federation module
queries all sources simultaneously in the following order:

1. Retrieves all the entities of a given type (e.g., E1), and
generates new nodes in the k-partite network.

2. Retrieves relevant x-ref attributes for each entity.

3. Reconciles entities that are mapped to the same term
in a given terminology (e.g. HGNC), or are mapped
to each other using x-ref attributes.

4. Retrieves all relations of a given type (e.g. R1) among
entities of two types (e.g., E1 and E2), and generates
edges between the nodes in the k-partite network.

5. Detect the largest connected component (treating the
network as undirected)

The nodes and edges are also annotated with a list of data
sources from which they were retrieved for provenance.

3.3 Hidden Conditional Random Field
The primary goal of PhLeGrA is to discover associations

between a set of inputs and an outcome, i.e. the probabil-
ity an outcome (ADR) is observed considering the inputs
(drugs). The graph analytics module in PhLeGrA (Figure
2c) takes as input the extracted k -partite network. As we
are predicting a structured outcomes vector y using a struc-
tured inputs vector x, the k-partite network is represented
as a conditional random field. A conditional random field is
a type of a discriminative undirected probabilistic graphical
model, commonly used in machine learning for structured
prediction. As we assume the state of the intermediate en-
tities (e.g. Protein) on the path from inputs and outcomes
(the end layers in the k-partite network) will be unobserved,
our model is actually a (k−2)-layer hidden conditional ran-
dom field (HCRF). An HCRF framework learns a set of
unobserved variables, and makes no assumption on the in-
dependence of the inputs [33]. Instead of using a simple
Bayesian directed probabilistic model, we made a decision
choice towards HCRF to make our probabilistic model more
scalable, to allow structured outcome prediction, and to in-
corporate the concept of unobserved entities.

The graph analytics module generates joint probability
distributions over each edge joining nodes of two different
entity types (e.g., E1 and E2) in the k-partite network.
These probability distributions are learnt using an inputs–
outcomes database (described in Section 4.2).

The module takes an inputs vector x — a vector where
xi = 1 if the ith drug is prescribed to a patient, and outputs



an outcome vector, where yj = 1 if the jth adverse reaction
is observed, or zero otherwise. In the following equations,
we summarize the original algorithm for learning the param-
eters of an HCRF by Quattoni, et al. [33].

Ψ(y,h,x; θ) =
∑

(j,k)∈E

∑
l∈L

fl(j, k,y, hj , hk,x)θl

P (y|x, θ) =
∑
h

P (y,h|x, θ) =

∑
h e

Ψ(y,h,x;θ)∑
y′,h e

Ψ(y′,h,x;θ)

L(θ) =
∑
i

logP (yi|xi, θ)−
1

2σ2
||θ||2

∴ Li(θ) = logP (yi|xi, θ) = log

( ∑
h e

Ψ(y,h,x;θ)∑
y′,h e

Ψ(y′,h,x;θ)

)
∴ θ ← θ + α ∗ ∇θL(θ)

P (y|x, θ) indicates the probability y is observed given a
set of inputs x. These are calculated over all possible states
for the observations of the hidden nodes h. Our goal is to
maximize L(θ), where θ represents the parameters of our
model. Ψ is a potential function that relies on the edge
features of our k-partite graph — E represents the set of
edges and L represent the set of states of the connected
nodes (hj = a, hk = b) and fl is a feature vector based on
the configuration l. We introduce a regularization term σ2

that is the variance of θ, to avoid overfitting.
The graph analytics module use stochastic gradient ascent

to learn the parameters, by iterating over each entry in an
inputs–outcomes database. The parameters are updated on
each iteration by using a step rate α. The probabilities are
calculated using loopy belief propagation.

4. DATA

4.1 Linked Open Data Sources
The Life Sciences Linked Open Data Cloud (LSLOD) con-

tains several data sources that are relevant to this problem.
We integrate four different data sources that are published
by the Bio2RDF project (Version 4) [10]:

D1: DrugBank [38]: A bioinformatics data source that
has comprehensive drug and drug target information

D2: PharmGKB [18]: A manually-curated knowledge-
base that summarizes protein–drug–disease relations
from a literature review

D3: Kyoto Encyclopedia of Genes and Genomes
(KEGG) [25]: An integrated data source consisting of
several databases, broadly categorized into biological
pathways, proteins, and drugs

D4: Comparative Toxicogenomics Database (CTD)
[12]: An environmental database on chemical–protein
interactions and pathway–disease relations

For the prototype, we download Bio2RDF Version 4 datasets
as RDF data dumps. Each dump is deployed on an inde-
pendent SPARQL endpoint locally, on a machine with 16GB
RAM memory. This helps us to remove network latency and
uptime of public SPARQL endpoints as issues for our exper-
iments. The entities and relations that were extracted from
each source are listed in Table 1. The SPARQL graph pat-
terns are also presented in Table 1 to demonstrate their

Table 1: The type of entities and relations, and
the SPARQL patterns, observed in each data source
used in our prototype are listed below.

Source Entity/ SPARQL Pattern
Relation

D1 E1, E2 E1
drug
←−−−− Target-Relation

target
−−−−−−→ E2

R1, R2, R3 E1
drug
←−−−− Enzyme-Relation

enzyme
−−−−−−−→ E2

E1
drug
←−−−− Transporter-Relation

transporter
−−−−−−−−−−→ E2

D2 E1, E2, E4 E1
drug
←−−−− gene-drug-Association

gene
−−−−→ E2

R1 E2
gene
←−−−− gene-disease-Association

disease−−−−−−−→ E4

D3 E1, E2 E1
target
−−−−−−→ :_blank

link−−−−→ E2

E3, E4 E1
metabolism−−−−−−−−−−→ :_blank

link−−−−→ E2

R1, R2 E2
pathway
−−−−−−−−→ E3

R4, R5 E3
disease−−−−−−−→ E4

D4 E1, E2 E1
chemical←−−−−−−−− Chemical-Gene-Association

gene
−−−−→ E2

E3, E4 E2
pathway
−−−−−−−−→ E3

R1, R3, R4 E4
pathway
−−−−−−−−→ E3

difference across different sources, and emphasize the need
for pattern-based query federation.

We reconcile the Protein entities primarily using the HUGO
Gene Nomenclature Committee (HGNC) [31] x-ref attributes,
Drug entities using the Anatomical Therapeutic Chemical
Classification [30] x-ref attributes, Pathway entities using
KEGG x-ref attributes, and Phenotype entities using MESH
terminology (Medical Subject Headings) x-ref attributes [11].
Two entities from different sources were also reconciled if x-
ref attributes linked them to each other.

4.2 Inputs–Outcomes Database
During the post-marketing surveillance of drug products,

the US Food and Drug Administration (FDA) collects re-
ports on the adverse drug reactions observed in patients
subjected to these drug products. The FDA Adverse Event
Reporting System [15] (FAERS), a public data portal, pub-
lishes these reports after the anonymization of the patient
data. As our inputs–outcomes database to learn the param-
eters in the model, we decided to use the FAERS datasets.

We downloaded the FAERS datasets, available as quar-
terly XML files, for three years from January 2013 to De-
cember 2015. Each XML file is composed of several safety
reports. Among many features, each safety report indicates:
(i) the set of adverse drug reactions observed in a patient
(e.g., heart attack), and (ii) the set of drugs administered
to the patient (e.g., Sildenafil). The string labels used by
FAERS to denote the drugs and adverse drug reactions in
the reports were mapped to Drug and Phenotype terms in
the k -partite network using terminology matching methods
[23] (these methods are described in more detail at http://
onto-apps.stanford.edu). From an initial set of more than
3.2 million FAERS safety reports, we discarded those reports
for which no Drug or Phenotype was mapped in the k -partite
network. Hence, we were left with an aggregated dataset of
around 3 million reports, with each report represented as
an entry with inputs x = {drug1, drug2, . . . , drugm} and
y = {phen1, phen2, . . . , phenk}.

For simplicity in probabilistic inference, each entity node
in the HCRF model only has two states :- 1 and 0. Depend-
ing on the type of the entity, state 1 can indicate whether
a Protein or a Pathway is implicated in the association, a
patient is administered a particular Drug, or he exhibits a
particular Phenotype. As FAERS datasets only indicate the
drugs administered and the adverse reactions observed in a
patient, we do not have data on whether a particular protein

http://onto-apps.stanford.edu
http://onto-apps.stanford.edu


or a pathway is implicated. Hence, nodes of type Protein

and Pathway are hidden variables.

5. RESULTS

5.1 k-partite Network Statistics

Figure 5: Number of Entities and Relations ex-
tracted from each data source

The number of entities and relations extracted from the
four Bio2RDF Version 4 data sources by the prototype im-
plementation of PhLeGrA are displayed in the Figure 5.
The query federation module uses the SPARQL patterns
(listed in Table 1). Except for CTD, PhLeGrA was able
to process a given data source and retrieve the entire set
of entities and relations for each type in under 2 hours.
PhLeGrA took ≈ 18 hours to process the entire CTD data
source due to its size. It can be seen that the number of en-
tities and relations for each type vary drastically across the
data sources due to their granularity. Few error SPARQL
patterns were discovered during this step (see Section 6.2).

The query federation module generated the k-partite net-
work after performing entity reconciliation using the x-ref
attributes for each entity. The largest connected component
was detected in the k-partite network and the set of nodes
that were not a part of this component were discarded. The
final number of nodes in the k-partite network for each entity
and relation type are shown in Figure 5.

Figure 6: Source distribution of R1 (Drug hasTarget
Protein) relations. It can be seen that a majority of
the R1 relations exist in only one data source.

Figure 6 depicts the source distribution of the relations of
type R1 (Drug hasTarget Protein). R1 relations are present
in all four sources used in the prototype. It can be seen that
a majority of these relations are unique to only one source.

Hence, when generating a systems pharmacology network,
query federation is beneficial if we wish to extract all possible
knowledge on the drug targets. Some relations may occur
in two or more sources. Hence, these relations need to be
aggregated. The overlap plot also indicates that one source
(CTD) may contribute, in a larger proportion, to a partic-
ular relation. This may include false-positive relations, or
noise in the source, that may affect downstream association
discovery. Overlap plots for other entity and relation types
are available at http://onto-apps.stanford.edu/phlegra.

Using terminologies, such as ATC [30] and MESH [11],
and x-ref attributes, is beneficial for entity reconciliation.
For example, using simple entity reconciliation (reconciling
entities with explicit x-ref links between them) the query
federation module reconciled 6,043 Drug entities to 2,015
unique entities in the k-partite network. Using the termi-
nologies, we were able to add an extra reconciliation step.
The module further reconciled 1,568 Drug entities and 714
Phenotype entities using the ATC and MESH terminologies
respectively. This helps generate a systems pharmacology
network with unique entities only.

Current methods in SPARQL query federation do not gov-
ern the query reformulation process using mapping rules
[35]. Assembling a systems pharmacology network using
these methods, from four sources, would require an exhaus-
tive SPARQL CONSTRUCT query [32] with several TPF
expressions. Our method requires a small domain-specific
data model (Figure 4) and reformulates the queries accord-
ing to the mapping rules (Table 1) provided.

5.2 Predicting Adverse Drug Reactions
As described in Section 3.3, we generated an HCRF

model from the k-partite network. We were able to identify
3,543 unique drugs and 3,186 unique ADRs in the FAERS
datasets. The graph analytics module in the PhLeGrA plat-
form can perform probabilistic inference over the entire HCRF
network by taking ≈ 30 seconds for each iteration.

As a proof of concept, in this paper, we will only use 100
drugs in the HCRF network to discover new associations
({Drug}n → ADR) efficiently. Using this small set of 100
drugs, the graph analytics module only takes ≈ 1−2 seconds
on each iteration for training and ≈ 0.5 second for predic-
tion. To build this set, we selected the top 20 drugs with
the highest number of occurences in the FAERS dataset,
and the top 80 co-mentioned drugs. Using this concise set,
we were able to reduce the number of Phenotype entities to
only 1276. The number of FAERS samples reduced to ≈ 0.3
million for our set of 100 drugs.

After training the HCRF using a 5-fold cross validation
approach and a step size α of 0.01, we evaluated the trained
HCRF model to predict adverse drug reactions for a com-
bination of drugs for a separate test set. As there is no
established gold standard for ({Drug}n → ADR) associa-
tions, we created a “silver standard” test set. We held out
10,000 observations from FAERS and selected those obser-
vations with an (Observed/Expected) ratio greater than 2.
We calculated the true and false positive rates and gener-
ated the receiver operating characteristic (ROC) curves for
each Phenotype entity. We also generate a combined curve
to check if we can predict each and every outcome using the
same probabilistic threshold.

The area under the ROC curve (AUROC) statistic while
using the same probabilistic threshold for each outcome is

http://onto-apps.stanford.edu/phlegra


Figure 7: The Receiver-Operating Characteristic Curves observed during the predictions of different adverse
drug reactions (ADRs) and a combination curve for the joint prediction of ADRs using the same threshold.
The legends indicate the labels of the ADRs as well as the Area under the curve statistic (AUROC) for
each curve (in parentheses). It can be seen that using same probabilistic threshold for every ADR results in
a weaker predictive power. The HCRF model performs remarkably well to predict individual ADRs using
event-specific threshold (with 146 ADRs with AUROC >= 0.75)

0.57, which is barely above random guessing. However,
the AUROC statistic for individual Phenotype prediction
is very high for some entities, which include common ad-
verse drug reactions such as liver failure, ulcers, polyuria,
hypotension and aortic aneuryms as well as indications such
as bipolar and nervous system disorders and myocardial is-
chemia. Figure 7 shows some of the Phenotype entities
that had a higher AUROC statistic. Out of 1276 entities in
the Phenotype class, 681 entities were observed in the test
dataset. The HCRF model predicts 560 entities with an AU-
ROC >= 0.5 and 146 of them with an AUROC >= 0.75.

To summarize, using the same probabilistic threshold, to
predict whether an outcome (ADR) will result from a set of
inputs (drugs), results in a weaker predictive power. How-
ever, the model had desirable predictive power while using
event-specific thresholds for individual ADRs. The impor-
tance of event-specific thresholds for signal detection using
spontaneous reporting systems such as FAERS, or electronic
medical records is also highlighted previously [19]. The AU-
ROCs obtained through our method compare favorably with
these methods for the ADRs listed in Figure 7. However,
our method is able to generate a probabilistic score for as-
sociations that involve more than two drugs. Moreover, ex-
ploring the probability distributions over the hidden nodes
(Protein and Pathway) may provide an insight in the un-
derlying biological mechanisms.

5.3 PhLeGrA Drug–Reaction Visualizer
We developed a simple Web-based search application that

allows the user to provide a set of Drugs and Phenotypes

(which will be positive in our inputs and outcomes vector),

and that visualizes all the possible paths that include the
given drugs and the adverse outcomes. The k-partite net-
work is searched iteratively by hopping across each node,
and these paths are buffered back to the client, and are
gradually displayed. Provenance information is displayed
on hovering over the node, to list the set of data sources
that the node is present in. The application can be accessed
at http://onto-apps.stanford.edu/phlegra.

A screenshot of this application is shown in Figure 8.
The example demonstrated in this screenshot indicates a
possible DDI between Paliperidone (Invega), a drug that
is used to treat bipolar disorder, and Sildenafil (Viagra),
a drug that is used to treat erectile dysfunction. We ob-
served a higher association score for ADRs such as Hyper-
triglyceridemia and Erectile Dysfunction that indicate re-
duced effects of Sildenafil. It can be hypothesized that
this might be because Paliperidone inhibits Cytochrome
P450 3A4 (CYP3A4) and other enzymes responsible for the
metabolism of Sildenafil.

6. DISCUSSION

6.1 Linked Graph Analytics
In this paper, we present a systems pharmacology-based

approach using Semantic Web technologies and query feder-
ation. We believe that generating such systems networks is
extremely fast and easy using the methods presented here,
as compared to traditional approaches like CauseNet [28]
where data conversion, data integration and entity reconcil-
iation is manual and not scalable.

http://onto-apps.stanford.edu/phlegra


Figure 8: PhLeGrA Drug–Reaction Visualizer.
Here, Paliperidone targets the enzymes of Sildenafil
that might lead to Hypertriglyceridemia.

We also demonstrate the benefit of query federation and
entity reconciliation using a domain-specific data model and
terminologies. Specifically, pattern-based query federation
can be shown to bring together pharmacological knowledge
existing in isolated, heterogeneous sources without being
concerned about the underlying semantics and schema dif-
ferences. The mapping rules still need to be assembled by
the user from the SPARQL query patterns observed in the
sources. An automated way to learn these query patterns
and mapping rules should be explored in the future. En-
tity reconciliation using terminologies can enable seamless
data and knowledge integration from these sources. It was
observed that the LSLOD sources may sometimes not have
explicit x-ref links between similar entities, when these en-
tities are mapped to the same term in a terminology.

In this research, we have not incorporated more complex
features of entities (e.g., molecular weight or structure of the
drug) and the network should necessarily be k-partite (no
inter-edges between nodes in the same layer). This was for
simplicity to perform approximate inference on the graph.
However, most real world domains, including the pharma-
cological domain, will not follow this straight approach. For
example, two proteins may be active in only particular, dis-
parate organs and, hence, may be independent of each other.
Our current representation (Figure 4) will not be able to
take into account these constraints.

However, we will argue that the PhLeGrA platform can
flexibly incorporate other data and knowledge sources pub-
lished using Semantic Web technologies. With modifications
to the data model and the addition of newer mapping rules,
different kinds of systems networks can be generated. The
PhLeGrA platform be configured to use other graph analyt-
ics frameworks over these pharmacological networks. In the
future, we will evaluate the utility of the PhLeGrA platform
for users in the pharmacological domain.

6.2 Challenges using the LSLOD Cloud
Whereas linked data have been used for integrated in-

formation retrieval [22] and interactive visualization dash-
boards that present faceted perspectives to a knowledge base
[24], they provide an opportunity to build complex machine
learning models over multiple data sources. However, in
the current state of the LSLOD cloud, if a user outside the
Semantic Web research community wishes to utilize this in-

Table 2: Error patterns found empirically
Source Error type Expected Observed
D2 Parse Error go:0030307 go:0030307\"

D3 Incorrect URIs kegg:map00010 kegg:00010
Capitalization kegg:HSA_2147 kegg:hsa_2147

Aggregated URI kegg:HSA_1551 kegg:HSA_1551 1576
kegg:HSA_1576

tegrated graph, it is very taxing. Most of the usable linked
data rest as RDF data dumps in localized silos, whereas the
LSLOD cloud is structurally broken (unavailable SPARQL
endpoints, incorrect links and malformed URIs) and very
heterogeneous (different SPARQL patterns) [37].

PhLeGrA’s query federation module relies on the set of
SPARQL mappings and Endpoints for navigating the LSLOD
cloud. As can be seen in Table 1, the LSLOD cloud is
very heterogeneous and there is no single SPARQL graph
pattern to get a simple link between a drug and its target
protein. The entire potential of Semantic Web technologies
rests on the idea that a naive domain user can query mul-
tiple sources regardless of the underlying heterogeneity in
the schemas. However, simply extracting these links from
two sources requires the end user to know the graph pat-
terns in them. These complications increase as we retrieve
additional features of an entity (e.g., molecular weight).

The quality of the LSLOD cloud sometimes necessitates
several manual interventions during automated analysis. Some
of the errors found empirically are listed in Table 2. These
errors, while seemingly trivial, may affect query federation
and information retrieval. These errors may have propa-
gated when the representation of the identifiers in the under-
lying data sources changed, and automated RDF conversion
pipelines were not able to capture them.

Hence, there are still several problems with the “Semantic
Web” vision and the LSLOD cloud that need to be miti-
gated before such methods are applied to address complex,
biomedical challenges like systems pharmacology.

7. CONCLUSION
In this research, we present the PhLeGrA platform —

Linked Graph Analytics in Pharmacology. While Seman-
tic Web technologies have been used to link heterogeneous
biomedical datasets and to create the Life Sciences Linked
Open Data cloud, discovering hidden associations from these
linked datasets serendipitously is still an illusive goal. Through
PhLeGrA, we attempt to address the the major require-
ments of association discovery from linked data — i) entity
reconciliation, ii) query federation and iii) analytics. As a
proof of concept, we demonstrate the utility of PhLeGrA
to create a systems pharmacology network using pattern-
based query federation, and to associate adverse drug reac-
tions with drug–drug interactions using Hidden Conditional
Random Field. Using event-specific thresholds, we obtained
an AUROC statistic of more than 0.75 for 146 reactions.
We believe that addressing the quality, availability, and het-
erogeneity issues in the LSLOD cloud will help improve the
efficiency of the entire association discovery process and in-
crease the utility of linked data for the domain users.
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