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Summary of minicourse

� Arti�cial intelligence (AI) has many impressive applications,
including
{ playing chess and Go,
{ self-driving cars, computer vision,
{ speech recognition.

� We demonstrate that dynamic economic models can be e�ectively
analyzed by using the same break-ground AI techniques and the
same combinations of hardware and software as those used by data
scientists for dealing with their impressive applications.

� Using AI approach, we will be able to solve high-dimensional models
with thousands of state variables that were intractable under
conventional solution methods.



Plan of minicourse
Day 1.
1. Introduction to machine learning.
2. Multilayer neural networks. Deep learning.
3. Hands-on session: a python and Tensor o w deep learning code for
solving a neoclassical growth model.

Day 2.
1. Unsupervised learning (clustering, dimensionality reduction).
2. Applications of unsupervised learning for economic dynamics.
3. Smolyak spare grids analysis.
4. Hands-on session: bToTEM central banking model of the Bank of
Canada for projection and policy analysis.

Day 3.
1. Introduction to reinforcement learning
2. Reinforcement learning for solving large scale heterogeneous-agent
models.
3. Hands-on session: a python and Tensor o w deep learning code for
solving a heterogeneous agent Krusell-Smith model.
4. Conclusion.



De�nitions of machine learning

� Machine learning (ML) is a collection of algorithms and models that
computer systems use to perform a speci�c task without being
explicitly programmed, relying on patterns and inference instead.

� The name "machine learning" was coined in 1959 by Arthur Samuel
(creator of �rst checkers-playing platform).

� Tom M. Mitchell provided a widely quoted, more formal de�nition of
machine learning:
"A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P if its
performance at tasks in T, as measured by P, improves with
experience E."

� For example, the task T is to recognize dogs in images, P is the
fraction of correct classi�cations, and E is the amount of data
(images) used for learning.



Machine learning categories

Machine learning (ML) can be classi�ed into three broad categories:

� Supervised learning

� Unsupervised learning

� Reinforcement learning



Machine learning categories in a diagram

Source: https://towardsdatascience.com/machine-learning-types-2-c1291d4f04b1



Supervised learning

Supervised learning: The computer is presented with example inputs
and their desired outputs, labeled by a \teacher", and the goal is to learn
a general rule that maps inputs to outputs.

Supervised learning can be subdivided into two types:

� Classi�cation: Inputs are divided into two or more classes, and the
learner must produce a model that assigns unseen inputs to one or
more of these classes.
{ Spam �ltering is an example of classi�cation, where the inputs are
email (or other) messages and the classes are \spam" and \not
spam".

� Regression: It is also a supervised learning problem, but the
outputs are continuous rather than discrete.
{ For example, predicting the stock prices using historical data.



Illustration of classi�cation and regression



Unsupervised learning

Unsupervised learning: No labels are given to the learning algorithm,
leaving it on its own to �nd structure in its input, for example,
discovering hidden patterns in data.

Examples of unsupervised learning:

� Clustering: Divide a set of inputs into groups which are not known
beforehand.

� Dimensionality reduction: Simplify inputs by mapping them into a
lower-dimensional space.



Examples of unsupervised learning

a) Clustering b) Dimensionality reduction



Supervised versus unsupervised learning

The data in supervised learning is labelled, while the data in unsupervised
learning is not labeled.



Examples of learning algorithms

Question: Which of the problems below are best addressed by using
supervised or unsupervised learning algorithms?

1. Given 50 articles written by male authors, and 50 articles written by
female authors, learn to predict the gender of a new manuscript's
author (when the identity of this author is unknown).

2. Examine a large collection of emails that are known to be spam
email, to discover if there are sub-types of spam mail.

3. Given historical data of children's ages and heights, predict
children's height as a function of their age.

4. Take a collection of 1000 essays written on the US Economy, and
�nd a way to automatically group these essays into a small number
of groups of essays that are somehow "similar" or "related".



Semi-supervised learning

� Semi-supervised learning: Problems where you have a large
amount of input data and only some of the data is labeled, are
called semi-supervised learning problems.

� These problems sit in between both supervised and unsupervised
learning.

� For example, a photo archive where only some of the images are
labeled, (e.g. dog, cat, person) and the majority are unlabeled.



Reinforcement learning

� Reinforcement learning is concerned with how software agents
ought to take actions in an environment so as to maximize some
notion of cumulative reward.

� Due to its generality, reinforcement learning is studied in many other
disciplines, such as game theory, control theory, operations research,
information theory, simulation-based optimization, multi-agent
systems, statistics and genetic algorithms.

� In machine learning, the environment is typically represented as a
Markov Decision Process (MDP).

� Many reinforcement learning algorithms use dynamic programming
techniques.



Reinforcement learning (cont.)
� A computer program interacts with a dynamic environment in which

it must perform a certain goal (such as driving a vehicle or playing a
game against an opponent).

� The program is provided feedback in terms of rewards and
punishments as it navigates its problem space.

� Google Alpha Zero player uses reinforcement learning to play Go
game and other games.
https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.youtube.com/watch?v=V1eYniJ0Rnk


Online versus o�ine learning

� In computer science, online machine learning is a method of
machine learning in which data becomes available in a sequential
order and is used to update our best predictor for future data at each
step, as opposed to o�ine batch learning techniques which generate
the best predictor by learning on the entire training data set at once.

� Online learning is a common technique used in areas of machine
learning where it is computationally infeasible to train over the entire
dataset, requiring the need of out-of-core algorithms.

� It is also used in situations where it is necessary for the algorithm to
dynamically adapt to new patterns in the data, or when the data
itself is generated as a function of time, e.g., stock price prediction.



Terminology of machine learning versus econometrics
Machine learning systems learn how to combine input to produce useful
predictions on never-before-seen data.

� Feature { A feature is an input variable|the  variable in simple
linear regression. Sophisticated machine learning project could use
millions of features (1  ).

� Target (label) { A label is the thing we're predicting|the 
variable in simple linear regression. The label could be the future
price of wheat, the animal shown in a picture, the meaning of an
audio clip, or just about anything.

� Model { A model de�nes the relationship between features and
label, e.g, a spam detection model associate certain features with
"spam".

� Training { Training means learning the model. You show the model
labeled examples and enable it to gradually learn the relationships
between features and label by minimizing a loss function.

� Prediction { Once our model is ready, you can feed it a set of
inputs and it will provide a predicted output (label).



Linear regression example
Example: Consider a linear regression equation

 = � + 

(We call regression coe�cients � instead of �{the standard notation in
machine learning).

� A set of features is .

� Target (label) is .

� Model is  = � + 

� Loss function is squared sum of residuals ) you want to have zero
loss ideally

min
�

0 = ( ¬ �)
0
( ¬ �) 

� Training is means to �nd b� that minimizes the loss function:

� = (
0)
¬1

 0

� Prediction is the target (label)  = e� that corresponds to

some new features e.



Machine learning algorithms

There are algorithms and techniques which are used to accomplish ML
tasks including:

� Linear Regression

� Nonlinear Regression

� Logistic Regression

� Decision Tree

� Support vector machines

� Naive Bayes

� K nearest neighbors

� K-Means

� Ensemble methods like Random Forest, etc.

The ML �eld is huge, so we will not try to survey all the algorithms but
focus on those algorithms that we �nd useful for constructing solutions to
dynamic economic models.



Arti�cial intelligence versus machine learning

Machine learning is related to arti�cial intelligence and deep
learning.

� In computer science, arti�cial intelligence (AI), sometimes called
machine intelligence, is intelligence demonstrated by machines, in
contrast to the natural intelligence displayed by humans.

� Colloquially, the term "arti�cial intelligence" is often used to
describe machines (or computers) that mimic "cognitive" functions
that humans associate with the human mind, such as "learning" and
"problem solving".

� Machine learning is fundamentally operational de�nition rather
than de�nition of AI in cognitive terms.

� It follows Alan Turing's proposal in his paper "Computing Machinery
and Intelligence", in which the question "Can machines think?" is
replaced with the question "Can machines do what we (as thinking
entities) can do?".



Deep learning

Deep learning is associated with multilayer neural networks and
motivated by biological neuron.



Deep learning (cont.)

Arti�cial neuron: perceptron



Deep learning (cont.)



Arti�cial intelligence, machine learning and deep learning



The rise of machines



Are the machines really intelligent?
� Alan Turing (1950) proposed Turing test to determine whether or

not computer(machine) can think intelligently like human.
Imagine a game of three players having two humans and one
computer, an interrogator(as human) is isolated from other two
players. The interrogator tries to �gure out which one is human and
which one is computer by asking questions from both of them.

� John Searle (1980) proposed Chinese room argument that
suggests that the Turing test could not be used to determine
\whether or not a machine is considered as intelligent like humans".
Imagine a machine that has a huge database containing questions
and answers in Chinese. When a interrogator ask the question, the
machine is locating the question in the database and returning the
corresponding answer to the interrogator. The whole scenario would
seems like that human is returning the answer but the machine has
no understanding of those questions and answers and therefore we
can't consider such machine as intelligent.

) We will not be concerned whether machine is intelligent or not
but with how it can help solve economic models.



Dynamic economic models, conventional solution methods
and the curse of dimensionality

� A one-agent stochastic growth model:

max
f+1g1=0

0

1X

=0

� ()

s.t.  + +1 = (1¬ �)  +  () 

ln +1 = � ln  + �+1, �+1 � N
¬
0�2

�


initial condition (0 0) is given;
 (�) = production function;
 = consumption; +1 = capital;  = productivity level;
� = discount factor; � = depreciation rate of capital;
� = autocorrelation coe�cient of the productivity level;
� = standard deviation of the productivity shock �+1.



Concept of solution

� Objective: to �nd a recursive Markov solution in which the decisions
on next-period capital and consumption are made according to some
time invariant state-contingent functions

0 =  ( ) 

� Note that if the capital decision function  is known, the
consumption decision function follows from the budget constraint:

 ( ) = (1¬ �)  +  ()¬  ( ) 



Euler equation

� We construct a solution that satis�es the �rst-order condition (Euler
equation):

1 () = � [1 (+1) (1¬ � + +11 (+1))] 

where the transition equations are

 + +1 = (1¬ �)  +  () 

ln +1 = � ln  + �+1, �+1 � N
¬
0�2

�




Residuals in the Euler equation

� The exact solution +1 =  ( ) implies zero residuals in the
Euler equation for each state ( ):

 ( ) = 1 ()¬ � [1 (+1) (1¬ � + +11 (+1))] � 0

where the future variables are given by

 = (1¬ �)  +  ()¬ +1

+1 = (1¬ �) +1 + +1 (+1)¬ +2

ln +1 = � ln  + �+1, �+1 � N
¬
0�2

�




Approximate solution to the Euler equation

� Thus, we can construct approximate solution +1 = b ( ; �) to
minimize squared residuals in the Euler equation:

b ( ; �) = f1 ()¬ � [1 (+1) (1¬ � + +11 (+1))]g2 

where the variables , +1 and +1 are given by

 = (1¬ �)  +  ()¬ +1

+1 = (1¬ �) +1 + +1 (+1)¬ b (+1 +1; �) 

ln +1 = � ln  + �+1, �+1 � N
¬
0�2

�




Global projection-style Euler equation method

This method minimizes average or maximum residuals on the grid

A global projection-style Euler equation method in line with Judd (1992).

Step 1. Choose functional form  (� �) for representing , where � is the

coe�cients vector. Choose a grid f g=1 on which  is constructed.

Step 2. Choose nodes, � , and weights,  ,  = 1   , for approximating
integrals. Compute next-period productivity 0 = � exp (�) for all , .
Step 3. Solve for � that minimizes the squared sum of residuals on the grid:

min
�
� (�) = 1




=1


1 () ¬ �



=1

 �
�
1
�
0

� �
1 ¬ � + 01 (

0
)
��2



 = (1 ¬ �)  +  () ¬ 0
0 = (1 ¬ �) 0 + 0 (0) ¬ 00

0 =  ( ; �)

00 =  (0 0; �)

Note that min
�
� (�) is the usual static optimization problem.



Implementation details of the projection algorithm

To implement the algorithm, we need to make the following choices:

1. A grid of points f g=1 on which  is approximated, for

example, 10 points for  and 10 points for , which gives 102 = 100
grid points in total

2. A method for interpolation o� the grid, for example, splines.



Implementation details of the projection algorithm (cont.)
3. Numerical integration methods for approximating conditional

expectation function  [1 (+1) (1¬ � + +11 (+1))] typically
using weighted average

 [ (�+1)] =

Z 1

¬1
 (�) (�) d� �

X

=1

 (�)

for example, 10 future shocks �1  �10 weighted by 1  10

4. Solver that �nds a minimizer � to min
�
� (�), for example, a version

of gradient descent method �+1 = � ¬ �(�)
� where  is iteration

and � is the Newton step, direction step, etc.

This techniques methods work remarkably well for small problems
but becomes intractable when the dimensionality increases.



Curses of dimensionality in high dimensional problems

1. The number of grid points increases exponentially with the number
of state variables, for example, with  state variables, we have 10

grid points if we have 10 grid points in each dimension

2. Spline interpolation is intractable in high dimensions.

3. The number of integration nodes increases exponentially with
number of shocks. For example, if we have �11  �

1
10 for shock 1

and �21  �
2
10 for shock 2, we get 102 = 100 integration nodes

4. The cost of solving min
�
� (�) also increases rapidly.



Dealing with curse of dimensionality in computational
economics

There is a number of approaches in computational economics for
alleviating the curse of dimensionality; see Chapter 7 of Handbook of
Computational Economics by Maliar and Maliar (2014):

� Smolyak sparse grids,

� Sparse polynomial interpolation,

� Low discrepancy sequences,

� Non-product monomial integration,

� Derivative-free �xed point iteration method, etc.

We will not study these approaches today but focus on data
science methods that o�er an alternative to conventional
computational economics.



Machine learning approaches for dealing with the curse of
dimensionality

Unsupervised learning

� Simulation

� Clustering

� Dimensionality reduction

� Principle component analysis

� Regularization

Supervised (deep) learning

� multilayer neural network

� stochastic optimization

We will see that these methods make it possible to study dynamic
models with thousands of state variables intractable up to now.



Machine learning, arti�cial intelligence and deep
learning methods for dynamic economic models:

Numerical Methods for Macro Models

Lilia Maliar, Serguei Maliar

November 2022

Minicourse



Model with elastic labor supply: a divisible-labor version

We consider a standard growth model with elastic labor supply. The
agent solves:

max
f+1g=01

0

( 1X

=0

� ( )

)

s.t.  + +1 = (1¬ �)  + � ( ) 

ln �+1 = � ln � + ��+1 �+1 � N (0 1) 

where initial condition (0 �0) is given;
 (�) = production function;
 = consumption; +1 = capital; � = productivity level;
� = discount factor; � = depreciation rate of capital;
� = autocorrelation coe�cient of the productivity level;
� = standard deviation of the productivity shock �+1.



Model with elastic labor supply: a divisible-labor version
(cont.)

� Assume that the agents value leisure.
1 = total time endowment,
 = leisure,
 = working hours.

� The agent can choose any number of working hours between 0 and
1.

 +  = 1

�  ( ) = the momentary utility (strictly increasing, and concave).

� A common assumption is the CRRA utility function:

 ( ) =

¬

 1¬



�1¬� ¬ 1
1¬ �



 = share of consumption; � = coe�cient of relative risk aversion.

� If � = 1, then  ( ) = ln  + ln 



Time invariant decision functions

� Our goal is to solve for a recursive Markov equilibrium in which the
decisions on next-period capital, consumption and labor are made
according to some time invariant state contingent functions

0 =  ( �)   =  ( �)   = L ( �) 

� A version of model in which the agent does not value leisure and
supplies to the market all her time endowment is referred to as a
model with inelastic labor supply.

� Such model is obtained by replacing  ( ) and  ( ) with
 () and  (), respectively.



First-order conditions

We assume that a solution to the model is interior and satis�es budget
constraint

 + +1 = (1¬ �)  + � ( )

and the �rst-order conditions (FOCs)

1 ( ) = � f1 (+1 +1) [1¬ � + �+11 (+1 +1)]g  (1)

2 ( ) = 1 ( ) �2 ( )  (2)

� FOC (1) is the Euler equation or inter-temporal FOC (relates
variables of di�erent periods).

� FOC (2) is intra-temporal FOC (relates variables within the same
period).



Usual equations versus functional equations

� We need to �nd a solution to functional equations.

� What does it mean functional equation?  + 2 = 7 and
2 + 3 = 5 is a system of 2 usual equation and solution to them
are some numbers  .

� A solution to functional equation is a function, i.e.,   are
functions.

� What  is the solution to  () = ?

� We approximate functions , , and L that solve a system of
functional equations numerically.

� Let us consider a projection-style method in line with Judd (1992)
that approximates these functions to satisfy the FOCs on a grid of
points.



Global projection-style Euler equation method

(EEM): A global projection-style Euler equation method.

Step 1. Choose functional form  (� ) for representing , where  is the

coe�cients vector. Choose a grid f �g=1 on which  is constructed.

Step 2. Choose nodes, � , and weights,  ,  = 1   , for approximating
integrals. Compute next-period productivity �0 = �� exp (�) for all , .
Step 3. Solve for  that approximately satis�es the model's equations:

1 ( ) = �



=1

 �
�
1
�
0  

0


� �
1 ¬ � + �01

�
0 0

���


2 ( ) = 1 ( ) �2 ( ) 
 = (1 ¬ �)  + � ( ) ¬ 0

2
�
0  

0


�
= 1

�
0  

0


�
�02

�
0 0

�


0 = (1 ¬ �) 0 + �0
�
0 0

�
¬ 00

We have 2 + 3 equations and 3 + 3 unknowns 0  
�
00  

0
  

0


	
=1



Discussion of Step 3

We use stationarity: the same decision function b (� ) is used both
at  and + 1 :

� in the current period: 0 =
b ( �; );

� in  possible future states: 00 =
b

¬
0 �0 ; 

�
, where future

shocks are �0 = �
�
 exp (�).

1 ( ) = �
X

=1



�
1

¬
0  

0


�¬
1¬ � + �01

¬
0 0

���


2 ( ) = 1 ( ) �2 ( ) 
 = (1¬ �)  + � ( )¬ 0

2
¬
0  

0


�
= 1

¬
0  

0


�
�02

¬
0 0

�


0 = (1¬ �) 0 + �
0


¬
0 0

�
¬ b

¬
0 �0 ; 

�
2 + 3 equations and 2 + 3 unknowns:   0

�
0  

0


	

=1
.

� The coe�cients  are obtained by �tting b ( �; ) to 0.



Unidimensional grid points and basis functions

� To solve the model, we discretize the state space in Step 1 into a
�nite set of grid points f �g=1 .

� Our construction of a multidimensional grid begins with
unidimensional grid points and basis functions.

� The simplest possible choice is a family of ordinary polynomials and
a grid of uniformly spaced points.

� However, many other choices are possible.

� In particular, a useful alternative is a family of Chebyshev
polynomials and a grid composed of extrema of Chebyshev
polynomials.

� Such polynomials are de�ned in the interval [¬1 1], and thus, the
model's variables such as  and � must be rescaled to be inside this
interval prior to any computation.



Why Chebyshev? Problems with interpolation

� Interpolation does not always work even for well-behaved functions.

� Does () converge to  () as we use more points? No!

� Consider a so-called Runge function

() =
1

1 + 2


 = ¬5¬4  3 4 5

i.e., 11 uniformly sampled points.

� Use Lagrange interpolation (�t degree 10 polynomial).

� Conclusion: under ( ¬ 1) interpolation at  uniformly spaced
points, () gets worse as we use more points.



Problems with Interpolation (cont.)

Runge function

­5 ­4 ­3 ­2 ­1 0 1 2 3 4 5
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Highly oscillatory. Hard to control away from measured points.



Chebyshev Polynomials
�  = [ ] = [¬1 1]
� () =

¬
1¬ 2

�¬12
� () = cos( arccos ())

� Recurrence formula:

0() = 1

1() = 

2() = 22 ¬ 1
3() = 43 ¬ 3
4() = 84 ¬ 82 + 1



+1() = 2()¬ ¬1()

� This recurrence formula follows from the recurrence relation for
cosines:

cos((+ 1)�) = 2 cos(�) cos(n�)¬ cos(( ¬ 1)�)



Chebyshev versus ordinary polynomials



Orthogonal Property

General orthogonal polynomials

� In linear algebra, we use orthogonal basis. Why?

� We want to choose orthognal basis in functional space.

� Space: polynomials over domain 

� Weighting function: ()  0

� Inner product of two functions  and : h i �
R


()()()

De�nition
f�g is a family of orthogonal polynomials w.r.t  () i�

 
��

�
= 0  6= 



Orthogonal proerty veri�ed.

� Again, +1() = 2()¬ ¬1().

� For example, 3() = 2
2 ¬ 1, and

4() = 4
3 ¬ 22 ¬ 22 + 1 = 43 ¬ 42 + 1.

� Check the orthogonality
R 1
¬1 ()()() = 0:

0 =

Z 1

¬1
0()1()()

=

Z 1

¬1
1 �  �

¬
1¬ 2

�¬12
 =

Z 1

¬1
1 �

¬
1¬ 2

�¬12 2

2

=
=2

1

2

Z 1

¬1
(1¬ )

¬12
 = 0



Approximating the Runge function with Chebyshev
polynomials

� Using Chebyshev nodes to approximate the Runge function improves
approximation (but the result is not completely good).
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Chebyshev polynomials for approximation

Let us illustrate the use of Chebyshev polynomials for approximation by
way of example.

Example
Let  () be a function de�ned on an interval [¬1 1], and let us
approximate this function with a Chebyshev polynomial function of
degree two, i.e.,

 () � b (; ) = 1 + 2+ 3
¬
22 ¬ 1

�


We compute  � (1 2 3) so that b (�; ) and  coincide in three
extrema of Chebyshev polynomials, namely, f¬1 0 1g,

b (¬1; ) = 1 + 2 � (¬1) + 3

�
2 � (¬1)2 ¬ 1

�
=  (¬1)

b (0; ) = 1 + 2 � 0 + 3
¬
2 � 02 ¬ 1

�
=  (0)

b (1; ) = 1 + 2 � 1 + 3
¬
2 � 12 ¬ 1

�
=  (1) 



Example
(cont.) This leads us to a system of three linear equations with three
unknowns that has a unique solution

2

4
1
2
3

3

5 =

2

4
1 ¬1 1
1 0 ¬1
1 1 1

3

5
¬1 2

4
 (¬1)
 (0)
 (1)

3

5

=

2

4
1
4

1
2

1
4

¬ 12 0 1
2

1
4 ¬ 12

1
4

3

5

2

4
 (¬1)
 (0)
 (1)

3

5 =

2

64

(¬1)
4 + (0)

2 +
(1)
4

¬ (¬1)
2 + (1)

2
(¬1)
4 ¬ (0)

2 +
(1)
4

3

75 

� It is possible to use Chebyshev polynomials with other grids, but the
grid of extrema (or zeros) of Chebyshev polynomials is a perfect
match.



Multidimensional grid points and basis functions

� In Step 1 of the Euler equation algorithm, we must specify a method
for approximating, representing, and interpolating two-dimensional
functions.

� A tensor-product method constructs multidimensional grid points
and basis functions using all possible combinations of unidimensional
grid points and basis functions.

� As an example, let us approximate the capital decision function .

� First, we take two grid points for each state variable, namely,
f1 2g and f�1 �2g, and we combine them to construct
two-dimensional grid points, f(1 �1)  (1 �2)  (2 �1)  (2 �2)g.

� Second, we take two basis functions for each state variable, namely,
f1 g and f1 �g, and we combine them to construct
two-dimensional basis functions f1  � �g.

� Third, we construct a  e xible functional form for approximating ,

b ( �; ) = 1 + 2 + 3� + 4� (3)



Multidimensional grid points and basis functions (cont.)

� Finally, we identify the four unknown coe�cients (1 2 3 4) � 

such that  ( �) and b ( �; ) coincide exactly in the four grid
points constructed.

� That is, we write B = , where

B =

2

664

1 1 �1 1�1
1 1 �2 1�2
1 2 �1 2�1
1 2 �2 2�2

3

775   =

2

664

1
2
3
4

3

775   =

2

664

 (1 �1)
 (1 �2)
 (2 �1)
 (2 �2)

3

775 

� If B has full rank, then coe�cients vector  is uniquely determined
by  = B¬1.

� The obtained approximation can be used to interpolate the capital
decision function in each point o� the grid.



Multidimensional methods: Lagrange Interpolation (cont.)

Odd interpolation example

� Interpolation nodes:

f1 2 3 4g � f(1 0) (¬1 0) (0 1) (0¬1)g

� Use linear combinations of f1   g.

� Data:  = ()  = 1 2 3 4.

� Interpolation form ( ) = + +  + .

� For example, 1 = ( ) = (1 0).
1 = (1 0) = �0 + �1 � 1 + �2 � 0 + �3 � 1 � 0 = + .

� De�ning conditions form the singular system

0

BB@

1 1 0 0
1 ¬1 0 0
1 0 1 0
1 0 ¬1 0

1

CCA

0

BB@

�1
�2
�3
�4

1

CCA =

0

BB@

1
2
3
4

1

CCA 



Numerical integration
� For integration, we consider �rst a simple two-node Gauss-Hermite

quadrature method that approximates an integral of a function of a
Normally distributed variable � � N

¬
0�2

�
with a weighted average

of just two values �1 = ¬� and �2 = � that happen with probability
1 = 2 =

1
2 , i.e.,

Z 1

¬1
 (�) (�) � �  (�1)1 + (�2)2 =

1

2
[ (¬�) + (�)] 

where  is a bounded continuous function, and  is a density
function of a Normal distribution, i.e.,

1 ( ) =
1

2
�
�
1

¬
0m;� 

0
m;�

�¬
1¬ � + �0m;�1

¬
0 ()  

0
m;�

��
+1

¬
0¬� 

0
¬�

�¬
1¬ � + �0¬�1

¬
0 ()  

0
¬�

��	
� Another example is a three-node Gauss-Hermite quadrature method,

which uses nodes �1 = 0, �2 = �
q
3
2 , �3 = ¬�

q
3
2 and weights

1 =
2
p
�
3 , 2 = 3 =

p
�
6 .



Numerical integration (cont.)

� It is also a possibility to approximate integrals using Monte Carlo
integration, e.g., Parameterized Expectation Algorithm (PEA) by
den Haan and Marcet (1990).

� We can make  random draws and approximate an integral with a
simple average of the draws,

Z 1

¬1
 (�) (�) d� � 1



X

=1

 (�) .



Numerical integration (cont.)

Let us compare the above integration methods using an example.

Example
Consider a quadratic function  (�) = 1 + 2�+ 3�

2, where
� � N

¬
0�2

�
.

(i) An exact integral is I �
R1
¬1

¬
1 + 2�+ 3�

2
�
 (�) d� = 1 + 3�

2;
(ii) A two-node Gauss-Hermite quadrature integration method yields
I � 1

2

¬
1 + 2 (¬�) + 23 (¬�)

�
+ 1
2

¬
1 + 2� + 23�

�
= 1 + 3�

2;
(iii) A one-node Gauss-Hermite quadrature integration method yields
I � 1;
(iv) A Monte Carlo integration method yields

I � 1 + 2

h
1


P
=1 �

i
+ 3

h
1


P
=1 �

2


i
.

(v) Quasi Monte Carlo methods for integration - the error bounds are
provided in Rust (1987).



Numerical integration (cont.)

� Note that the quadrature method with two nodes delivers the exact
value of the integral.

� Even with just one node, the quadrature method can deliver
accurate integral if  is close to linear (which is often the case in
real business cycle models), i.e., 3 � 0.

� To assess the accuracy of Monte Carlo integration, let us use
� = 001, which is consistent with the magnitude of  uctuation s in
real business cycle models.
{ Let us concentrate just on the term 1



P
=1 � for which the

expected value and standard deviation are 
h
1


P
=1 �

i
= 0 and


h
1


P
=1 �

i
= �p


, respectively.

{ The standard deviation depends on the number of random draws:
with one random draw, it is 001 and with 1,000,000 draws, it is
001p
1000000

= 10¬5.



Numerical integration (cont.)

� The last number represents an (expected) error in approximating the
integral and restricts the overall accuracy of solutions that can be
attained by a solution algorithm using Monte Carlo integration.

� Why is Monte Carlo integration ine�cient in this context?

� This is because we compute expectations as do econometricians,
who do not know the true density function of the data-generating
process and have no choice but to estimate such a function from
noisy data using a regression.

� However, when solving an economic model, we do know the process
for shocks. Hence, we can construct the "true" density function and
we can use such a function to compute integrals very accurately,
which is done by the Gauss-Hermite quadrature method.

� This is done in Judd, Maliar and Maliar (2011) who develop
generalized stochastic simulation method (GSSA) that attains high
accuracy by combining stochastic simulation for constructing the
domain and accurate deterministic integration methods.



Optimization methods

� To solve nonlinear equations with respect to the unknown
parameters vectors , , .

� This can be done with Newton-style optimization methods.

� Such methods compute �rst and second derivatives of an objective
function with respect to the unknowns and move in the direction of
gradient descent until a solution is found.



Gradient descent method for �nding the coe�cients

� Let us de�ne the residual in the Euler equation:

 ( �; )

=

8
<

:1 ( )¬ �
X

=1



�
1

¬
0  

0


�¬
1¬ � + �01

¬
0 0

���9=
;

2



2 ( ) = 1 ( ) �2 ( ) 
 = (1¬ �)  + � ( )¬ 0

2
¬
0  

0


�
= 1

¬
0  

0


�
�02

¬
0 0

�


0 = (1¬ �) 0 + �
0


¬
0 0

�
¬ b

¬
0 �0 ; 

�
� We must solve for  that minimizes the residuals in the Euler

equation  ( �; ) on the set of grid points f �g.



Derivative free iteration methods

� Newton methods are fast and e�cient in small problems but become
increasingly expensive when the number of unknowns increases.

� In high-dimensional applications, we may have thousands of
parameters in approximating functions, and the cost of computing
derivatives may be prohibitive.

� In such applications, derivative-free optimization methods are an
e�ective alternative.

� A useful choice is a �xed-point iteration method that �nds a root of
 =  () by constructing a sequence (+1) = 

¬
()

�
.



Optimization methods (cont.)

� We illustrate this method using an example.

Example
Consider an equation 3 ¬  ¬ 1 = 0. Let us rewrite this equation as
 = (+ 1)13 and construct a sequence (+1) = (() + 1)13 starting
from (0) = 1. This yields a sequence (1) = 126, (2) = 131,
(3) = 132,... which converges to a solution.

� The advantage of �xed-point iteration is that it can iterate in this
simple manner on objects of any dimensionality, for example, on a
vector of the polynomial coe�cients.

� The cost of this procedure does not grow considerably with the
number of the polynomial coe�cients.



Nonconvergence of �xed-point iteration

� The shortcoming of �xed point iteration is that it does not always
converge.

Example
If we wrote the above equation as  = 3 ¬ 1 and implemented

�xed-point iteration (+1) =
¬
()

�3 ¬ 1, we would obtain a sequence

that diverges to ¬1 starting from (0) = 1.

� Damping (partial updating) sometimes can help restore convergence.

Example
We can try (+1) = (1¬ �)() + �

h¬
()

�3 ¬ 1
i

for some � 2 (0 1). If

updating is slow � � 1, it typically converges.



Fixed-point iteration method for �nding the coe�cients

� Let us de�ne the residual in the Euler equation:

� Assume some functions 0 =  ( �)   =  ( �)   = L ( �) in
the right side and use the system of model's equation to obtain the
new functions b b bL

1 ( ) = �
X

=1



�
1

¬
0  

0


�¬
1¬ � + �01

¬
0 0

���


2 ( ) = 1 ( ) �2 ( ) 
 = (1¬ �)  + � ( )¬ 0

2
¬
0  

0


�
= 1

¬
0  

0


�
�02

¬
0 0

�


0 = (1¬ �) 0 + �
0


¬
0 0

�
¬ b

¬
0 �0 ; 

�
� Update the decision functions b = (1¬ �) + � b

b = (1¬ �) + � b and bL = (1¬ �)L+ � bL.

� � 2 (0 1) is like the learning rate.



Evaluating accuracy of solutions

� Our solution procedure has two stages. In Stage 1, a method
attempts to compute a numerical solution to a model.

� Provided that it succeeds, we proceed to Stage 2, in which we
subject a candidate solution to a tight accuracy check.

� We speci�cally construct a set of points f �g=1 that covers
an area in which we want the solution to be accurate, and we
compute unit-free residuals in the model's equations:

R ( �) =
(1¬ �)  + � ( )

 + 0
¬ 1

R ( �) = �

�
1 (

0
 
0
)

1 ( )

�
1¬ � + �01 (0 0)

��
¬ 1

R ( �) =
1 ( ) �2 ( )

2 ( )
¬ 1

where R , R and R are the residuals in the budget
constraint, Euler equation, and FOC for the marginal utility of
leisure.



Evaluating accuracy of solutions

� In the exact solution, residuals are zero, so we judge the quality of
approximation by how far these residuals are away from zero.

� We should never evaluate residuals on points used for computing a
solution in Stage 1 (in particular, for some methods the residuals in
the grid points are zeros by construction) but we do so on a new set
of points constructed for Stage 2.

� We consider two alternative sets of  points:

� a �xed rectangular grid
� a stochastic simulation.

� We report two accuracy measures, namely, the average and
maximum absolute residuals across both the optimality conditions
and  test points in log 10 units, for example, R ( �) = ¬2
means that a residual of 10¬2 = 1%, and R ( �) = ¬45
means 10¬45 = 000316%.

� Judd, Maliar and Maliar (Econometrica, 2017) show how to
construct bounds on approximation errors from the residuals.



Challenges of economic modeling

A curse of dimensionality

� It turned out that not only analytical but also numerical solutions
can be expensive (or infeasible) to obtain for many models of
interest.

� Curse of dimensionality: the complexity of a problem grows
exponentially with the size:

� assume that there are  capital stocks;
� take 10 grid points for each capital stock;
� we obtain 10 grid points for  capital stocks, e.g.,  = 10) 1010

grid points!

� This is true for approximation, integration and optimization!

� Economic models can easily become intractable even with
supercomputers.

We will show how to use machine learning to solve huge models
unthinkable up to now (2000 state variables).



Introduction Conventional Smolyak method Smolyak method with Lagrange-style interpolation Smolyak formula without repetitions Nested-set versus disjoint-sets: comparison of costs Anisotropic grid Adaptive domain Numerical results for representative agent model Numerical results for a multi-country model Conclusion

Machine learning, arti�cial intelligence and deep
learning methods for dynamic economic models:

Smolyak method

Lilia Maliar, Serguei Maliar

November 2022

Minicourse



Introduction Conventional Smolyak method Smolyak method with Lagrange-style interpolation Smolyak formula without repetitions Nested-set versus disjoint-sets: comparison of costs Anisotropic grid Adaptive domain Numerical results for representative agent model Numerical results for a multi-country model Conclusion

Introduction

Based on: Kenneth L. Judd, Lilia Maliar, Serguei Maliar and Rafael
Valero, (2014). \Smolyak Method for Solving Dynamic Economic
Models: Lagrange Interpolation, Anisotropic Grid and Adaptive Domain",
Journal of Economic Dynamic and Control 44(C), 92-123.
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Introduction
Tensor-product grid with 5 points vs. Smolyak grid

 Tensor-product grid Smolyak grid
with 5 points

� = 1 � = 2 � = 3

1 5 3 5 9
2 25 5 13 29
10 9,765,625 21 221 1581
20 95,367,431,640,625 41 841 11,561

� Smolyak grid grows polynomially with dimensionality .

� for � = 1, we have 1 + 2 elements (grows linearly);
� for � = 2, we have 1 + 4 + (4 ( ¬ 1))2 elements (grows

quadratically).

� A relatively small number of Smolyak grid points contrasts sharply
with a huge number of tensor-product grid points.
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Introduction

Examples of Smolyak grids
under the approximation levels � = 0, 1, 2, 3 for the two-dimensional case.
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Introduction
Our results: toward more e�cient Smolyak interpolation

1. E�cient construction of Smolyak polynomials.

� The nested-set construction of Smolyak polynomials is ine�cient: it
�rst creates a long list of repeated elements and then eliminates the
repeated elements from the list.

� We construct Smolyak polynomials using disjoint sets =) we avoid
costly repetitions of elements.

2. A Lagrange-style technique for computing coe�cients.

� The conventional Smolyak method computes polynomial coe�cients
using a formula with a large number of nested loops.

� We compute the coe�cients by precomputing a solution to the
inverse problem =) a simple, general and cheap technique.

3. Anisotropic grid: di�erent approximation levels for di�erent
variables.

� The conventional Smolyak method is symmetric (with the same
number of grids and polynomial functions for all variables).

� We develop an anisotropic version of the Smolyak method =) we
can vary the quality of approximation across variables.
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Introduction

Our results: adapting Smolyak method to economic applications

4. Adaptive domain.

� The Conventional Smolyak method constructs grid points in a
normalized multidimensional hypercube [¬1 1].

� We show how to e�ectively adapt the Smolyak hypercube
domain to the high-probability set of the given model.

5. Computer codes:

� We provide a simple and reliable MATLAB code for the Smolyak
method.
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Introduction

Two di�erent classes of sparse grid techniques in the literature:

1. Global polynomial approximation (we fall into this category); Smolyak
(1963), Delvos (1982), Wasilkowski and Wo�zniakowski (1999) and
Berthelmann et al. (2000), etc.
2. Piecewise approximations based on families of local basis functions;
Griebel (1998), Bungartz and Griebel, (2004), Ma and Zabaras (2009),
P �uger (2010), Heinkenschloss and Kouri (2012), etc.

Advantages of global methods:

� a global polynomial approximation is continuously di�erentiable
everywhere.

� our complexity grows polynomially, while the complexity of piecewise
basis functions grows exponentially.

However, piecewise approximations allow to re�ne approximations locally
while our possibilities of local re�nement are limited.
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Conventional Smolyak grid using nested sets

Unidimensional nested sets

� Construct sets of points  = 1 2  that satisfy two conditions:

{ Condition 1. Sets  = 1 2  have  () = 2¬ 1 + 1 points for  � 2
and  (1) � 1.

{ Condition 2. Each subsequent set  + 1 contains all points of the
previous set . Such sets are called nested.

� There are many ways to construct the sets of points, satisfying
Conditions 1 and 2.

� As an example, let us consider grid points
n

¬1 ¬1p
2
 0 1p

2
 1

o
in the

interval [¬1 1] and create 3 nested sets of points:
 = 1 : 1 = f0g;
 = 2 : 2 = f¬1 0 1g;

 = 3 : 3 =
n

¬1 ¬1p
2
 0 1p

2
 1

o
.
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Conventional Smolyak grid using nested sets

Tensor products of unidimensional nested sets

2 = 1 2 = 2 2 = 3

1
n2

0 ¬ 1 0 1 ¬ 1 ¬ 1p
2

 0 1p
2

 1

1 = 1 0 (0 0) (0 ¬ 1)  (0 0)  (0 1) (0 ¬ 1)  (0 ¬ 1p
2
) (0 0)  (0 1p

2
) (0 1)

1 = 2
¬ 1
0
1

(¬ 1 0)
(0 0)
(1 0)

(¬ 1 ¬ 1)  (¬ 1 0)  (¬ 1 1)
(0 ¬ 1)  (0 0)  (0 1)
(1 ¬ 1)  (1 0 )  (1 1)

(¬ 1 ¬ 1)  (¬ 1 ¬ 1p
2
) (¬ 1 0)  (¬ 1 1p

2
) (¬ 1 1)

(0 ¬ 1)  (0 ¬ 1p
2
) (0 0)  (0 1p

2
) (1 0)

(1 ¬ 1) (1 ¬ 1p
2
) (1 0) 

�
1 1p

2

�
(1 1)

1 = 3

¬ 1
¬ 1p
2
0
1p
2
1

(¬ 1 0)�
¬ 1p
2

 0

�
(0 0)�
1p
2

 0

�
(1 0)

.

(¬ 1 ¬ 1)  (¬ 1 0)  (¬ 1 1)
( ¬ 1p
2

 ¬ 1) ( ¬ 1p
2

 0) ( ¬ 1p
2

 1)

(0 ¬ 1)  (0 0)  (1 0)

( 1p
2

 ¬ 1) ( 1p
2

 0) ( 1p
2

 1)

(1 ¬ 1) (1 0)  (1 1)

(¬ 1 ¬ 1)  (¬ 1 ¬ 1p
2
) (¬ 1 0)  (¬ 1 1p

2
) (¬ 1 1)

( ¬ 1p
2

 ¬ 1) ( ¬ 1p
2

 ¬ 1p
2
) ( ¬ 1p

2
 0) ( ¬ 1p

2
 1p
2
) ( ¬ 1p

2
 1)

(0 ¬ 1)  (0 ¬ 1p
2
) (0 0)  (0 1p

2
) (1 0)

( 1p
2

 ¬ 1) ( 1p
2

 ¬ 1p
2
) ( 1p

2
 0) ( 1p

2
 ¬ 1p
2
) ( 1p

2
 1)

(1 ¬ 1) (1 ¬ 1p
2
) (1 0) 

�
1 1p

2

�
(1 1)
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Conventional Smolyak grid using nested sets

Smolyak sparse grid

� Smolyak (1963) rule used to select tensor products:

 � 1 + 2 � + �;

where � 2 f0 1 2 g is the approximation level, and  is the
dimensionality (in our case,  = 2).

� In terms of the above table, the sum of indices of a column 1 and a
raw 2, must be between  and + �.

� Let Hd;� denote the Smolyak grid for a problem with dimensionality
 and approximation level �.
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Conventional Smolyak grid using nested sets
Smolyak sparse grid:  = 2.

� If � = 0 =) 2 � 1 + 2 � 2. The only cell that satis�es this
restriction is 1 = 1 and 2 = 1 =) the Smolyak grid has just one
grid point

H20 = f(0 0)g 

� If � = 1 =) 2 � 1 + 2 � 3. The 3 cells that satisfy this
restriction: (a) 1 = 1, 2 = 1; (b) 1 = 1, 2 = 2; (c) 1 = 2, 2 = 1,
and the corresponding 5 Smolyak grid points are

H21 = f(0 0)  (¬1 0)  (1 0)  (0¬1)  (0 1)g 

� If � = 2 =) 2 � 1 + 2 � 4. There are 6 cells satisfy this
restriction =) 13 Smolyak grid points:

H22 = f(¬1 1)  (0 1)  (1 1)  (¬1 0)  (0 0)  (1 0)  (¬1¬1) 

(0¬1)  (1¬1)  (¬1p
2
 0) (

1p
2
 0) (0

¬1p
2
) (0

1p
2
)

�

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Conventional Smolyak polynomials using nested sets

Let Pd;� denote a Smolyak polynomial function in dimension , with
approximation level �,

Pd;� (1  ; )

=
X

max(d;�+1)�jj�+�

(¬1)+�¬j j
�

 ¬ 1
+ �¬ jj

�
jj (1  ) 

where jj (1  ) is the sum of 1 (1  ) with
1 + +  = jj de�ned as

1 (1  ) =

(1)X

1=1



()X

=1

1
 1 (1) � � �  

() 

where  (1)   () = number of basis functions in dimensions 1  ;
 () � 2¬1 + 1 for  � 2 and  (1) � 1;  1 (1)    

() =
unidimensional basis functions;  = 1  (); and 1

are polynomial

coe�cients.
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Conventional formula for Smolyak polynomial coe�cients

� Let us build multidimensional Smolyak grid points and basis
functions using unidimensional Chebyshev polynomials and their
extrema.

� Then, there is an explicit formula for 1
:

1
=

2

( (1)¬ 1) � � � ( ()¬ 1)
� 1

1 � � � 

�
(1)X

1=1

� � �
()X

=1

 1

¬
�1

�
� � �  

¬
�

�
� 

¬
�1   �

�
1 � � � 

 (1)

where �1   �
are grid points in dimensions 1  ;  = 2 for

 = 1 and  =  ();  = 1 for  = 2  ()¬ 1.
� If along any dimension ,  () = 1 =) this dimension is dropped

from computation, i.e.,  ()¬ 1 and 
= 1 are set to 1.

� Formula (1) is well known in the related literature; it is used, e.g., in
Malin et al. (2011).
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Ine�ciency of conventional Smolyak interpolation
� Ine�ciency: First, we create a list of tensor products with many

repeated elements and then, we eliminate the repetitions.

� Repetitions of grid points.

� H21: (0 0) is listed 3 times =) must eliminate 2 grid points out of
7.

� H22: must eliminate 12 repeated points out of 25 points.
� But grid points must be constructed just once (�xed cost), so

repetitions are not so important for the cost.

� Repetitions of basis functions.

� P21 lists 7 basis functions from sets f1g, f1  2 ()   3 ()g,
f1  2 ()   3 ()g and eliminates 2 repeated functions f1g by
assigning a weight (¬1) to j2j.

� P22: must eliminate 12 repeated basis functions out of 25.
� Smolyak polynomials must be constructed many times (in every grid

point, integration node and time period) and each time we su�er
from repetitions.

� The number of repetitions increases in � and  =) important
for high-dimensional applications.
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Smolyak method with Lagrange interpolation

We now present an alternative variant of the Smolyak method.

� First, instead of nested sets, we use disjoint sets, which allows us to
avoid repetitions.

� Second, we �nd the coe�cients using Lagrange-style interpolation.
This technique works for any basis function and not necessarily
orthogonal ones. Most of the computations can be done up-front
(precomputed).

� Our version of the Smolyak method will be more simple and intuitive
and easier to program.
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Step 1. Smolyak grid using disjoint sets

Unidimensional grid points using disjoint sets

� We construct the Smolyak grid using disjoint sets.

� We consider grid points
n

¬1 ¬1p
2
 0 1p

2
 1

o
in the interval [¬1 1]

and create 3 unidimensional sets of elements (grid points), 1, 2,
3, which are disjoint, i.e.,  \  = f?g for any  and .
 = 1 : 1 = f0g;
 = 2 : 2 = f¬1 1g;

 = 3 : 3 =
n
¬1p
2
 1p
2

o
.
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Step 1. Smolyak grid using disjoint sets

Tensor products of unidimensional disjoint sets of points

2 = 1 2 = 2 2 = 3

1
n2

0 ¬ 1 1 ¬ 1p
2

 1p
2

1 = 1 0 (0 0) (0 ¬ 1)  (0 1)

�
0 ¬ 1p

2

�


�
0 1p

2

�

1 = 2
¬ 1
1

(¬ 1 0)
(1 0)

(¬ 1 ¬ 1)  (¬ 1 1)
(1 ¬ 1)  (1 1)

�
¬ 1 ¬ 1p

2

�


�
¬ 1 1p

2

�
�
1 ¬ 1p

2

�


�
1 1p

2

�

1 = 3

¬ 1p
2
1p
2

�
¬ 1p
2

 0

�
�
1p
2

 0

�
�
¬ 1p
2

 ¬ 1
�



�
¬ 1p
2

 1

�
�
1p
2

 ¬ 1
�



�
1p
2

 1

�
�
¬ 1p
2

 ¬ 1p
2

�


�
¬ 1p
2

 1p
2

�
�
1p
2

 ¬ 1p
2

�


�
1p
2

 1p
2

�

We select elements that belong to the cells with the sum of indices of a column

and a row, 1 + 2, between  and + �. This leads to the same Smolyak

grids as before. However, in our case, no grid points are repeated.
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Smolyak grid using disjoint sets

Smolyak sparse grid

� We use the same Smolyak rule for constructing multidimensional
grid points

 � 1 + 2 � + �

That is, we select elements that belong to the cells in the above
table for which the sum of indices of a column and a row, 1 + 2, is
between  and + �.

� This leads to the same Smolyak grids H20, H21 and H22 as under
the construction built on nested sets. However, in our case, no grid
points are repeated.
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Step 2. Smolyak polynomials using disjoint sets

Disjoint sets of basis functions

The same construction as the one we used for constructing the grid
points.
 = 1 : 1 = f1g;
 = 2 : 2 = f 2()  3()g;
 = 3 : 3 = f 4()  5()g.



Introduction Conventional Smolyak method Smolyak method with Lagrange-style interpolation Smolyak formula without repetitions Nested-set versus disjoint-sets: comparison of costs Anisotropic grid Adaptive domain Numerical results for representative agent model Numerical results for a multi-country model Conclusion

Step 2. Smolyak polynomials using disjoint sets

Tensor products of unidimensional disjoint sets of basis functions

2 = 1 2 = 2 2 = 3

1
n2

1  2 ()   3 ()  4 ()   5 ()

1 = 1 1 1  2 ()   3 ()  4 ()   5 ()

1 = 2
 2 ()
 3 ()

 2 ()
 3 ()

 2 ()  2 ()   2 ()  3 ()
 3 ()  2 ()   3 ()  3 ()

 2 ()  4 ()   2 ()  5 ()
 3 ()  4 ()   3 ()  5 ()

1 = 3
 4 ()
 5 ()

 4 ()
 5 ()

 4 ()  2 ()   4 ()  3 ()
 5 ()  2 ()   5 ()  3 ()

 4 ()  4 ()   4 ()  5 ()
 5 ()  4 ()   5 ()  5 ()

For example, for � = 1, we get
P21 ( ; ) = 11 + 21 2() + 31 3() + 12 2() + 13 3().
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Step 3. Lagrange-style interpolation for �nding coe�cients

� Simply �nd the coe�cients so that a polynomial with  basis
functions passes through  given grid points.

� Let  : [¬1 1] ! R be a smooth function.

� Let P (�; ) be a polynomial function, P (; ) =
X

=1

	 (), where

	 : [¬1 1] ! R is a -dimensional basis function;  � (1   ) is
a coe�cient vector.

� We construct a set of  grid points f1  g within [¬1 1], and
we compute  so that the true function,  , and its approximation, P (�; )
coincide in all grid points:

2

4
 (1)
� � �

 ( )

3

5=

2

4
b (1; )
� � �

b ( ; )

3

5=

�Bz }| {2

64
	1 (1) � � � 	 (1)

� � � . . . � � �
	1 ( ) � � � 	 ( )

3

75�

2

4
1
� � �


3

5 
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Lagrange-style interpolation

� Provided that the matrix of basis functions B has full rank, we have
a system of  linear equations with  unknowns that admits a
unique solution for 

2

4
1
� � �


3

5 =

2

64
	1 (1) � � � 	 (1)

� � � . . . � � �
	1 ( ) � � � 	 ( )

3

75

¬1 2

4
 (1)
� � �

 ( )

3

5 

By construction, approximation P (�; ) coincides with true function

 in all grid points, i.e., b (; ) =  () for all  2 f1  g.

� For orthogonal basis functions, matrix B is well-conditioned.
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Our Smolyak polynomial using disjoint sets
� We hope you liked our construction without cumbersome formulas.

� However, for those of you who do like more the Smolyak formula, we

present our version of the Smolyak formula using disjoint sets.

� Our formula produces the same Smolyak polynomial but avoids

repetitions:

Pd;� (1  ; ) =
X

�jj�+�

jj (1  )  (2)

where jj (1  ) is the sum of 1 (1  ) whose indices

satisfy 1 + +  = jj,

1 (1  )

=

(1)X

1=(1¬1)+1



()X

=(¬1)+1

1
 1 (1) � � �  

()  (3)

where  1 (1)    
() are unidimensional basis functions, in

dimensions 1  ;  1 (1) � � �  
() is a -dimensional basis

function; by convention,  (0) = 0 and  (1) = 1.
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Nested-set versus disjoint-set constructions: comparison of
costs

� Recall that  () � 2¬1 + 1 for  � 2 &  (1) � 1 &  (0) = 0.

� Number of terms.

Nested-set construction: Disjoint-set construction:

P
max(d;�+1)�jj�+�

Y

=1

 ()
P

�jj�+�

Y

=1

[ ()¬ ( ¬ 1)]
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Nested sets versus disjoint sets: comparison of costs

� A ratio of the number of terms under the two constructions, Rd;�.

� For any  � 2, we reduce the number of terms by at least a factor
of 23 when we use disjoint sets instead of nested sets.
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Adapting Smolyak methods to economic applications

� Our previous analysis was intended to make the Smolyak
interpolation method more e�cient (i.e., less costly).

� Now, we show how to better adapt the Smolyak method to
economic applications.

� We will consider 3 ways to enhance the performance of the Smolyak
method.

� Anisotropic grid (di�erent treatment of variables).
� Adaptive domain (�tting the hypercube to a high probability set of a

given economic model).
� E�cient iterative procedure for �nding �xed point coe�cients.
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Anisotropic grid

� The conventional Smolyak method treats all dimensions
symmetrically: it uses the same number of grid points and basis
functions for all variables.

� In economic applications, it may be of value to give di�erent
treatments to di�erent variables.

� Why?

{ Decisions functions may have more curvature in some variables than
in others.

{ Some variables may have a larger range of values than the others.
{ Some variables may be more important than the others.

� Literature.

{ Gerstner and Griebel (1998, 2003): dimension-adaptive
tensor-product quadrature to integrate high-dimensional functions.

{ Kouri (2012): anisotropic grids to solve PDE with uncertain
coe�cients.
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Anisotropic grid

� Let � be an approximation level in dimension .

� Let � =
¬
�
1
 �

�
.

� Let �max = max
�
�
1
 �

	
� Note that � = max ¬ 1 where max is the maximum index of the

sets considered for dimension .

� Smolyak grid is called asymmetric (anisotropic) if there is at least
one dimension  such that  6=  for 8 6= .

� H(�
1
::;�) � a -dimensional anisotropic Smolyak grid of

approximation levels � =
¬
�
1
 �

�
.

� P(�
1
::;�) � the corresponding Smolyak polynomial.
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Tensor products of sets of unidimensional elements

2 = 1 2 = 2

1
n2

0 ¬ 1 1

1 = 1 0 (0 0) (0 ¬ 1)  (0 1)

1 = 2
¬ 1
1

(¬ 1 0)
(1 0)

(¬ 1 ¬ 1)  (¬ 1 1)
(1 ¬ 1)  (1 1)

1 = 3

¬ 1p
2
1p
2

�
¬ 1p
2

 0

�
�
1p
2

 0

�
�
¬ 1p
2

 ¬ 1
�



�
¬ 1p
2

 1

�
�
1p
2

 ¬ 1
�



�
1p
2

 1

�

1 = 4

¬

2+
p
2

2

¬

2¬
p
2

2
2¬
p
2

2
2+
p
2

2



 ¬

2+
p
2

2
 0







 ¬

2¬
p
2

2
 0










2¬
p
2

2
 0










2+
p
2

2
 0







 ¬

2+
p
2

2
 ¬ 1



 



 ¬

2+
p
2

2
 1







 ¬

2¬
p
2

2
 ¬ 1



 



 ¬

2¬
p
2

2
 1










2¬
p
2

2
 ¬ 1



 






2¬
p
2

2
 1










2+
p
2

2
 ¬ 1



 






2+
p
2

2
 1




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Anysotropic Smolyak sets
� The Smolyak rule: select elements that satisfy

 � 1 + 2 � + �max

� If � = (1 0), then �max = 1 and 2 � 1 + 2 � 3. The 3 cells that
satisfy this restriction are (a) 1 = 1, 2 = 1; (b) 1 = 1, 2 = 2; (c)
1 = 2, 2 = 1,

H2f10g = f(0 0)  (¬1 0)  (1 0)g 

� If � = (2 1), then �max = 2 and 2 � 1 + 2 � 4, there are 5 cells
that satisfy this restriction (a) 1 = 1, 2 = 1; (b) 1 = 1, 2 = 2; (c)
1 = 2, 2 = 1; (d) 1 = 1, 2 = 3; (e) 1 = 2, 2 = 2; and 11 points:

H2f21g = f(¬1 1)  (0 1)  (1 1)  (¬1 0)  (0 0)  (1 0)  (¬1¬1) 

(0¬1)  (1¬1)  (¬1p
2
 0) (

1p
2
 0)

�


� If � = (3 1), then �max = 3 and 2 � 1 + 2 � 5, there are 19
points.
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Anisotropic grids: an illustration



Introduction Conventional Smolyak method Smolyak method with Lagrange-style interpolation Smolyak formula without repetitions Nested-set versus disjoint-sets: comparison of costs Anisotropic grid Adaptive domain Numerical results for representative agent model Numerical results for a multi-country model Conclusion

Isotropic versus anisotropic grids: comparison of costs
� We compare isotropic and anisotropic grids in which no elements are

repeated. The number of elements depends on the speci�c
restrictions f�1 �g imposed.

� We show a limiting case when we have max1 = �+ 1 in dimension 1
and we have max = 1 for all other dimensions,  = 2  

The savings can be orders of magnitude when  and � are large.
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Adaptive domain

� The Smolyak construction (built on extrema of Chebyshev
polynomials) tells us how to represent and interpolate functions

de�ned on a normalized -dimensional hypercube ([¬1 1]).
� The solution domain of a typical dynamic economic model does not

have the shape of a hypercube but can be of any shape in a
-dimensional space.

� We describe how to e�ectively adapt a multidimensional hypercube
to an unstructured solution domain of a given problem.

� By choosing an appropriate system of coordinates, we are able to
reduce the Euler equation residuals signi�cantly (without increasing
the running time).



Introduction Conventional Smolyak method Smolyak method with Lagrange-style interpolation Smolyak formula without repetitions Nested-set versus disjoint-sets: comparison of costs Anisotropic grid Adaptive domain Numerical results for representative agent model Numerical results for a multi-country model Conclusion

Conventional hypercube vs. a hypercube obtained after the
change of variables
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How to construct the conventional hypercube

� Obtain simulated data: f �g
=1.

� De�ne
�
 
�

and
�
� �
�

as intervals for the state variables that we
get in the simulation.

� Where and � represent the maxima in each coordinate and and �
represent the minima in each coordinate. Consider a linear
transformation ( �) 2

�
 
�
�
�
� �
�

 = 2
 ¬ 

 ¬ 
¬ 1 and  = 2

� ¬ �

� ¬ �
¬ 1 (4)

� For instance,
�
 
�
= [08 12], with  being capital in the

steady state, and
�
� �
�
= [exp(¬08�1¬� ) exp(

08�
1¬� )]
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How to construct an adaptive hypercube

The procedure is similar to the one used in Judd, Maliar and Maliar
(2011, 2013) for constructing cluster and EDS grids.

1. Obtain simulated data: f �g
=1 

2. Normalize the data

e =
 ¬ �

�
and e� =

� ¬ ��
��

 (5)

where � and �� are means, and � and �� are standard deviations of of
capital and productivity.

3. Consider the singular value decomposition of the matrix of the

normalized data  �

2

64

e1 e�1
...

...
e

e�

3

75   =  >.
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How to construct an adaptive hypercube

4.  �  , the variables
�
1  2

	

=1
are called principal components

of  and are orthogonal (uncorrelated).

5. In order to use Chebyshev polynomials, it is necessary to stay in the
intervals between -1 and 1, therefore the same linear transformation
as above is applied. Once we are in [¬1 1]2 we can de�ne
interpolation nodes H2;�. In this step we collect 1, 1, 2 and 2

with the idea of inverting the procedure.

6. We can invert the process to obtain the interpolation nodes H2;� in
the same space that the real data f �g

=1 are.
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Smolyak grid on principal components
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Standard neoclassical stochastic growth model

max
f+1g1=0

0

1X

=0

�()

subject to
 + +1 = (1¬ �) + �()

ln � = � ln �¬1 + � with  � (0 1)

where:

�  +1 � 0, 0 and �0 are given;

� � 2 (0 1] is the discount factor;

� () is the utility function, increasing and concave;

� � 2 (0 1] is the depreciation rate of capital;

� ( �) is the production function; 0 is the operator of
conditional expectation;

� � 2 (¬1 1) and �  0.
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The algorithm iterating on Euler equation

Smolyak algorithm

Initialization.

a. Choose the approximation level, �.

b. Construct the Smolyak grid H2;� = f( )g=1 on [¬1 1]2.
c. Compute the Smolyak basis functions in each grid point .

The resulting  � matrix is B.
d. Fix � : ( �)! ( ), where ( �) 2 R2+ and ( ) 2 [¬1 1]2.

Use �¬ 1 to compute ( �) that corresponds to ( ) in H2;�.
e. Choose integration nodes, � , and weights,  ,  = 1   .
f. Construct future productivities, �0 = �� exp (�) for all ;

g. Choose an initial guess (1).
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The algorithm iterating on Euler equation

Step 1. Computation of a solution for .

a. At iteration , for  = 1   , compute

{ 0 = B(), where B is the th row of B.
{
�
0 0

�
that correspond to

�
0 �0

�
using �.

{ Compute the Smolyak basis functions in each point
�
0 0

�
.

{ The resulting  � �  matrix is B0.
{ 00 = B0(), where B0 is the th row of B0 in state .
{  = (1 ¬ �)  + � () ¬ 0;
{ 0 = (1 ¬ �) 0 + �� exp (�) (0) ¬ 00 for all ;

{ 0 � �



=1

 �
�
1(0)
1()

[1 ¬ � + �� exp (�) 1 (
0
)] 

0


�
b. Find  that solves the system in Step 1a.

{ Compute  that solves 0 = B, i.e.,  = B¬ 10.
{ Use damping to compute (+1) = (1 ¬ �) () + �, where � 2 (0 1].

{ Check for convergence: end Step 1 if 1
�



=1

���� (0)(+1)¬ (0)()(0)
()

����  10¬,   0.

Iterate on Step 1 until convergence.
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Results for the representative agent model

� CRRA utility function:  () = 1¬  ¬1
1¬  ;

� Cobb-Douglas production function:  () = �, with � = 13;

� AR(1) process: ln �0 = � ln � + �, with � = 095

� Discount factor: � = 099.

� Benchmark values: � = 0025,  = 1 and � = 001.

� Then, we consider variations in �,  and � one-by-one holding the
remaining parameters at the benchmark values.

� = f0, 01, 02, 03, 04, 05, 06, 07, 08, 09, 1g 

 = f1, 5, 10, 15, 20g 

� = f0001 0005, 001, 002, 003, 004, 005g 
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Conventional (isotropic) sparse grids under di�erent
approximation levels

� Consider approximation levels � = 1 2 3 4.
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Anisotropic sparse grids

� Consider 2 anisotropic cases: � = (3 1) and � = (1 3).

� There are 9 elements in the �rst dimension and 3 elements in the
second dimension =) 15 grid points and 15 basis functions.
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Adaptive domain
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Multicountry model

max
f

 
+1g=1

=01

0

X

=1

�

 1X

=0

�
¬



�!

s.t.
X

=1


 =

X

=1

h
�

 
¬




�
+ 

 (1¬ �)¬ 
+1

i


ln �
 = � ln �

¬1 + �

 

� 
 , 

 , 
 , ,  and � = consumption, capital, productivity level,

utility function, production function, welfare weight of a country ;

� � � � +
 , � �  (0�) is a common-for-all-countries shocks,


 �  (0�) is a country-speci�c productivity shocks;

� Thus,
¬
�1   �




�> � N (0 �), with 0 2 R ,

� =

0

@
2�2 ... �2

... ... ...
�2 ... 2�2

1

A 2 R� .
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Results for the multicountry model
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Conclusion

� The Smolyak method is designed to deal with high-dimensional problems,

but its cost still grows rapidly with dimensionality, especially if we target a

high quality of approximation.

� We propose a variant of the Smolyak method that has a better

performance (lower cost and higher accuracy).

� We introduce formula for Smolyak polynomials that avoids
repetitions and eliminates unnecessary function evaluations.

� We propose a simple Lagrange-style technique for �nding the
polynomial coe�cients.

� We develop an anisotropic version of the Smolyak grid that takes
into account an asymmetric structure of variables in economic model.

� As a solution domain, we use a minimum hypercube that encloses
the high-probability set of a given economic model.

� The above four improvements are related to Smolyak interpolation. Our

last improvement is concerned with an iterative procedure for solving

dynamic economic models. We propose to use �xed-point iteration

instead of time iteration.
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Anisotropic grids: accuracy bounds
We generalize Barthelmann et al. (2000) to anisotropic grids.
Consider the spaces  

1 = ([¬1 1]), with the norm

kk = max fk�k1 j� = 0  g and for   1  
 = ([¬1 1]),

with the norm kk = max
�
k�k1 j� 2 N

0 � � 
	

 Finite linear

combinations of functions 1  2       with  2  
 are dense in  



and k1  2      k = k1k k2k    kk. Let  denote the

embedding  
 ! ([¬1 1]). Moreover, let

kk = sup
�
k()k1 j 2  

  kk � 1
	

for  :  
 ! ([¬1 1]). We

use  to denote constants that only depend on  and .

Theorem
For the space  

 we obtain

   1 ¬ b1
   �  k1k�2¬2

¬1X

=1

¬+X

=

Y

=18: �max

   b 
 ¬ b ¬1



   

(6)

Proof.
Maliar, Maliar and Valero (2013). This is a technical part, and we do in a

separate paper.



Introduction Conventional Smolyak method Smolyak method with Lagrange-style interpolation Smolyak formula without repetitions Nested-set versus disjoint-sets: comparison of costs Anisotropic grid Adaptive domain Numerical results for representative agent model Numerical results for a multi-country model Conclusion

Anisotropic grids: intuition for the theorem

The theorem provides a useful intuition.

� The only term a�ected by anisotropy is

Y

=18 �max

   b 
 ¬ b ¬1



   .

� It shows how the quality of approximation improves when we
increase the level of approximation.

Example: Suppose we have a quadratic function. Then, the
approximation is perfect alone the dimension , the terms in the product
are zero starting from the third order and hence, the product is zero. A
further increase in the order of approximation will not change the
maximum norm. This is precisely the kind of case we want to show.
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Adaptive domain: accuracy bounds

Theorem
Assume that we interpolate function on hypercube domains 12 such
that 1 � 2. Then, the approximation errors satisfy
k1 ¬ ( )()k1 � k1 ¬ ( )()k2 

The intuition is that when we reduce the domain, we always reduce the
approximation errors according to the studied maximum norm because if
the maximum error is in the domain 2 the error does not change and if
it is in 1 but not in 2, the errors decrease.
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Semi-Markov models

� Markov model: transition probabilities  (+1 = 0j  = ) are
time-invariant function of state .

� Semi-Markov model is a generalization of Markov model that
allow for time-varying transitions  (+1 = 0j  = ), e.g.,

Markov: +1 = �z + �+1

Semi-Markov: +1 = � + �+1


� Semi-Markov processes may result from DGEM models with:
{ deterministic trends (population growth, climate changes, etc.);
{ unbalanced types of technological progress;
{ changes in consumer's tastes and habits;
{ entry into or exit from a monetary union (Brexit);
{ nonrecurrent policy regime changes;
{ deterministic seasonals;
{ expectation-driven dynamics; etc.

) Markov models are known; we focus on semi-Markov models.
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Turnpike theorem

� Turnpike (theorem) referred to a class of convergence results of
�nite-horizon to in�nite-horizon models.

� In in�nite-horizon Markov model, we must �nd one time-invariant
optimal value and/or decision functions.

� In in�nite-horizon semi-Markov model, we must �nd an in�nite
sequence of time-varying optimal value and/or decision functions
(because the optimal value and/or decision functions nontrivially
change from one period to another).

) Under turnpike property, we can approximate the solution to
in�nite-horizon semi-Markov model as a limit of �nite-horizon
semi-Markov model when time horizon goes to in�nity.
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Monetary policy

� We allow for monetary policies that are state contingent (rules) or
time contingent (path) or both.
{ Time-contingent: implement policy on January 1, 2020.
{ State-contingent: implement policy when unemployment is 3%.

� Great Recession: Forward guidance is time contingent (path) policy.

� Policy normalization = switching back state-contingent policy (e.g.,
Taylor rule).

Questions:

� Should the Fed normalize policy now or later?

� Should the Fed normalize policy gradually or all at once?

� Should the regime shift be announced in advance?

� Should the policy normalization be time or state contingent?

) Both state- and time-contingent policies are of interest.
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The plan of the talk:

1. Explain and test the methodology of analyzing semi-Markov models
using a simple growth model example.

2. Solve a collection of nonstationary growth models with:
{ capital augmenting technological progress;
{ anticipated regime switches;
{ parameter drifting;
{ time-varying volatility with a deterministic trend;
{ seasonal adjustments;
{ estimation and calibration of parameters in an unbalanced growth
model using data on the U.S. economy.

3. Discuss an example that violates the turnpike theorem - new
Keynesian model with forward guidance puzzle.

4. Conduct time-contingent monetary policy experiments in a
semi-Markov version of the large-scale ToTEM model of Bank of
Canada.
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A growth model with time-varying fundamentals

Agent solves:

max
f+1g1=0

0

" 1X

=0

� ()

#

s.t.  + +1 = (1¬ �)  +  ( ) ,

+1 =  ( +1) ,

{  � 0 and  � 0 are consumption and capital, resp.;
{ initial condition (0 0) is given;
{  : R+ ! R and  : R2+ ! R+ and  : R2 ! R are possibly
time-varying utility function, production function and law of motion for
exogenous state variable , resp.;
{ sequence of ,  and  for  � 0 is known to the agent in period
 = 0; +1 is i.i.d;
{ � 2 (0 1) = discount factor; � 2 [0 1] =depreciation rate;  [�] =
operator of expectation.
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Why cannot we solve time-varying model with
conventional solution methods?

A stationary Markov growth model:

 ( ) = max
0

f () + � [ (0 0)]g

s.t. 0 = (1¬ �)  +  ()¬ 

ln 0 = � ln  + 0 0 � N
¬
0�2

�


An interior solution satis�es the Euler equation:

0 () = � [0 (0) (1¬ � + 0 0 (0))] 

� Conventional solution methods: either iterate on Bellman equation
until a �xed-point  is found or iterate on Euler equation until a
�xed-point decision function 0 =  ( ) is found.

� However, if ,  , � and � are time-dependent, then  (�) 6= +1 (�)
and  (�) 6= +1 (�), i.e., no �xed-point functions  and .

� We need to construct a sequence (path) of time-contingent value
functions (0 (�)  1 (�)  ), decision functions (0 (�) 1 (�)  ).
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Making a model stationary: balanced growth

Some semi-Markov models can be reduced to Markov models, for
example, a class of balanced growth models.

However, the class of balanced growth models is limited:

� King, Plosser and Rebelo (1988) show that the standard neoclassical
growth model is consistent with balanced growth only under the
assumption of labor augmenting technological progress and under
some additional restrictions on  and  .

� If one deviates from their assumptions, the property of balanced
growth does not survive.
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Making a model stationary: extending state space

Some semi-Markov models can be reduced to Markov models by
extending the state space.

� Unanticipated Markov shocks can be treated as exogenous state
variables by including them into the state space, for example
{ Markov regime switching models (Davig and Leeper, 2007, 2009,
Farmer et al., 2011).
{ stochastic volatility models (Bloom, 2009, Fern�andez-Villaverde et
al. 2010).

� Anticipated shocks of �xed horizon and periodicity are also
consistent with stationarity, in particular,
{ deterministic seasonals (Barsky and Miron, 1989, Hansen and
Sargent, 1993, 2013);
{ news shocks (Schmitt-Groh�e and Uribe, 2012).



Introduction Semi-Markov models Extended Function Path EFP Applications Conclusion

Irreducable semi-Markov models

Generally, semi-Markov models cannot be reduced to Markov models.

� Deterministic trends typically lead to unbalanced growth:
{ investment-speci�c technical change (Krusell et al., 2000);
{ capital-augmenting technological progress, (Acemoglu, 2002);
{ decreasing labor-income shares (Karabarbounis and Brent, 2014).

� Parameter changes also lead to time-dependent value and decision
functions if they are anticipated; for example:
{ anticipated accessions of new members to a monetary union or
their exits (Breixt);
{ presidential elections with predictable outcomes;
{ credible policy announcements;
{ anticipated legislative changes; etc.

) We are interested in studying irreducible semi-Markov models.
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Our approach: turnpike property!

� Let us show a motivating example of the turnpike property for a
version of the model that admits a closed-form solution.

� We assume a full depreciation of capital � = 1, and Cobb-Douglas
utility and production functions:

 () = ln ()  and  ( ) = �1¬� 

where
{  = 0


 represents labor augmenting technological progress;

{ the productivity level follows ln +1 = � ln  + ��+1, where
�+1 � N (0 1), � 2 (¬1 1) and � 2 (01).
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Finite horizon moodel: backward induction

� The Bellman equation becomes for  = 1   :

 () = max
+1

�
ln

¬


�
 1¬� ¬ +1

�
+ � [+1 (+1)]

	


where we assume +1 (+1) = 0 and hence, +1 = 0.

� It is well known that the Bellman equation admits a closed-form
solution:

 =
��

1 + ��
¬1

�
¬1

1¬�
¬1,

¬1 =
�� (1 + ��)

1 + �� (1 + ��)
¬2

�
¬2

1¬�
¬2, etc.

The equilibrium functions are semi-Markov =  (¬1 ¬1) 
¬1 = ¬1 (¬2 ¬2), i.e., we have a path of decision
functions  ¬1  0
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Finite- versus in�nite-horizon trajectories

Figure 1. Finite- and in�nite-horizon solutions in the growth model.

� Trajectories with  = 15,  = 25 and  =1 are identical up to � .
� We can describe the trajectory of the economy with  =1 for the
�rst � periods by solving for  = 15, 25
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What is turnpike?

Turnpike � highway.
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Why is this property called "turnpike theorem"?
� Turnpike theorems: turnpike is often the fastest route between two

points even if it is not a direct shortest route.
� Example: Driving from Great Neck to Columbia: get on turnpike,

stay on turnpike as much as possible and get o� close to destination:
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Extended function path (EFP) method

We introduce a simple extended function path (EFP) framework for
analyzing semi-Markov models:

� Step 1. Assume that, in some remote period, the economy becomes
stationary and construct the usual Markov solution.

� Step 2. Given the terminal condition, solve backward the Bellman or
Euler equations to construct a sequence (path) of value and decision
functions.

� Step 3. Verify that the turnpike property holds (check that the
�nite-horizon solution is an accurate approximation to the
in�nite-horizon solution).

) This framework is called "EFP" because it is related to extended
path (EP) method of Fair and Taylor (1983).
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Extended function path (EFP) framework

Step 0. Initialization. Choose some  � � and construct a  -period stationary

economy such that  = ,  =  and  =  for all  �  .

Step 1. Construct a stationary Markov capital function  satisfying:

0() = � [0(0)(1¬ � +  0 (0  ( 0)))]
 =(1¬ �)  +  ( )¬0

0=(1¬ �) 0+ (0  ( 0))¬00

0 =  ( ) and 00 =  (0  ( 0)).
Step 2. Construct a path for capital policy functions (0  ) that matches

the terminal condition  �  and that satis�es for  = 0  ¬ 1:
0() = �

�
0+1(+1)(1¬ � +  0+1 (+1  ( +1)))

�
=(1¬ �) +  ( )¬+1

+1=(1¬ �) +1+ +1 (+1  ( +1))¬+2

+1 =  ( ) and +2 = +1 (+1  ( +1)) 
Step 3. Check the turnpike theorem.

Output: the �rst � functions (0 � ) constitute an approximate solution.
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Example of function path constructed by EFP
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Intuition behind turnpike theorem

When you are young, you behave as if you will live forever...
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Theoretical foundations of EFP framework

We prove two formal results:

� Theorem 1 (existence): EFP approximations exists, is unique and
possess a semi-Markov structure.

� Theorem 2 (turnpike): EFP can approximate a solution to
in�nite-horizon semi-Markov model with an arbitrary degree of
precision as the time horizon  increases.
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Theorem 1: Semi-Markov solution

Theorem 1 (semi-Markov structure). In the  -period stationary
economy, the solution exists, unique and semi-Markov.

Proof. Under our assumptions on ,  and the objective function, FOCs
are necessary for optimality. We will show that FOCs are also su�cient
to identify the solution and to establish its semi-Markov structure. Our
proof is constructive: it relies on backward induction.

Step 1. { At  , the economy becomes stationary and remains stationary
forever, i.e.,  � ,  �  and  �  for all  �  .
{ Thus, the model's equations and decision functions are time invariant
for  �  .
{ It is well known that under our assumptions on ,  and the objective
function, there is a unique stationary Markov capital function  that
satis�es the optimality conditions.
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Theorem 1: Semi-Markov solution (cont.)

Step 2. Given the constructed  -period capital function  � , we
de�ne the capital functions ¬1 0 in previous periods by using
backward induction. The Euler equation for period  ¬ 1,

0¬1(¬1) = �¬1 [
0
 ( )(1¬ � +  0 (   ))] ,

where ¬1 and  are related to  and +1 in periods  and  ¬ 1 by

¬1 = (1¬ �) ¬1 + ¬1 (¬1 ¬1)¬  ,

 = (1¬ �)  +  (   )¬ +1

{  follows a semi-Markov process, i.e.,  =  (¬1 ).
{ By construction, we have that +1 =  (   ) is semi-Markov.
{ Thus, we obtain a functional equation that de�nes  for each
(¬1 ¬1), i.e., the capital decisions at period  ¬ 1 are given by a
state-contingent function  = ¬1 (¬1 ¬1).
{ By proceeding iteratively backward, we construct
¬1 (¬1 ¬1)  0 (0 0). �
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Theorem 2: Turnpike theorem
Let us �x history 1 = (0 1) and initial condition (0 0) and

construct the productivity levels fg
=0 using the law of motion. Use

the constructed functions 0 (0 0)   (   ) to generate the
solution

�

  



	1
=0

for the  -period stationary economy


+1 = 

¬


  

�
,

where 
0 = 0, and 

 satis�es the budget constraint for all  � 0.

Theorem 2 (Turnpike theorem): For any real number   0 and any
natural number � , there exists a threshold terminal date  ( �) such
that for any  �  ( �), we have��1 ¬ 



��  , for all  � � ,

f1  1 g1=0 2 =1 = solution in the in�nite-horizon semi-Markov
economy;�

  



	

=0
= solution in the  -period stationary semi-Markov

economy.
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Theorem 2: Turnpike theorem (cont.)

� The convergence is uniform: The turnpike theorem states that for
all  �  ( �), the constructed nonstationary Markov
approximation

�




	
is guaranteed to be within a given -accuracy

range from the true solution f1 g during the initial � periods.

� For periods   � , our approximation may become insu�ciently
accurate and exit the -accuracy range.

� Proof is technically involved: we follow the early turnpike
literature, e.g., Brock and Gale (1969), Brock (1971), Brock and
Mirman (1972, 1973), Mirman and Zilcha (1977), Brock and
Majumdar (1978), Mitra and Zilcha (1981), Majumdar and Zilcha
(1987), Mitra and Nyarko (1991), Joshi (1997).

� But these papers are purely theoretical, while we o�er a tractable
quantitative EFP framework.
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Assessing EFP accuracy in a model with balanced growth

� We parameterize the growth model by

 () =
1¬  

1¬  
 and  ( ) = �1¬� 

{   0 and � 2 (0 1);
{  = 0


 = labor augmenting technological progress with an

exogenous constant growth rate  � 1.
� Productivity is assumed to follow

ln +1 = � ln  + �+1 +1 � N (0 1) 

� 2 (¬1 1), � 2 (01).
� This version of the model is consistent with balanced growth; see

King, Plosser and Rebelo (1988).

� We can solve the balanced growth model very accurately and use
the accurate solution for comparison.



Introduction Semi-Markov models Extended Function Path EFP Applications Conclusion

A comparison of four solution methods

We solve the nonstationary growth model using four alternative solution
methods:

1. "Exact solution" is a very accurate solution to the model with a
balanced growth path;

2. "EFP solution" is produced by the EFP method that solves the
nonstationary model directly;

3. "Naive solution" is produced by replacing the nonstationary model
with a sequence of stationary models, and it solves such models one
by one.
{ it neglects a connection between the decision functions of di�erent
periods (unlike EFP);

4. "Fair and Taylor solution" is produced by using Fair and Taylor's
(1983) method.
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Graphical illustration of four solution methods
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Table 1: Comparison of four solution methods

Fair-Taylor (1983) Naive EFP method
method, � = 1 method � = 200

Terminal Steady Steady - Balanced  -period
condition state state growth stationary

 200 400 200 200 200 400

Maximum errors across  periods in log10 units
 2 [0 50] -1.29 -1.29 -1.04 -6.82 -6.01 -6.42
 2 [0 100] -1.18 -1.18 -0.92 -6.68 -4.39 -5.99
 2 [0 150] -1.14 -1.14 -0.89 -6.66 -2.89 -5.98
 2 [0 175] -1.14 -1.13 -0.89 -6.66 -2.10 -5.98
 2 [0 200] -1.14 -1.13 -0.89 -6.66 -1.45 -5.92

Running time, in seconds
Solution 1.2(+4) 6.1(+4) 28.9 104.9 99.1 225.9
Simulation - - 2.6 2.6 2.8 5.7
Total 1.2(+4) 6.1(+4) 31.5 107.6 101.9 231.6
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Application 1: Model with capital augmenting
technological progress

� We assume a constant elasticity of substitution (CES) production
function, and we allow for both labor and capital augmenting
technological progresses,

 ( ) = [�()
 + (1¬ �)()

]
1



{  = 0



;  = 0



;  � 1; � 2 (0 1);
{ 

and 
= rates of capital and labour augmenting

technological progresses, resp.

� Labor is supplied inelastically. Let  = 1 for all . The
corresponding production function by () �  ( 1).

� The model with capital augmenting technological progress
does not admit a balanced growth path.
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Application 1: Model with capital augmenting
technological progress (cont.)
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Application 2: Anticipated technology shocks

0 100 200 300 400 500 600 700 800
0.95

1

1.05

1.1

1.15

1.2

time

Pr
od

uc
tiv

ity

0 100 200 300 400 500 600 700 800
30

40

50

60

C
ap

ita
l

time

0 100 200 300 400 500 600 700 800
2.5

3

3.5

4

C
on

su
m

pt
io

n

time

EFP solution
Naive solution

EFP solution
Naive solution



Introduction Semi-Markov models Extended Function Path EFP Applications Conclusion

Application 3: A model with seasonal changes
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Application 4: A nonstationary model with a parameter
drift (cont.)
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Application 5: Diminishing volatility

� We consider a model in which the volatility has both a stochastic
and deterministic components.

� We modify the standard neoclassical stochastic growth model to
include a diminishing volatility of the productivity shock:

ln  = � ln ¬1 + � � =


��
  � N (0 1) 

{  = a scaling parameter;
{ �� = a parameter that governs the volatility of .

� The standard deviation of the productivity shock ��� decreases

over time, reaching zero in the limit, lim!1
�

��
= 0.
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Application 3: Diminishing volatility (cont.)
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Application 6: Estimating unbalanced growth model with
U.S. data

� In spite of Kaldor's (1961) facts, we still observe visible di�erences
in growth rates across variables.

� We extend the benchmark model to include time-varying
depreciation rate of capital,

max
f+1g=01

0

1X

=0

�()

s.t.  + +1 = 
�
 + (1¬ �) 

ln � = �� ln �¬1 + � � � N
¬
0�2

�


ln  = � ln ¬1 +   � N
¬
0�2

�


� = a time-varying depreciation rate;  = a trend component of
depreciation,  = 0


; � = a stochastic shock to depreciation.
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Application 6: Estimating unbalanced growth model with
U.S. data (cont.)
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Application 7. New Keynesian model
� "Forward guidance puzzle": an observation that output and

consumption are excessively sensitive to central bank
announcements about future interest rates in new Keynesian models.
{ Del Negro, Giannoni and Patterson (2015).

� McKay, Nakamura and Steinsson (2016):

 =  [+1]¬ [log ¬  log �+1 ¬ log�] 

log � = � [log �+1] + �x

log+ = + [log �++1] + log� + +

 � log  ¬ log ;
+ = a + -period shock to the interest rate that is announced
in period . This yields

 = ¬
1X

=0

+

� Today's shock to the interest rate has the same e�ect as a shock
that happens a million years from now!
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Forward guidance puzzle - violation of turnpike theorem!

� Maliar and Taylor (2018) argue that FG puzzle happens only under
extreme and empirically implausible parameterizations.
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Conclusion

� Stationary Markov class of models is a dominant framework.

� A shortcoming of this framework is that it generally restricts the
parameters of economic models to be constant, and it restricts the
behavior patterns to be time invariant.

� We analyze a more  exible class of semi-Markov models that allows
for time-varying fundamentals and decision functions.

� We propose and test EFP framework for solving, calibrating,
simulating and estimating of parameters in such models.

� In another paper, we show semi-Markov policy experiments in
large-scale bToTEM model of Bank of Canada.

� THANK YOU!
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Introduction

Motivation and Objective

Some economic changes are recurrent
▶ high and low productivity states
▶ UK leaves the EU but might come back, etc.

Some regime changes are nonrecurrent (hopefully) and can be welfare-ranked
▶ abolishment of slavery
▶ women’s voting rights, etc.

Many (recurrent or nonrecurrent) policies are pre-announced
▶ taxes, tariffs, minimum wage, social security
▶ custom unions, monetary unions;
▶ inflation target, interest rate commitments

What do we do?
▶ Demonstrate the importance of anticipatory effects particularly in the context

of new Keynesian models
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Introduction

Policy experiments in a large-scale central banking model

1 Gradual decline of neutral interest rate

2 Gradual change of inflation target (certain or probabilistic)

3 Normalization of monetary policy regarding future nominal interest rates,
when economy is at ZLB

4 Switch to a more aggressive Taylor rule

5 Switch to price-level targeting

6 Switch to average inflation targeting
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Introduction

Findings

1 An anticipated gradual decline of neutral interest rate by 1 percent associated
with a corresponding increase in agents’ time discount factor leads (ceteris
paribus) to an expansion of the economy by more than 1 percent.

2 Postponing an increase in the inflation target by one year brings a sizable
increase in output over the transition. If this policy is implemented
probabilistically, there are still substantial anticipation effects both before and
after the resolution of uncertainty.

3 When an economy is at ZLB, forward guidance increases output growth over
the transition; however an initial jump in output is invariant to the horizon of
the forward guidance.

4 Twice as aggressive behavior of the central bank toward targeting inflation
and output, switching to price-level targeting or to average-inflation targeting
have only modest anticipation effects.
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Introduction

Existing solution methods

Conventional perturbation: time-invariant (stationary) solutions

Fair and Taylor (1983): a path under one specific realization of shocks using
certainty equivalence

▶ low accuracy in the presence of high volatilities or strong nonlinearities

Maliar, Maliar, Taylor and Tsener (2020): a functional solution using
accurate integration methods (Extended Function Path)

▶ high implementation and computational burden

Perturbation with news shocks by Schmitt-Grohé and Uribe (2012)
▶ suitable for events that come with the same periodicity and duration, but not

for one-time events

Methodological contribution

We offer a novel perturbation-based framework for studying anticipated
effects
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Methodology of numerical analysis

Methodology of numerical analysis

Equilibrium equations

Et [Gt (yt−1, yt, yt+1, zt+1, zt)] = 0

zt+1 = Zt (zt, ϵt+1)

where yt = vector of endogenous variables;
zt = vector of exogenous variables

Solution
yt = Yt (zt, yt−1)

a set of time-dependent equilibrium functions that satisfy the equilibrium
equations in the relevant area of the state space
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Methodology of numerical analysis

Methodology of numerical analysis

Step I: Solving a T -period stationary economy
▶ Assume that in a very remote period T , the economy becomes stationary, i.e.,

Gt (·) = G (·) and Zt (·) = Z (·) for all t ≥ T . The equilibrium system
becomes

Et [G (yt−1, yt, yt+1, zt+1, zt)] = 0

zt+1 = Z (zt, ϵt+1)

▶ Solve the system to find the solution

yT = ŶT (zT , yT−1)

Step II: Constructing a function path
▶ Using a T -period solution yT = ŶT (zT , yT−1) as the terminal condition,

Iterate backward for T − 1, ..., 1 on the equilibrium conditions

Et

[
Gt

(
yt−1, yt, Ŷt+1 (zt+1, yt), zt+1, zt

)]
= 0

zt+1 = Zt (zt, ϵt+1)

to construct a sequence (path) of time-dependent value and decision functions
{YT−1 (·) , ..., Y1 (·)}.
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Methodology of numerical analysis

Methodology of numerical analysis

We use perturbation to find numerical approximations of decision functions.

It is unclear around which point(s) the decision rules must be approximated,
because nonstationary and unbalanced growth models have no deterministic
steady state.

Possible solution: time-varying growth rates that capture how much
endogenous state variables grow due to the time trend or the parameter
change.

▶ particular growth rates could first be assumed (e.g., no growth)
▶ then the growth rates could be updated iteratively

V. Lepetyuk, L. Maliar, S. Maliar, J. Taylor ( )The Power of Open-Mouth Policies 13-15 October 2021 8 / 67



Methodology of numerical analysis

Portable Implementation

Perturbation solutions from Dynare

Standard second-order perturbation solution to a stationary model consists of

g (v;σ) ≈ g (v̄; 0) + gx (v̄; 0) (v − v̄)︸ ︷︷ ︸
1st-order perturbation solution

+
1

2
gxx (v̄; 0) (v − v̄)

2
+

1

2
gσσ (v̄; 0)σ

2︸ ︷︷ ︸
2nd-order terms

▶ a constant term of the policy function is given by g (v̄; 0) + 1
2
gσσ (v̄; 0)σ2 and

hence, is affected by variances of shocks.
▶ the first-order perturbation solution does not depend on the degree of

volatility σ, i.e., gσ (v̄; 0) = 0
▶ the cross partial derivative gσx (v̄; 0) is zero; see Schmitt-Grohé and Uribe

(2004).

Methods
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Methodology of numerical analysis

Portable Implementation

In Step I, a Taylor expansion of the policy functions in a stationary model is
found around the deterministic steady state v̄ of the model.

In Step II, we consider alternative options:
1 find solutions for vt+1 and vt around vt and vt−1, respectively, such that

vt = vt−1 ≡ v̄t
2 consider vt+1 and vt perturbed around v̄t and v̄t−1, respectively, such that

v̄t = v̄t−1γv,t−1, where γv,t−1 is a time-dependent growth rate; in Dynare, it
can be implemented by coding vt and vt+1 with different variable names.
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A simple illustration of our perturbation-based method

A simple illustration
Neoclassical stochastic growth model with labor augmenting technological
progress

max
{ct,kt+1}∞

t=0

E0

[ ∞∑
t=0

βtu (ct)

]
s.t. ct + kt+1 = (1− δ) kt + ztf (kt, At)

ln zt+1 = ρ ln zt + σεt+1, εt+1 ∼ N (0, 1)

where (k0, z0) is given; At = A0γ
t
A is labor augmenting technological progress

with γA ≥ 1
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A simple illustration of our perturbation-based method

Introducing turnpike theorem
Why cannot we solve a nonstationary model with conventional solution methods?

if At grows over time, then the optimal decision functions change over time,
i.e., Ct (·) ̸= Ct+1 (·)

▶ there is no fixed-point solution C (·) so that the conventional methods are not
applicable.

Under additional restrictions on preferences and technology, the model has
balanced growth and can be converted into stationary; see King et al. (1988).

We will not focus on this special case but will
approximate a sequence (path) of
time-dependent functions {C0 (·) , C1 (·) , ...}
In doing this, we exploit a turnpike theorem
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A simple illustration of our perturbation-based method

Turnpike theorem: an illustration

For illustration of turnpike property, consider for a version of the growth
model that admits a closed-form solution:

▶ Full depreciation of capital δ = 1
▶ Cobb-Douglas utility and production functions

ut (c) = ln (c) and ft (k, z) = zkαA1−α
t

Bellman equation

Vt (kt) = max
kt+1

{
ln
(
ztk

α
t A

1−α
t − kt+1

)
+ βEt [Vt+1 (kt+1)]

}
, t = 1, ..., T

Assume VT+1 (kT+1) = 0 and hence, kT+1 = 0

The closed-form solution

kT =
αβ

1 + αβ
zT−1k

α
T−1A

1−α
T−1, kT−1 =

αβ (1 + αβ)

1 + αβ (1 + αβ)
zT−2k

α
T−2A

1−α
T−2, ...

Parameterization: β = 0.99, α = 0.36, ρ = 0.95, σ = 0.01 and gA = 1.01
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A simple illustration of our perturbation-based method

Turnpike theorem: an illustration
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A simple illustration of our perturbation-based method

Turnpike theorem (informal)
If we are interested in the behavior of infinite-horizon non-stationary economy
during some initial number of periods τ , we can accurately approximate the
infinite-horizon solution by solving the finite-horizon model.

Turnpike theorem (more formal)
For any real number ε > 0 and any natural number τ , there exists a threshold
terminal date T (ε, τ) such that for any T ≥ T (ε, τ), we have∣∣k∞t − kTt

∣∣ < ε, for all t ≤ τ

{c∞t , k∞t }∞t=0 ∈ ℑ∞ = solution in the infinite-horizon economy;{
cTt , k

T
t

}T
t=0

= solution in the T -period stationary economy.
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A simple illustration of our perturbation-based method

Illustration of perturbation procedure for the growth model

In Step I, we construct a stationary (time-invariant) model of period T and
construct the corresponding Markov decision rule for consumption CT (·)
In Step II, we use CT (·) to iterate backward on Euler equations in order to
construct a sequence (path) of time-dependent value and decision functions
{CT−1 (·) , CT−2 (·) , ..., C0 (·)}, respectively.
As a final step, we should check the turnpike theorem by verifying that the
constructed finite-horizon solution for initial τ periods converges periodwise
to a limiting {C∗

0 (·) , C∗
1 (·) , ..., C∗

τ (·)} as time horizon T increases.
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A simple illustration of our perturbation-based method

Details of Step II

In Step II, we start from the constructed terminal condition for T and
proceed backward to compute the path of the decision functions for
t = T − 1, T − 2, ..., 0 by iterating backward on

u′(ct) = βEt [u
′(Ct+1 (kt+1, zt+1)) (1− δ + zt+1fk (kt+1, At+1))]

kt+1 = (1− δ) kt + ztf (kt, At)− ct

In particular, for period T − 1, given cT = CT (kT , zT ), we compute in
Dynare the decision function for cT−1 = CT−1 (kT−1, zT−1)

In period T − 2, given cT−1 = CT−1 (kT−1, zT−1) we find
cT−2 = CT−2 (kT−2, zT−2) and so on until the entire solution path is
constructed.

Perturbation solutions in Dynare are obtained around a deterministic growth
path.
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A simple illustration of our perturbation-based method

Details of Step II

We consider five alternative methods for constructing the deterministic
growth path:

▶ We either assume some exogenous growth rates or precompute the growth
rates endogenously by shutting down uncertainty in the model.

▶ Also, for each deterministic growth-path specification, we have two versions of
the algorithm: one in which a next-period policy function takes into account
the volatility of uncertainty σ, and the other in which it does not setting σ = 0.

▶ Motivation: Perturbation policy functions of second and higher orders of
approximation are not passing in general through a deterministic steady state
of the model. Even in the balanced growth model, if true policy functions for
period t+ 1 are combined with the model’s equations written for period t, the
deterministic steady state would not be a solution of the deterministic version
of the combined system of equations. This feature can be overcome by
recognizing explicitly that Ct+1 (·) depends on σ and by setting σ to zero
when computing the deterministic steady state.
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A simple illustration of our perturbation-based method

Methods 1 and 2

Methods 1 and 2 find local approximations of today’s consumption policy
function Ct (kt, zt) given the next-period function Ct+1 (kt+1, zt+1)

The difference between these two methods lies only in the point around
which the local approximation is taken

Method 1 finds local approximation in period t around a point (k∗t , 1) that
solves the following system of two equations for c∗t and k∗t

u′(c∗t ) = βu′(Ct+1 (k
∗
t , 1)) [1− δ + fk (k

∗
t , At+1)]

k∗t = (1− δ) k∗t + f (k∗t , At)− c∗t

In Method 2, the approximation is conducted around a point (k⋄t , 1) that
solves the following system of two equations for c⋄t and k⋄t

u′(c⋄t ) = βu′ (Ct+1 (k
⋄
t , 1; 0)) [1− δ + fk (k

⋄
t , At+1)]

k⋄t = (1− δ) k⋄t + f (k⋄t , At)− c⋄t

where Ct+1 (., .;σ) records explicitly the dependence of the decision function
on the uncertainty parameter σ. DecisionFunction
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A simple illustration of our perturbation-based method

Methods 1 and 2

In both methods, the point of approximation is computed assuming that
today’s and tomorrow’s capital are the same because we assume no growth
rate of capital.

Evidently, the first-order perturbation solutions obtained by Method 1 and 2
are identical, as such solutions do not depend on uncertainty.
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A simple illustration of our perturbation-based method

Methods 3 and 4

Methods 3 and 4 are the same as Methods 1 and 2, except they explicitly
account for time-varying growth rates.

In both methods, the growth rates γkt = k̃t+1/k̃t are computed from{
k̃t+1

}T

t=1
that solves (recursively backwards)

u′(c̃t) = βu′(c̃t+1)
(
1− δ + f

(
k̃t+1, At+1

))
k̃t+1 = (1− δ) k̃t + f

(
k̃t, At

)
− c̃t

Method 3 perturbs the solution in period t around a point (k∗t , 1) that solves
for k∗t and c∗t the following system of two equations:

u′(c∗t ) = βu′(Ct+1 (γktk
∗
t , 1))(1− δ + f (γktk

∗
t , At+1)

γktk
∗
t = (1− δ) k∗t + f (k∗t , At)− c∗t

Method 4 finds a perturbation solution around a point (k⋄t , 1; 0) and finds c⋄t
and k⋄t by solving

u′(c⋄t ) = βu′ (Ct+1 (γktk
⋄
t , 1; 0)) 1− δ + f (γktk

⋄
t , At+1)

γktk
⋄
t = (1− δ) k⋄t + f (k⋄t , At)− c⋄t
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A simple illustration of our perturbation-based method

Method 5

Method 5 is close to Method 3, but the path for growth rates is computed
iteratively.

We begin by exogenously fixing the path
{
γk,t

}T
t=1

and obtaining the policy
functions for a stochastic version of the model; this is similar to Method 3.

We simulate the model with the realized values of shocks set to zero,

... compute the growth rates of capital over this simulated path,

... and obtain the policy functions for a stochastic version of the model.

We can repeat the previous step as many times as necessary.
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A simple illustration of our perturbation-based method

Numerical results

Utility and production function

u (c) =
c1−γ − 1

1− γ
and f (k,A) = A1−αkα

Parameterization

α = 0.36, β = 0.99, δ = 0.025, ρ = 0.95

γ = 5, σε = 0.03, γA = 1.01, T = 200

For all simulations, we use the same initial condition (k0, z0) and the same

sequence of productivity shocks {zt}Tt=1.

We report absolute unit-free mean and maximum differences between our
approximate and balanced growth (“exact”) solutions (in log10 units).
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A simple illustration of our perturbation-based method

Method 1 Method 2 Method 3 Method 4 Method 5

First-order solution

Errors, in log10 units

Horizon Mean Max Mean Max Mean Max

[0, 50] -1.41 -1.13 -1.50 -1.22 -1.53 -1.23
[0, 100] -1.24 -0.97 -1.33 -1.11 -1.35 -1.12
[0, 150] -1.14 -0.77 -1.25 -1.08 -1.27 -1.08
[0, 175] -1.07 -0.58 -1.22 -0.94 -1.23 -0.97
[0, 200] -1.04 -0.58 -1.19 -0.94 -1.20 -0.97

Running time, in seconds

Solution 161.57 157.60 294.28 288.03 317.38

Second-order solution

Errors, in log10 units

Horizon Mean Max Mean Max Mean Max Mean Max Mean Max

[0, 50] -2.28 -2.03 -2.83 -2.53 -3.48 -2.95 -2.79 -2.24 -3.51 -2.92
[0, 100] -2.12 -1.90 -2.77 -2.53 -3.30 -2.93 -2.46 -2.05 -3.30 -2.91
[0, 150] -2.05 -1.80 -2.75 -2.53 -3.26 -2.88 -2.33 -2.03 -3.26 -2.88
[0, 175] -2.00 -1.71 -2.71 -2.15 -3.14 -2.23 -2.38 -2.03 -3.14 -2.23
[0, 200] -2.04 -1.71 -2.61 -1.79 -3.07 -2.23 -2.43 -2.03 -3.09 -2.23

Running time, in seconds

Solution 167.99 167.18 308.87 296.46 337.60
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A simple illustration of our perturbation-based method

Approximate and exact solutions
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A simple illustration of our perturbation-based method

Comparison to the other methods

Fair-Taylor (1983) Naive Global EFP P-EFP
method method

Type of approximation path path 3rd order 1st order 2nd order

Maximum errors, in log10 units

[0, 50] -1.29 -1.04 -6.35 -1.23 -2.92
[0, 100] -1.18 -0.92 -4.76 -1.12 -2.91
[0, 150] -1.14 -0.89 -3.22 -1.08 -2.88
[0, 175] -1.14 -0.89 -2.47 -0.97 -2.23
[0, 200] -1.14 -0.89 -1.51 -0.97 -2.23

Running time, in seconds

Solution 1.2(+4) 28.9 199.4 317.4 337.6
Simulation - 2.6 0.0244 0.0271 0.0348
Total 1.2(+4) 31.5 199.4 317.4 337.6

Numbers for Fair-Taylor (1983), Naive, Global EFP are taken from MMTT (2020)
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bToTEM

A scaled-down version of ToTEM

We take a scaled-down version of ToTEM constructed in LMM (2020)

DSGE model of Canadian economy that captures the main features of
ToTEM, the main Bank of Canada policy model

Households of the same type with differentiated labour services

Production of final-goods and production of commodities

Taylor-type interest rate rule

Meaningful trade
▶ some final goods and commodities are exported
▶ foreign imports are used in domestic production
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bToTEM Production

Two-stage production of final goods

1 In the first stage, intermediate goods are produced by identical perfectly
competitive firms from labour, capital, commodities, and imports

2 In the second stage, a variety of final goods are produced by monopolistically
competitive firms from the intermediate goods. The variety of final goods is
then aggregated into the final consumption good
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bToTEM Production

First stage of production
Production of intermediate goods by perfectly competitive firms

Zg
t =

(
δl (AtLt)

σ−1
σ + δk (utKt)

σ−1
σ + δcom

(
COMd

t

)σ−1
σ + δm (Mt)

σ−1
σ

) σ
σ−1

log (At) = φa log (At−1) + (1− φa) log
(
Ā
)
+ ξat

Capital depreciation with varying depreciation rate

Kt+1 = (1− dt)Kt + It

dt = d0 + deρ(ut−1)

Quadratic cost of adjusting investment

Zn
t = Zg

t − χi

2

(
It

It−1
− 1

)2

It

Firms maximize their profits

max E0

∞∑
t=0

R0,t

(
P z
t Z

n
t −WtLt − P com

t COMd
t − P i

t It − Pm
t Mt

)
s.t. the technology constraints

Rt,t+j = βj (λt+j/λt) (Pt/Pt+j) = stochastic discount factor
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bToTEM Production

Second stage of production

Each monopolistically competitive firm produces a differentiated good

Zit = min

(
Zn
it

1− sm
,
Zmi
it

sm

)
The differentiated goods Zit are aggregated into the final good Zt

Zt =

(∫ 1

0

Z
ε−1
ε

it di

) ε
ε−1

Cost minimization implies

Zit =

(
Pit

Pt

)−ε

Zt

where Pt =
(∫ 1

0
P 1−ε
it di

) 1
1−ε
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bToTEM Production

Second stage of production

Two types of monopolistically competitive firms: rule-of-thumb firms of
measure ω and forward-looking firms of measure 1− ω

Within each type, with probability θ the firms index their price to the
(time-varying) inflation target π̄t

With probability 1− θ the rule-of-thumb firms partially index their price

Pit = (πt−1)
γ
(π̄t)

1−γ
Pi,t−1

The optimizing forward-looking firms solve

max
P∗

t

Et


∞∑
j=0

θjRt,t+j

(
j∏

k=1

π̄t+kP
∗
t Zi,t+j

− (1− sm)P z
t+jZi,t+j − smPt+jZi,t+j

)}
subject to demand constraints

s.t. Zi,t+j =

(∏j
k=1 π̄t+kP

∗
t

Pt+j

)−ε

Zt+j

V. Lepetyuk, L. Maliar, S. Maliar, J. Taylor ( )The Power of Open-Mouth Policies 13-15 October 2021 31 / 67



bToTEM Production

Production details

Intermediate good demand and supply

Zn
t =

∫ 1

0

Zn
itdi = (1− sm)

∫ 1

0

Zitdi = (1− sm)∆tZt

∆t =
∫ 1

0

(
Pit

Pt

)−ε

di = price dispersion

Law of motion of price dispersion

∆t = θ

(
π̄t

πt

)−ε

∆t−1 + (1− θ)ω

(
(πt−1)

γ
(π̄t)

1−γ

πt

)−ε

∆t−1

+ (1− θ) (1− ω)

(
P ∗
t

Pt

)−ε

Investment goods and noncommodity exports are produced from the final
goods according to linear technology, P i

t = ιiPt and Pnc
t = ιxPt
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bToTEM Production

Imports

Intermediate imported goods are brought from abroad by monopolistically
competitive importers; abroad they are priced in foreign currency

Final imported good Mt is aggregated from the intermediate imported goods
Mit

Mt =

(∫ 1

0

M
εm−1
εm

it di

) εm
εm−1

The demand for an intermediate imported good

Mit =

(
Pm
it

Pm
t

)−εm

Mt

where Pm
t =

(∫ 1

0
(Pm

it )
1−εm di

) 1
1−εm
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bToTEM Production

Imports

With probability θm the intermediate importers index their selling price (in
domestic currency) to the inflation target π̄t

With probability 1− θm the importers optimize profits when their price is
effective

max
Pm∗

t

Et

 ∞∑
j=0

(θm)
j Rt,t+j

(
j∏

k=1

π̄t+kP
m∗
t Mi,t+j − et+jP

mf
t+jMi,t+j

)
subject to demand constraints

Mi,t+j =

(∏j
k=1 π̄t+kP

m∗
t

Pm
t+j

)−εm

Mt+j

Pmf
t = foreign price of imports;

et = nominal exchange rate (domestic price of a unit of foreign currency)
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bToTEM Production

Foreign demand and balance of payments

The foreign demand for Canadian noncommodity exports

Xnc
t = γf

(
Pnc
t

etP
f
t

)−φ

Zf
t

Pnc
t /et = foreign price of noncommodity exports;

P f
t = foreign general price level

The balance of payments

etB
f
t

Rf
t

(
1 + κf

t

) − etB
f
t−1 = Pnc

t Xnc
t + P com

t Xcom
t − Pm

t Mt

Bf
t = domestic holdings of foreign-currency denominated bonds;

κf
t = risk premium
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bToTEM Production

Foreign economy dynamics

Three exogenous processes describe the evolution of the rest of the world

Foreign demand for Canadian noncommodity exports

log
(
Zf
t

)
= φZf log

(
Zf
t−1

)
+
(
1− φzf

)
log
(
Z̄f
)
+ ξzft

Foreign interest rate

log
(
rft

)
= φrf log

(
rft−1

)
+
(
1− φrf

)
log (r̄) + ξrft

Foreign commodity price

log
(
pcomf
t

)
= φcomf log

(
pcomf
t−1

)
+
(
1− φcomf

)
log
(
p̄comf

)
+ ξcomf

t
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bToTEM Production

Commodity production

Commodities are produced from the final goods by perfectly competitive
domestic firms

COMt = (Zcom
t )

sz (AtF )
1−sz − χcom

2

(
Zcom
t

Zcom
t−1

− 1

)2

Zcom
t

F = a fixed production factor (land)

Commodities are sold domestically and exported to the rest of the world

COMt = COMd
t +Xcom

t

Commodities are sold at the world price

P com
t = etP

comf
t
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bToTEM Households

Households

Representative household’s period utility function

Ut =
µ

µ− 1

(
Ct − ξC̄t−1

)µ−1
µ exp

(
η (1− µ)

µ (1 + η)

∫ 1

0

(Lht)
η+1
η dh

)
ηct

C̄t = aggregate consumption;
Lht = labour service of type h

log (ηct) = φc log
(
ηct−1

)
+ ξct
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bToTEM Households

Households

Representative household solves

Et

 ∞∑
j=0

βtUt+j


s.t. PtCt +

Bt

Rt
+

etB
f
t

Rf
t

(
1 + κf

t

) = Bt−1 + etB
f
t−1 +

∫ 1

0

WhtLhtdh+Πt

Bt = holdings of domestic bonds;
Bf

t = holdings of foreign-currency denominated bonds

Endogenous risk premium induces stationarity

κf
t = ς

(
b̄f − bft

)
bft = etB

f
t /
(
πf
t+1PtȲ

)
= normalized bond holdings
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bToTEM Households

Labour unions

Representative household supplies a variety of differentiated labour Lht

Differentiated labour service is aggregated

Lt =

(∫ 1

0

L
εw−1
εw

ht dh

) εw
εw−1

and used in the first stage of production

Cost minimization implies the differentiated labour demand

Lht =

(
Wht

Wt

)−εw

Lt

Wht = wage for labour of type h;

Wt ≡
(∫ 1

0
W 1−εw

ht dh
) 1

1−εw
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bToTEM Households

Labour unions

Two types of labour unions: rule-of-thumb unions of measure ωw and
forward-looking unions of measure 1− ωw

Within each type, with probability θw a union indexes wage to the inflation
target π̄t, Wit = π̄Wi,t−1

With probability 1− θw rule-of-thumb unions partially index their wage

Wit =
(
πw
t−1

)γw (π̄t)
1−γw Wi,t−1

Forward-looking unions that do not index their wage choose the wage by
maximizing household utility when the wage would be effective

max
W∗

t

Et

 ∞∑
j=0

(βθw)
j
Ut+j


s.t. Lh,t+j =

(∏j
k=1 π̄t+kW

∗
t

Wt+j

)−εw

Lt+j ,

Pt+jCt+j =

j∏
k=1

π̄t+kW
∗
t Lh,t+jdh+ ...
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bToTEM Monetary policy

Monetary policy

Taylor rule

Rn
t = ρrRt−1+(1− ρr)

[
R̄+ ρπ (πt−π̄t) + ρY

(
log Yt− log Ȳt

)]
+ηrt

ηrt = φrη
r
t−1 + ξrt

Potential output changes with productivity

log Ȳt = φzf log Ȳt−1 +
(
1− φzf

)
log

(
AtȲ

Ā

)
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bToTEM Market clearing conditions

Market clearing conditions

Resource feasibility condition

Zt = Ct + ιiIt + ιxX
nc
t + Zcom

t + υzZt

GDP
Yt = Ct + It +Xnc

t +Xcom
t −Mt + υyYt

GDP deflator

P y
t Yt = PtCt + P i

t It + Pnc
t Xnc

t + P com
t Xcom

t − Pm
t Mt + υyp

y
t Yt
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Policy experiments with anticipated changes A decline in the real neutral interest rate

A decline in the real neutral interest rate

Nakamura and Steinsson (2018): Fed’s announcements contain information
about the path of the neutral interest rate

We consider an anticipated gradual decline in the neutral interest rate
▶ initial value of the real neutral interest rate is 3 percent
▶ it starts to go down to 2 percent gradually over 20 quarters
▶ the assumed decrease in the neutral interest rate is translated into an increase

in the discount factor

Main findings
▶ gradual increase in consumption, investment, labor, capital, and imports
▶ output expands due to significantly higher capital
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Policy experiments with anticipated changes A decline in the real neutral interest rate

A gradual decline in the real neutral interest rate
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Policy experiments with anticipated changes A change in the inflation target

A change in the inflation target

Following the Great Recession of 2007-2009, there have been proposals to
increase the inflation target in developed economies due to ZLB

▶ Summers (1991) and Fischer (1996) suggest to keep an inflation target in the
range of 1 to 3 percent mainly because of ZLB

▶ Krugman (1998) proposes to use a 4 percent inflation target in the Japanese
economy to deal with persisting deflation

▶ Blanchard, Dell’Arriccia and Mauro (2010), Williams (2009) and Ball (2013)
argue that a higher inflation target would have prevented the interest rate
from falling to the ZLB

▶ In Canada, the inflation target was maintained at the level of 2 percent since
1995; BoC considered an increase of the target in 2016 as the neutral rate has
felt and the ZLB probability has increased; anticipation effects might have
been present

We consider a change in the inflation target π̄t that appears in the Taylor rule

A new inflation target is announced in advance and everyone considers the
announcement to be fully credible

1 at t = 1, the CB makes an announcement that starting from t = 1, it will
gradually increase the inflation target from 2 to 3 percent during 8 quarters

2 the same change takes place but starting from t = 5 (i.e., in one year);
inflation target remains at the new (higher) level forever
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Policy experiments with anticipated changes A change in the inflation target

A gradual increase in the inflation target

Main findings
▶ Inflation follows the same pattern as the target

⋆ assuming full credibility of the inflation-target policy, the agents who are not
optimizers index their price by inflation target

▶ The economy experiences an investment- and export-driven growth
⋆ output, investment and commodity exports jump up following the

announcement

▶ The expansionary effect on the economy is temporary
⋆ output begins to descend toward its original level after four year

▶ It pays for the central bank to announce the policy in advance as output
increases more during the transition

⋆ agents expect the real interest rate to be lower in the near future, and they
accumulate more capital in advance of the more favorable environment
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Policy experiments with anticipated changes A change in the inflation target

A gradual increase in the inflation target
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Policy experiments with anticipated changes A change in the inflation target

Residuals in the model’s equations on the simulated path, log10 units

Rt πt Yt Ct It Xnc
t Xcom

t Mt Lt Kt

Average −4.66 −5.25 −4.09 −4.47 −5.11 −4.10 −3.17 −5.10 −4.42 −5.91
Maximum −4.30 −5.17 −4.03 −4.38 −5.03 −4.08 −3.13 −4.98 −4.37 −5.84

Residuals are very small, smaller than we report in LMM (2020) for the
global solution when the economy was hit by a large foreign demand shock
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Policy experiments with anticipated changes A change in the inflation target

A gradual increase in the inflation target (50% probability)

We consider a probabilistic setting in which agents rationally expect that the
inflation target might change in the future

▶ a 50-percent chance that starting from t = 5 the inflation target π̄t gradually
increases from 2 to 3 percent during 8 quarters;

▶ otherwise, the inflation target remains the same

Our computational method is easy to adapt for modeling of this experiment:
▶ When computing policies in period t = 4, we specify explicitly using the

Dynare macro language that period-4-expectations are weighted sums of
expectations over the two possible realizations in period t = 5

Main findings
▶ Inflation mimics the behavior of the inflation target
▶ All the variables experience mild increases, which are due to anticipatory

effects on the side of economic agents.
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Policy experiments with anticipated changes A change in the inflation target

A gradual increase in the inflation target (50% probability)
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Policy experiments with anticipated changes Monetary policy normalization

Monetary policy normalization

At ZLB, central banks could not rely on Taylor rules

Eggertsson and Woodford (2003), Forward Guidance: central bank’s promises
to keep low interest rates for longer periods helps to alleviate negative
consequences of binding ZLB

We assume that at t = 1 the CB announces that it will keep the interest rate
at ELB for T periods

Rt = Relb

and it will return to the standard Taylor rule afterwards

We compare three cases, depending on whether the interest-rate policy
returns to normal: in one quarter, in one year, in two years

Interest rate is initially below its risky steady state in all the cases

Main findings
▶ After the policy announcement, the economy experiences an expansion due to

strong exports and investment
▶ The initial reaction of output is roughly of equal size in all three cases
▶ The more prolonged is the forward guidance the larger is the expansion
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Policy experiments with anticipated changes Monetary policy normalization

Forward guidance
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Policy experiments with anticipated changes Switching to a more aggressive Taylor rule

Switching to a more aggressive Taylor rule

We consider a one-time change in the sensitivity of the policy rate to
inflation and output gap

▶ values of ρπ and ρY in the Taylor rule are doubled
▶ the change is announced at t = 1 and occurs at t = 2

Main findings
▶ The increase in the sensitivity to inflation ρπ is more effective in expanding the

economy, both over the transition and in the long-run
▶ Switching effects are quantitatively small in the absence of shocks
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Policy experiments with anticipated changes Switching to a more aggressive Taylor rule

A switch to more aggressive Taylor rules
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Policy experiments with anticipated changes Switching to price-level targeting

Switching from inflation targeting to price-level targeting

Under inflation targeting, past deviations of inflation from target are ignored
(“lets bygones to be bygones”)

Under price-level targeting (PLT), any movement in inflation above target is
matched with an equal and opposite movement in inflation below target, so
that the economy moves along a predetermined price path

PLT rule

Rt = ρrRt−1 + (1− ρr)
[
R̄+ ρπ

(
logPt − log P̄t

)
+ ρY

(
log Yt − log Ȳt

)]
where P̄t = P̄t−1π̄t

Svensson (1999): PLT reduces inflation variability without an increase in
output variability

Bank of Canada (2011): PLT is marginally beneficial

Bernanke (2017): temporary PLT at ZLB
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Policy experiments with anticipated changes Switching to price-level targeting

Switching from inflation targeting to price-level targeting

Implementation
▶ The policy change becomes effective either immediately (at t = 1) or in one

year after being announced (at t = 5)

Main finding
▶ The immediately implemented policy gives larger benefits than the policy

announced one year in advance
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Policy experiments with anticipated changes Switching to price-level targeting

A switch to price-level targeting

5 10 15 20
0

0.02

0.04

0.06

0.08
Nominal Interest Rate

5 10 15 20
0.01

0.02

0.03

0.04
Inflation

5 10 15 20
0

0.05

0.1

0.15

Output

5 10 15 20
0

0.05

0.1

0.15
Exchange Rate

5 10 15 20
0

0.05

0.1

0.15

0.2
Consumption

5 10 15 20
0

0.2

0.4

0.6
Investment

5 10 15 20
0

0.05

0.1

0.15

0.2
Commodity Export

5 10 15 20
0

0.02

0.04

0.06
Noncommodity Export

5 10 15 20
0

0.1

0.2

0.3
Imports

5 10 15 20
0

0.05

0.1

0.15

0.2
Capital

5 10 15 20
0

0.05

0.1

0.15

0.2
Labour

5 10 15 20
-0.02

0

0.02

0.04

0.06
Real Interest Rate

effective immediately announced one year in advance

V. Lepetyuk, L. Maliar, S. Maliar, J. Taylor ( )The Power of Open-Mouth Policies 13-15 October 2021 58 / 67



Policy experiments with anticipated changes Switching to price-level targeting

Negative foreign demand shock and a switch to price-level targeting

Another implementation
▶ A negative innovation in the random-walk process for the foreign demand

Main findings
▶ With the policy switch, output recovers to nearly the same level as before the

permanent foreign demand shock
▶ The immediate policy change has larger impacts than the delayed policy

change
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Policy experiments with anticipated changes Switching to price-level targeting

A negative foreign demand shock and a switch to price-level targeting
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Policy experiments with anticipated changes Switching to average inflation targeting

Switching from inflation targeting to average inflation targeting

Average inflation targeting is a middle ground between price-level targeting
and inflation targeting; see Nessén and Vestin (2005)

Average inflation targeting rule

Rt = ρrRt−1 + (1− ρr)

[
R̄+ ρπ

(
1

M+1

M∑
j=0

πt−j − π̄t

)
+ ρY

(
log Yt − log Ȳt

)]

Amano et al. (2020) find that the optimal M ranges from 2 to 8

We assume M = 8 to match the largest value found

Main finding
▶ Anticipation effects on the economy in the absence of any shocks are very

modest
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Policy experiments with anticipated changes Switching to average inflation targeting

Switching from inflation targeting to average inflation targeting
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Comparison with news shocks

Are news shocks the same as anticipation effects?

News shocks could be an important driving force of business cycles; see Barro
and King (1984), Beaudry and Portier (2006), Beaudry and Portier (2007),
Jaimovich and Rebelo (2009).

Schmitt-Grohé and Uribe (2012) propose a tractable perturbation framework
for dealing with anticipated changes

▶ the changes are modelled as periodic shocks that follow a Markov process
▶ an anticipated shock happens with some specified periodicity
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Comparison with news shocks

Are news shocks the same as anticipation effects?

We consider again a switch to a more aggressive Taylor rule, namely,
▶ the sensitivity to inflation ρπ in the Taylor rule is doubled
▶ the permanent change in ρπ is announced at t = 1 and implemented at t = 2

The analysis of Schmitt-Grohé and Uribe (2012) does not specify how their
method can be used for analyzing non-recurrent anticipated events

We try two ways of adapting periodic news shocks to our experiment:
▶ a unit-root process, ρπ,t = ρπ,t−1 + εt−1

⋆ ρπ,0 = ρπ̄ , ε1 = ρπ̄ which implies ρπ,1 = ρπ̄ and ρπ,t = 2ρπ̄ for all t ≥ 2

▶ temporary news shock, ρπ,t = ρπ̄ + εt−1

⋆ ρπ,2 = 2ρπ̄ in period t = 2 and ρπ,t = ρπ̄ in all other periods

▶ in both cases, the volatility of the news shock is assumed to be zero

The initial risky steady state is the same for all three solutions
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Comparison with news shocks

Are news shocks the same as anticipation effects?

Main findings
▶ Qualitatively similar dynamics (in the initial periods), but numerically different

second-order responses
▶ The news-shock approach with the permanent shock significantly overstates

the importance of anticipated shocks
⋆ the economy is unexpectedly hit by a shock and remains away from the previous

steady state forever

▶ Under the first-order perturbation, the economy would remain at the
deterministic steady state in the two news-shock solutions
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Comparison with news shocks

Are news shocks the same as anticipation effects?
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Comparison with news shocks

Conclusion

We provide a correct evaluation on the effects of agents’ expectations on
policy outcomes within a DSGE framework

We focus on anticipation effects of monetary policy in a context of a realistic
DSGE model of central banking

The anticipation effects are the strongest for such time dependent economic
changes as

▶ a gradual change in the natural rate of interest
▶ policy-rate normalization in the aftermath of the ZLB crisis
▶ a gradual change in the inflation target level

The other time dependent policy changes lead to more modest anticipation
effects

▶ a switch to a more aggressive policy rate rule
▶ a switch to price-level targeting
▶ a switch to average inflation targeting

We offer a simple and tractable perturbation-based framework for solving and
simulating a macroeconomic model

Our analysis makes it possible to construct a precise model-consistent path of
real-world economies
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Neuron Model: Logistic Unit



Types of Neurons

Linear Neuron

Perceptron

Logistic Neuron

Potentially more. Require a
convex loss function for gradient
descent training.



Activation - sigmoid

{ Squashes the neuron's
pre-activation between 0 and 1

{ Always positive

{ Bounded

{ Strictly increasing

 () =
1

1 + ¬



Activation - hyperbolic tangent (tanh)

{ Squashes the neuron's
pre-activation between ¬1 and 1

{ Can be positive or negative

{ Bounded

{ Strictly increasing

 () = tanh () =
 ¬ ¬

 + ¬



Activation - recti�ed linear (relu)

{ Bounded below by 0, always
non-negative

{ Not upper bounded

{ Tends to give neurons with
sparse activities

 () =  () = max (0 )



Deep Neural Network



Feed-Forward Process

� Input layer units are set by some exterior function (think of these as
sensors), which causes their output links to be activated at the
speci�ed level

� Working forward through the network, the input function of each
unit is applied to compute the output value

{ Usually this is just the weighted sum of the activation on the links
feeding into this node

� The activation function transforms this input function into a �nal
value

{ Typically this is a nonlinear function, often a sigmoid function
corresponding to the \threshold" of that node



Feed-Forward Networks

Predictions are fed forward through the network to classify.



Feed-Forward Networks

Predictions are fed forward through the network to classify



Feed-Forward Networks

Predictions are fed forward through the network to classify



Feed-Forward Networks

Predictions are fed forward through the network to classify



Feed-Forward Networks

Predictions are fed forward through the network to classify



Feed-Forward Networks

Predictions are fed forward through the network to classify



Neural Network



Vectorization



TensorFlow

TensorFlow Demonstration
https://playground.tensorflow.org

https://playground.tensorflow.org


Understanding Representations



Representing Boolean Functions



Representing Boolean Functions



Combining Representations to Create Non-Linear Functions



Multiclass Classi�cation



Multiple Output Units: One-vs-Rest

Pedestrian Car Motorcycle Truck



Multiple Output Units: One-vs-Rest



Neural Network Classi�cation



Activation - softmax

� For multi-class classi�cation:
{ we need multiple outputs (1 output per class)
{ we would like to estimate the conditional probability  ( =  j )

� We use the softmax activation function at the output:

 () = softmax () =

�
1

P
 




P
 

�



Layering Representations

20� 20 pixel images

 = 400 10 classes

Each image is \unrolled" into a vector  of pixel intensities.

120
...

381400



Layering Representations

Visualization of Hidden Layer



LeNet 5

� LeNet 5 Demonstration

http://yann.lecun.com/exdb/lenet

http://yann.lecun.com/exdb/lenet


Neural Network Learning



Universal approximation theorem

\a single hidden layer neural network with a linear output unit can
approximate any continuous function arbitrarily well, given enough hidden
units"

Hornik, 1991



Learning in NN: Backpropagation

� We cycle through our examples

{ If the output of the network is correct, no changes are made
{ If there is an error, weights are adjusted to reduce the error

� The trick is to assess the blame for the error and divide it among the
contributing weights



Cost function for logistic regression

� Consider a classi�cation problem with two labels  2 f0 1g.

� To understand the cost function of the neural network, we �rst
derive the cost function for logistic regression using the maximum
likelihood estimator.

� Let us denote

 ( = 1 j ; �) = � ()

 ( = 0 j ; �) = 1¬ � ()

� Note that this formula can be written compactly as

 ( j ; �) = (� ())

(1¬ � ())

1¬

� Indeed if  = 1, then  ( j ; �) = (� ())
1
(1¬ � ())

0

� Indeed if  = 0, then  ( j ; �) = (� ())
0
(1¬ � ())

1



Cost function for logistic regression (cont.)

� Assume that  samples are generated independently, we get

 (�) =  (y j x; �) =
Y

=1


�
() j (); �

�
=

Y

=1

�
�

�
()

��() �
1¬ �

�
()

��1¬()

� Taking the log to simplify calculations, we get

 (�) = log (�)

=
X

=1

() log
�
�

�
()

��
+
�
1¬ ()

�
log
�
1¬ �

�
()

��



Cost Function: logistic regression versus neural network



Optimizing the Neural Network



Forward Propagation



Backpropagation Intuition

� Each hidden node  is \responsible" for some frac-

tion of the error �
()
 in each of the output nodes  to which it connects

� �() is divided according to the strength of the  connection between
hidden node and the output node

� Then, the \blame" is propagated back to provide the error values for
the hidden layer.



Backpropagation Intuition



Backpropagation Intuition



Backpropagation Intuition



Backpropagation Intuition



Backpropagation Intuition



Backpropagation: Gradient Computation



Training a Neural Network via Gradient Descent with
Backprop



Backprop Issues

\Backprop is the cockroach of machine learning. It's ugly, and annoying,
but you just can't get rid of it."

- Geo� Hinton

Problems:

{ black box
{ local minima



Machine learning, arti�cial intelligence and deep
learning methods for dynamic economic models:

Unsupervised learning

Lilia Maliar, Serguei Maliar

November 2022

Minicourse



Hypercube versus ergodic set

� Conventional projection methods including the Smolyak method
operate on exogenously given hypercube.

� However, many areas of the hypercube have low probability of
occurrence - we might not need to know the solution in low
probability areas.

� Stochastic simulation methods construct the solution on a set of
simulated points where the solution "lives".

Operating on the ergodic set can saves on cost a lot!



Illustrative example: a representative-agent model

The representative-agent neoclassical stochastic growth model:

max
f+1g1=0

0

1X

=0

� ()

s.t.  + +1 = (1¬ �)  + � () 

ln �+1 = � ln � + �+1, �+1 � N
¬
0�2

�


where initial condition (0 �0) is given;
 (�) = utility function;  (�) = production function;
 = consumption; +1 = capital; � = productivity;
� = discount factor; � = depreciation rate of capital;
� = autocorrelation coe�cient of the productivity level;
� = standard deviation of the productivity shock.



Advantage of stochastic simulation method

Advantage of stochastic simulation method: "Grid" is adaptive: we
solve the model only in the area of the state space that is visited in
simulation.



Reduction in cost in a 2-dimensional case

� How much can we save on cost using the ergodic-set domain
comparatively to the hypercube domain?

� Suppose the ergodic set is a circle (it was an ellipse in the �gure).

� In the 2-dimensional case, a circle inscribed within a square occupies
about 79% of the area of the square.

� The reduction in cost is proportional to the shaded area in the �gure.

� It does not seem to be a large saving in cost.



Reduction in cost in a d-dimensional case
� In a 3-dimensional case, the gain is larger (a volume of a sphere of

diameter 1 is 52% of the volume of a cube of width 1)

� In a -dimensional case, the ratio of a hypersphere's volume to a
hypercube's volume

V =

8
<

:
(�2)

¬ 1
2

1�3�� for  = 1 3 5
(�2)


2

2�4�� for  = 2 4 6


� V declines very rapidly with dimensionality of state space. When
 = 10 ) V = 3 � 10¬3 (03%). When  = 30 ) V = 2 � 10¬14.

� We face a tiny fraction of cost we would have faced on the
hypercube.



Starting point: Parameterized expectations algorithm
(PEA) of den Hann and Marcet (1990)

� PEA solves a model as follows:

 1 Guess policy functions / value function.

 2 Simulate time series solution.

 3 Use simulation results to recompute the guess.

Iterate on  2¬ 3 until convergence.

� Step 3 requires

� to �t an approximating function to the simulated data (regression);
� to evaluate conditional expectations (integration).



PEA of den Haan and Marcet (1990) more formally
Parameterize the marginal utility function,

0 () =  f�0 (+1) [1¬ � + +1
0 (+1)]g � 	 ( ; ) 

where 	 ( ; ) = exp
�
0 + 1 ln  + 2 ln  + +  (ln )


�

is an

exponentiated polynomial. Write the constraint as

+1 = (1¬ �)  +  ()¬ 0¬1 [	 ( ; )] 

� Fix  = (0  ). Given fg
=0, simulate f +1g

=0 and
construct

 � �0 (+1) [1¬ � + +1
0 (+1)] 

� Run a non-linear LS (NLLS) regression  = 	 ( ; )+  ) get b.
� Compute the next-iteration input (+1) using �xed-point iteration

(+1) = (1¬ �) () + �b

where � 2 (0 1] = damping parameter.



A promising stochastic integration method
PEA uses simulated series for two objectives:

� A solution domain.

� A grid of nodes for approximating conditional expectation.

A speci�c one-node Monte Carlo integration method is used:

 [
0 (+1) [1¬ � + +1

0 (+1)]]

� 0 (+1) [1¬ � + +1
0 (+1)] � 

Here, integral is approximated by a next-period realization of the
integrand:

(+ 1) �     (+ 1)

1. This is an inaccurate integration method for each given period but
the inaccuracies o�set one another when we run a regression to
approximate the expectation function (although at a slow squareroot
rate of convergence).

2. But this is a cheap integration method. Just one integration node
(simulated point) is used in each period.



Numerical instability problem
� PEA works well for 1st-degree polynomials but is numerically

unstable under higher (even 2-nd) degree polynomials.
� For example, Den Haan and Marcet (1990) removed a cross term
ln  ln  in the 2-nd degree polynomial,

exp

0

@0 + 1 ln  + 2 ln  + 3 ln 2 + 4 ln 2 + 5 ln  ln | {z }
 

1

A 

� What is the reason for numerical stability?
� Under the linear regression model,  = + , we have the OLS

estimator
b =

¬
>

�¬1
>

where  in the above PEA example is

 =

0

@
1 0 0 20 20 00
  
1   2 2  

1

A

� It turned out that monomial terms constructed on simulated series
are highly collinear so that the LS problem is ill-conditioned.



Ill-conditioned LS problem

� The degree of ill-conditioning of > is measured by the condition
number

K
¬
>

�
� �1
�

�1 = the largest eigenvalue of >; � = its smallest eigenvalue.

� Ill-conditioning: K
¬
>

�
is large =) > is close to being

singular (not invertible).



Multicollinearity of variables produces ill-conditioning

Under ordinary polynomials, monomials forming  are highly correlated,
OLS coe�cients "jump" and the iterative process fails to converge.

Example
Consider an approximation problem  = +  such that  = (0 0)



and �
0
0

�
=

�
1 + � 1
1 1 + �

� �
1
2

�
+

�
1
2

�


The OLS solution is

b1 =
1

�

�
2 ¬ 1 (1 + �)

2 + �

�
and b2 =

1

�

�
1 ¬ 2 (1 + �)

2 + �

�


Sensitivity of b1 and b2 to perturbation in (1 2)
 is proportional to

1=�. If � � 0 (multicollinearity), then a small perturbation (1 2)


produces large changes in b1 and b2.



Poor scaling of variables also produces ill-conditioning

Polynomial terms forming  have very di�erent means and variances
(due to di�erent scales among either the state variables,  and , or the
polynomial terms of di�erent orders, like  and 5 ).

Example
Consider an approximation problem  = +  such that  = (0 0)



and �
0
0

�
=

�
1 0
0 �

� �
1
2

�
+

�
1
2

�


The OLS solution is
b1 = 1 and b2 =

2
�



Sensitivity of b2 to perturbation in 2 is proportional to 1=�. If � � 0
(poor scaling), then a small perturbation 2 produces a large change in
b2.



Generalized Stochastic Simulation Algrorithm (GSSA)

Kenneth L. Judd, Lilia Maliar and Serguei Maliar, (2011). Numerically
stable and accurate stochastic simulation approaches for solving dynamic
models. Quantitative Economics 2, 173-210.

GSSA augments PEA with machine learning methods, in particular,
regularization and principal component analysis which allows to

� correct numerical instability of PEA;

� attain high accuracy of solutions.



Preprocessing

� To use the machine learning methods, you need to prepocess  by
normalizing the data.

� Center - subtract the sample mean from each observation.

� Scale - divide each observation by the sample standard deviation.

� Scaling helps to have comparable range of values.

� By construction, a centered variable has a zero mean, and a scaled
variable has a unit standard deviation.

� After a regression model is estimated, the coe�cients in the original
(unnormalized) regression model are restored.



LS approaches to the linear regression model

Two LS approaches that are more numerically stable and more suitable
for dealing with ill-conditioning than the standard OLS approach.

1. Regularized LS using Tikhonov regularization (RLS-Tikhonov): relies
on a speci�c (Tikhonov) regularization of the ill-conditioned LS
problem that imposes penalties based on the size of the regression
coe�cients.

2. LS using SVD or truncated SVD (principle component analysis
(PCA)): uses a singular-value decomposition of .

The LS-SVD approach �nds a solution to the original ill-conditioned LS
problem, while the RLS-Tikhonov and PCA approach modify (regularizes)
the original ill-conditioned LS problem into a less ill-conditioned problem.



Regularization

� Regularization - process of re-formulating an ill-conditioned problem
by imposing additional restrictions on the solution.

� In machine learning, it is used for the problem of over�tting.

In the lasy case, impose a penalty: 1000� �23 and 1000� �24.



RLS-Tikhonov

� Tikhonov regularization - the most commonly used regularization
method in approximation theory.

� Impose an 2 penalty on the size of the regression coe�cients:

min


k ¬ k22 + � kk22 = min

( ¬ )

>
( ¬ ) + �>

where � � 0 = regularization parameter.

� Find the FOC with respect to 

b (�) =
¬
> + �

�¬1
>

where  = an identity matrix of order .

� Note: add a positive constant to > prior to inverting this
matrix. =) Even if > is singular, the matrix > + � is
non-singular. =) Can compute its inverse.

� Another regularization scheme is Lasso: ...+� kk1 (or
j1j+ + jj).



Singular Value Decomposition (SVD)

� Handy mathematical technique that has application to many
problems

� Given any �  matrix , compute "eigenvectors" and
"eigenvalues" of matrix 

[U,S,V]= svd(A)

 is �  and orthonormal
 is �  and diagonal
 is �  and orthonormal.



Singular Value Decomposition (not full ranked)

We can also compute SVD of  which is not full ranked:
[U,S,V]= svd(X)

0

BB@


1

CCA =

0

@ 

1

A

left singular values

0

@
1 0 0
0  0
0 0 

1

A

singular values

0

@ 

1

A

right singular values

>

� If  is singular, some of the  will be 0.

� In general () = number of nonzero .

� SVD is mostly unique (up to permutation of singular values, or if
some  are equal).

� Elements of , 1,,, are
p
�1 

p
�.

� Columns of  are eigenvectors of  0.



Singular Value Decomposition (example)



LS-SVD

� Back to the GSSA algorithm.

� SVD of the matrix  2 R�

 =  >

where  2 R� and  2 R� = orthogonal matrices
( 0 =  0 =  and  0 = ¬1);  2 R� = diagonal matrix
with diagonal entries 1 � 2 �  �  � 0, singular values of .

� The OLS estimator b =
¬
>

�¬1
> in terms of the SVD:

b =
¬
 > >

�¬1
 >> =  ¬1>

� If > is well-conditioned =) the OLS formula and the LS-SVD
formula give identical estimates of .

� However, if > is ill-conditioned and the standard OLS estimator
cannot be computed =) it is still possible that matrices  and 
are su�ciently well-conditioned, K () =

p
K (>) =) can

compute the LS-SVD estimator.



Principal component method: Idea

� Here, we use principal component (PC) method to reduce the
degree of multicollinearity.

� PC analysis is also used in machine learning for dimensionality
reduction.

� Suppose you have two variables, 1 and 2 that are highly collinear.

� To reduce from two dimensions to one dimension, we �nd a
direction (a vector 1) onto which to project the data so as to
minimize the projection error.



Dimensionality reduction in machine learning

Motivation I: data compression, e.g., reduce dimensionality: from 2
to 1 features



Dimensionality reduction in machine learning

Motivation II: Data Visualization, e.g., visualize 3d �gure in 2d



Dimensionality reduction with SVD

Dimensionality reduction with SVD
[U,S,V]=svd(A);

Ureduce = U(:,1:r);

z = Ureduce'*x;



Reconstruction from Compressed Representation



Image reconstruction example



Algorithm for choosing the number of principal
components

The singular values are ordered by the number of importance for
explaining the variation.

[U,S,V]=svd(X), S=

2

4
1 0 0
0  0
0 0 

3

5

1 is the �rst most important value,
2 is the second most important value, etc.

� Pick smallest value of  for which


=1



=1



� 099

(99% of variance retained)



Principal component method in GSSA

�  �  , where  2 R�,  2 R� and  2 R�.

� 1   are principal components of .

� They are orthogonal, >  = 2 and >  = 0 for any  6= , where
 = th singular value of .

� Idea: reduce ill-conditioning of  to a "desired" level by excluding
low-variance principal components corresponding to small singular
values.

� Let � = largest condition number of  that we are willing to accept.

� Compute 1
2

  1


, where 1 = largest singular value.

� K () = 1


= actual condition number of the matrix .



Principal component method

� Let  � (1  ) 2 R� be the �rst  principal components for
which 1


� �.

� Remove the last  ¬  principal components for which 1


 �.

� By construction, K () � �.
� Re-write the linear regression model in terms of ,

 =  + 

where  2 R = vector of coe�cients.

� Estimate  using any of the LS methods described.

� Find b =  b


2 R, where   = (1  ) 2 R� contains the
�rst  right singular vectors of .



Epsilon Distinguishable Set and Cluster Grid Algorithms



Merging projection and stochastic simulation

Lilia Maliar and Serguei Maliar, (2015). \Merging simulation and
projection aproaches to solve high-dimensional problems with an
application to a new Keynesian model", Quantitative Economics 6, 1-47.

What do we do?

� Similar to stochastic simulation approach: use simulation to
identify and approximate the ergodic set.

� Similar to projection approach: construct a �xed grid and use
quadrature integration to accurately solve the model on that grid.

� We use integration and optimization methods that are tractable in
high-dimensional problems: non-product monomial integration
formulas and derivative-free solvers.



Epsilon-distinguishable set (EDS) algorithm

The clustering-style EDS technique is the key novel piece of our
analysis

The EDS grid construction:

� we select an -distinguishable subset of simulated points that covers
the support of the ergodic measure roughly uniformly.

� "-distinguishable set (EDS)" = a set of points situated at the
distance at least  from one another, where   0 is a parameter.

We also use conventional clustering analysis:

� hierarchical agglomerative,

� k-mean.



A grid of points covering support of the ergodic measure

An illustration of an -distinguishable set.



A class of stochastic processes

Let us guess a solution to the model (for example, take
perturbation solution).
A class of discrete-time stochastic processes:

+1 =  ( �+1)   = 0 1 

� 2  � R = vector of  independent and identically distributed shocks;
 2  � R = vector of  (exogenous and endogenous) state variables;
 is endowed with its relative Borel �-algebra denoted by X.

� Example, +1 =  ( �) and �+1 = �
�
 exp (�+1).

Assumption 1. There exists a unique ergodic set A� and the associated
ergodic measure �.
Assumption 2. The ergodic measure � admits a representation in the
form of a density function  :  ! R+ such that

R
A  ()  = � (A) for

every A � X.



A two-step clustering technique

A two-step procedure for forming a discrete approximation to the ergodic
set.

1. We identify an area of the state space that contains nearly all the
probability mass.

2. We cover this area with a �nite set of points that are roughly evenly
spaced.



An essentially ergodic set

We de�ne a high-probability area of the state space using the level set of
the density function .

Def. A set A� � A� is called a �-level ergodic set if �  0 and

A� � f 2  :  () � �g 

� The mass of A� under the density  () is equal to
 (�) �

R
()��  () .

� If  (�) � 1, then A� contains all  except for points where the
density is lowest.

� In this case, A� is called an essentially ergodic set.



Law of iterated logarithm

LIL: The ergodic measure can be approximated by simulation.
 = random draws 1   � R generated with � : R ! R+.
 ( ;) = counts the number of points from  in a given  � R.
J = intersection of all subintervals �

=1 [¬1 ), where   0.

Proposition: (Law of iterated logarithm). For every dimensionality  and
every continuous function �, we have

lim
!1

(
sup
2J

���� ( ;)
¬ � ()

���� � � 2

log log 

�12)
= 1, a.e.

Proof: See Kiefer (1961, Theorem 2).

That is, the empirical distribution function b� () � ( ;)
 converges

asymptotically to the true distribution function � () for every  2 J at

the rate given by
�

2
log log

�12
.



Multivariate kernel density estimation

(Algorithm A�): Selection of points within an essentially ergodic set.
Step 1. Simulate +1 =  ( �+1) for  periods.
Step 2. Select each �th point to get a set  of  points 1   2  � R.
Step 3. Estimate the density function  () �  () for all  2  .
Step 4. Remove all points for which the density is below �.

To estimate the density function b from the simulated data, we use a
multivariate kernel algorithm

b () = 1

 (2�)
2




X

=1

exp

�
¬ ( )

2
2

�


where  is the bandwidth parameter, and  ( ) is the distance
between  and .

� The complexity of Algorithm A� is 
¬
2
�

because it requires to
compute pairwise distances between all the sample points.

� We remove 5% of the sample which has the lowest density.



Constructing EDS

Def. Let ( ) be a bounded metric space. A set   consisting of
points 

1  

 2  � R is called -distinguishable if 

¬


  



�
 

for all 1 �   �  :  6= , where   0 is a parameter.

(Algorithm  ): Construction of an EDS.

Let  be a set of  point 1   2  � R.
Let   begin as an empty set,   = f?g.
Step 1. Select  2  . Compute  ( ) to all  in  .
Step 2. Eliminate from  all  for which  ( )  .
Step 3. Add  to   and eliminate it from  .

Iterate on Steps 1-3 until all points are eliminated from  .

Proposition: The complexity of Algorithm   is of order  ().



Measuring distance between points

� Both estimating the density and constructing an EDS requires us to
measure the distance between simulated points.

� Generally, variables in economic models have di�erent measurement
units and are correlated.

� This a�ects the distance between the simulated points and hence,
a�ects the resulting EDS.

� Therefore, prior to using Algorithm A� and Algorithm  , we
normalize and orthogonalize the simulated data using Principal
Component transformation.



Principal component transformation

� Let  2 R� be simulated data normalized to zero mean and unit
variance.

� Perform the singular value decomposition of , i.e.,  =  >,
where  2 R� and  2 R� are orthogonal matrices, and
 2 R� is a diagonal matrix.

� Perform a linear transformation of  using PC�  .

� PC=
�
PC1 PC

�
2 R� are principal components (PCs) of ,

and are orthogonal (uncorrelated), i.e.,
�
PC0

�>
PC = 0 for any

0 6= .

� Distance between two observations  and  is the Euclidean
distance between their PCs

 ( ) =

"
X

=1

�
PC

 ¬ PC


�2#12


where PC1 PC are normalized to unit variance.



Illustrating the EDS technique



Hierarchical clustering { another procedure for
approximating the ergodic set

� Instead of constructing an EDS, we can use methods from cluster
analysis to select a set of representative points from a given set of
simulated points.

� We partition the simulated data into clusters (groups of
closely-located points) and replace each cluster with one
representative point.



Steps of the agglomerative hierarchical clustering algorithm

Clustering algorithm

(Algorithm  ): Agglomerative hierarchical clustering algorithm.
Initialization. Choose  , the number of clusters to be created.

In a zero-order partition P(0), each simulated point represents a cluster.

Step 1. Compute all pairwise distances between the clusters in a partition P().

Step 2. Merge a pair of clusters with the smallest distance to obtain P(+1).
Iterate on Steps 1 and 2. Stop when the number of clusters in the partition is  .
Represent each cluster with the closest to the cluster's center simulated point.

As a measure of distance between two clusters, we use Ward's measure of
distance.



Agglomerative hierarchical clustering algorithm: an
example



Clusters on principal components of the ergodic set



K-means clustering

Inputs:

�  (number of clusters)

� Training set f(1) (2)  ()g 2 R

Randomly initialize  cluster centroids �1�2 � 2 R

Repeat

1. Assign each data point to the closest cluster (based on the cluster
centroids).

2. Update the cluster centroids (by calculating the mean of all object in
the cluster).

Iteration on steps 1 and 2 until convergence.



K-means algorithm (illustration)

Source: researchgate.net



K means for more than two clusters



Mathematical foundations of EDS clustering

We provide mathematical foundations for the EDS grid

� We establish computational complexity, dispersion, cardinality and
degree of uniformity of the EDS grid constructed on simulated series.

� We perform the typical and the worst-case analysis for the
discrepancy of the EDS grid.

� We relate our results to recent mathematical literature on

� covering problems (e.g., measuring entropy); see, Temlyakov (2011).
� random sequential packing problems, (e.g., germ contagion); see,

Baryshnikov et al. (2008).



Dispersion of points in the EDS

Def. Let  be a set consisting of points 1   2  � R, and let
( ) be a bounded metric space. The dispersion of  in  is given by

 ( ;) = sup
2

inf
1��

 ( )  (1)

where  is a (Euclidean) metric on .

Def. Let  be a sequence of elements on , and let
1   2  � R be the �rst  terms of . The sequence  is called
low-dispersion if lim

!1
 (;) = 0.

Proposition. Let  be any set of  points 1   2  � R with a
dispersion  ( ;)  . Let ( ) be a bounded metric space, and let
  be an EDS 

1  

 constructed by Algorithm  . Then, the

dispersion of   is bounded by    (
;)  2.



Number of points in the EDS

Proposition. Let  be any set of  points 1   2  (0 ) � R

with a dispersion  ( ;)  . Then, the number of points in  

constructed by Algorithm   is bounded by
¬


2

� �  �
¬
1 + 



�
.

To construct an EDS with a given target number of points  , we use a
simple bisection method :

(Algorithm ): Construction of an EDS with a target number of points  .

For iteration  = 1, �x 
(1)
min and 

(1)
max such that 

�

(1)
max

�
�  � 

�

(1)
min

�
.

Step 1. On iteration , take  =

()
min+

()
max

2
, construct an EDS and compute  ().

Step 2. If  ()   , then set 
(+1)
min = ; and otherwise, set 

(+1)
max = .

Iterate on Steps 1 and 2 until  () converges.

� To �nd the initial values of min and max, we use the bounds
established in the above proposition.



Discrepancy

The degree of uniformity of EDSs. Standard notion of uniformity in
the literature { discrepancy from the uniform distribution.

Def. Let  be a set consisting of points 1   2  � R, and let J
be a family of Lebesgue-measurable subsets of . The discrepancy of 

under J is given by D ( ;J ) = sup
2J

���( ;) ¬ � ()
���, where  ( ;)

counts the number of points from  in  , and � () is a Lebesgue
measure of  .

Proposition. Let  be any set of  points 1   2  (0; 1) � R

with a dispersion  ( ;)  . Then, the discrepancy of an EDS
constructed by Algorithm   under  is bounded by

 (
;B) �

p
2¬1p
2+1

.



Existence results for a covering-number problem

� Temlyakov (2011) studies the problem of �nding a covering number
{ a minimum number of balls of radius  which cover a given
compact set (such as a -dimensional hypercube or hypersphere).

� He shows that there exists an EDS   on a unit hypercube [0 1]

whose discrepancy converges to 0 as  ! 1 (i.e.,  ! 0).

� However, constructing such an EDS is operationally di�cult and
costly.

� Also, Temlyakov (2011) selects points from a compact subset of R,
and his analysis cannot be directly applied to our problem of �nding
an -distinguishable subset of a given �nite set of points.



Probabilistic results: random sequential packing problems

Probabilistic analysis of an EDS is non-trivial as points are spatially
dependent: once we place a point in an EDS, it a�ects the placement of
all subsequent points.

A random sequential packing problem:

� consider a bounded set  � R and a sequence of -dimensional
balls whose centers are i.i.d. random vectors 1   2  with a
given density function .

� A ball is packed if and only if it does not overlap with any ball which
has already been packed. If not packed, the ball is discarded. At
saturation, the centers of accepted balls constitute an EDS.



Probabilistic results: random sequential packing problems
R�enyi's (1958) car parking model



Probabilistic results: random sequential packing problems
R�enyi's (1958) car parking model



Probabilistic results: random sequential packing problems
R�enyi's (1958) car parking model



Probabilistic results: random sequential packing problems
R�enyi's (1958) car parking model



Probabilistic results for random sequential packing
problems

� For a multidimensional case, Baryshnikov et al. (2008) show that
the sequential packing measure, induced by the accepted balls
centers, satis�es the LIL.

� Thus, the discrepancy of EDS converges to 0 asymptotically if the
density of points in an EDS is uniform in the limit  ! 0. However,
the density of points in an EDS depends on the density function  of
the stochastic process used to produce the data.

� Hence, an EDS needs not be uniform in the limit even in the
probabilistic sense (unless the density function is uniform).



Our best- and worst-case scenarios

Implications of our analysis for R�enyi's (1958) car parking model.
The best- and worst-case scenarios: cars occupy between 50% and 100%
of the roadside ( 12 � lim!0

 � 1).

1. Distance 12 between cars: evil drivers park their cars to leave as
little parking space to other drivers as possible

2. Distance 0 between cars: a police o�cer directs the cars to park in a
socially e�cient way).



Our best- and worst-case scenarios

The worst-case scenario for discrepancy in R�enyi's (1958) model,

D
 (

;B) �
p
2¬1p
2+1

� 017, which is obtained under �� =
p
2p
2+1

.

1. To attain this bound, consider an EDS on [0 1] such that on the
interval [0��], all points are situated on a distance 2, and on
[�� 1], all points are situated on the distance .

2. In the �rst interval, we have ��

2 �  � ��

2 + 1 points and in the

second interval, we have 1¬�
�

 �  � 1¬��
 + 1 points.

3. On the �rst interval, the limiting discrepancy is

lim
!0

�
�� ¬

��
2

��
2 +

1¬ ��


�
=
p
2¬1p
2+1

� 017, the same value as implied by

our propositions.



Comparison of EDS grid with other grids in the literature



Description of the EDS algorithm iterating on Euler
equation

Parameterize the RHS of the Euler equation by a polynomial b ( �; ),



�
�

0 (0)

0 ()

�
1¬ � + �0 0 (0)

�
0
�

� b ( �; ) = 0 + 1 + 2� + + �


 1. Simulate f �g+1
=1 . Construct an EDS grid, f �g

=1.

 2. Fix  � (0 1 2  ). Given f �g
=1 solve for

fg
=1.

 3. Compute the expectation using numerical integration
(quadrature integration or monomial rules)

b0 � 

�
�

0 (0)

0 ()

�
1¬ � + �0 0 (0)

�
0

�


Regress b0 on
�
1  � 2 �2  �



�
=) get b.

 4. Solve for the coe�cients using damping,

(+1) = (1¬ �) () + �b � 2 (0 1) 



Representative-agent model: parameters choice

Production function:  () = � with � = 036.

Utility function:  () =
1¬  

 ¬1
1¬  with  2

�
1
5  1 5

	
.

Process for shocks: ln �+1 = � ln � + �+1 with � = 095 and � = 001.
Discount factor: � = 099.
Depreciation rate: � = 0025.
Accuracy is measured by an Euler-equation residual,

R ( �) � 

"
�

¬  
+1

¬  


¬
1¬ � + ��+1

�¬1
+1

�#
¬ 1



Table 1. Accuracy and speed of the Euler equation EDS
algorithm in the representative-agent model

Polynomial degree Mean error Max error CPU (sec)

1st degree ¬429 ¬331 247
2nd degree ¬594 ¬487 08
3rd degree ¬726 ¬604 09
4th degree ¬865 ¬732 09
5th degree ¬947 ¬824 55

Target number of grid points is  = 25.
Realized number of grid points is  () = 27.
Mean and Max are unit-free Euler equation errors in log10 units, e.g.,

� ¬4 means 10¬4 = 00001 (001%);

� ¬45 means 10¬45 = 00000316 (000316%).

Benchmark parameters:  = 1, � = 0025, � = 095, � = 001.
In the paper, also consider  = 15 (low risk aversion) and  = 5 (high
risk aversion). Accuracy and speed are similar.



Autocorrection of the EDS grid



Table 2: Accuracy and speed in the one-agent model:
Smolyak grid versus EDS grid

Test on a simulation Test on a hypercube

Polyn. Smolyak grid EDS grid Smolyak grid EDS grid

deg. Mean Max Mean Max Mean Max Mean Max

1st -3.31 -2.94 -4.23 -3.31 -3.25 -2.54 -3.26 -2.38

2nd -4.74 -4.17 -5.89 -4.87 -4.32 -3.80 -4.41 -3.25

3rd -5.27 -5.13 -7.19 -6.16 -5.39 -4.78 -5.44 -4.11



Description of the EDS algorithm iterating on Bellman
equation

Parameterize the value function by a polynomial  (�) � b (�; ):

max
0

n
 () + �

h
b

¬
0 �0; 

�io
� b ( �; ) = 0 + 1 + 2� + + �



 1. Find b corresponding to b (�; ). Simulate f �g+1
=1 .

Construct an EDS grid, f �g
=1.

 2. Fix  � (0 1 2  ). Given f �g
=1 solve for

fg
=1.

 3. Compute the expectation using numerical integration
(quadrature integration or monomial rules)

 �  () + � b
�

0

 �0; 
�



Regress  on
�
1  � 2 �2  �



�
=) get b.

 4. Solve for the coe�cients using damping,

(+1) = (1¬ �) () + �b � 2 (0 1) 



Table 3. Accuracy and speed of the Bellman equation EDS
algorithm in the representative-agent model

Polynomial degree Mean error Max error CPU (sec)

1st degree ¬ ¬ ¬
2nd degree ¬398 ¬311 05
3rd degree ¬515 ¬417 04
4th degree ¬626 ¬512 04
5th degree ¬742 ¬593 04

Target number of grid points is  = 25.
Realized number of grid points is  () = 27.



Multi-country model

The planner maximizes a weighted sum of  countries' utility functions:

max
f

 
+1g

=1

1
=0

0

X

=1



 1X

=0

�
¬



�!
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X

=1


 +

X

=1


+1 =

X

=1


 (1¬ �) +

X

=1

�
 

¬




�


where  is country 's welfare weight.
Productivity of country  follows the process

ln �
+1 = � ln �


 + �


+1,

where �+1 � +1 + 
+1 with +1 � N

¬
0�2

�
is identical for all

countries and 
+1 � N

¬
0�2

�
is country-speci�c.



Table 3. Accuracy and speed in the multi-country model

Polyn. M1 Q(1)
degree Mean Max CPU Mean Max CPU

N=2 1st ¬409 ¬319 44 sec ¬407 ¬319 45 sec
2nd ¬545 ¬451 2 min ¬506 ¬441 1 min
3rd ¬651 ¬529 4 min ¬517 ¬492 2 min

N=20 1st ¬421 ¬329 20 min ¬417 ¬328 3 min
2nd ¬508 ¬417 5 hours ¬483 ¬410 32 min

N=40 1st ¬423 ¬331 5 hours ¬419 ¬329 2 hours
2nd ¬ ¬ - ¬486 ¬448 24 hours

N=100 1st ¬409 ¬324 10 hours ¬406 ¬323 36 min
N=200 1st ¬ ¬ - ¬397 ¬320 2 hours

M1 means monomial integration with 2N nodes; Q(1) means quadrature
integration with one node in each dimension; Mean and Max are mean
and maximum unit-free Euler equation errors in log10 units, respectively;
CPU is running time.



A new Keynesian (NK) model
A stylized new Keynesian model with Calvo-type price frictions and
a Taylor (1993) rule with the ZLB

� Literature that estimates the models:
-Christiano, Eichenbaum and Evans (2005), Smets and Wouters (2003,

2007), Del Negro, Schorfheide, Smets and Wouters (2007).

� Literature that �nds numerical solutions: mostly relies on local
(perturbation) solution methods. Few papers apply global solution
methods to low-dimensional problems.

� Perturbation:
-most use linear approximations (Christiano, Eichenbaum&Rebelo, 2009);

-some use quadratic approx. (Kollmann, 2002, Schmitt-Groh�e&Uribe,

2007);

-very few use cubic approximations (Rudebusch and Swanson, 2008).

� Global solution methods:
-Adjemian and Juillard (2011): extended path method of Fair&Taylor;

-Aruoba and Shorfheide (2012): cluster grid agorithm;

-Fern�andez-Villaverde, Gordon, Guerr�on-Quintana, Rubio-Ram��rez (2012).



A new Keynesian (NK) model

Assumptions:

� Households choose consumption and labor.

� Perfectly competitive �nal-good �rms produce goods using
intermediate goods.

� Monopolistic intermediate-good �rms produce goods using labor
and are subject to sticky price (�a la Calvo, 1983).

� Monetary authority obeys a Taylor rule with zero lower bound
(ZLB).

� Government �nances a stochastic stream of public consumption by
levying lump-sum taxes and by issuing nominal debt.

� 6 exogenous shocks and 8 state variables =) The model is large
scale (it is expensive to solve or even intractable under conventional
global solution methods that rely on product rules).



The representative household

The utility-maximization problem:

max
fg=01

0

1X

=0

� exp
¬
�

�"
1¬  

 ¬ 1
1¬  

¬ exp
¬
�

� 1+
 ¬ 1
1 + 

#

s.t.  +


exp
¬
�

�


+  = ¬1 + +�

where
¬
0 �0 �0 �0

�
is given.

{ , , and  = consumption, labor and nominal bond holdings, resp.;
{ ,  and  = the commodity price, nominal wage and (gross)
nominal interest rate, respectively;
{  = lump-sum taxes;
{ � = the pro�t of intermediate-good �rms;
{ � = discount factor;   0 and   0.



The representative household

Stochastic processes for shocks

� � and � = exogenous preference shocks;

� � = exogenous premium in the return to bonds;

�+1 = �� + �+1 �+1 � N
¬
0�2

�
�+1 = �� + �+1 �+1 � N

¬
0�2

�
�+1 = �� + �+1 �+1 � N

¬
0�2

�



Final-good producers

The pro�t-maximization problem:

� Perfectly competitive producers

� Use intermediate goods  2 [0 1] as inputs

max
()

 ¬
Z 1

0

 () () 

s.t.  =

�Z 1

0

 ()
¬ 1

 

� 
¬ 1

  � 1 (2)

{  () and  () = quantity and price of an intermediate good , resp.;
{  and  = quantity and price of the �nal good, resp.;
{ Eq (2) = production function (Dixit-Stiglitz aggregator function).

Result 1: Demand for the intermediate good :  () = 

�
()


�¬

.

Result 2: Aggregate price index  =
�R 1
0

 ()
1¬


� 1
1¬ 

.



Intermediate-good producers

The cost-minimization problem:

� Monopolisticly competitive

� Use labor as an input

� Are hit by a productiviy shock

� Are subject to sticky prices

min
()

TC ( ()) = (1¬ ) ()

s.t.  () = exp
¬
�

�
 ()

�+1 = �� + �+1 �+1 � N
¬
0�2

�
{ TC = nominal total cost (net of government subsidy );
{  () = labor input;
{ exp

¬
�

�
is the productivity level.



Intermediate-good producers (price decisions)

Calvo-type price setting:
1¬ � of the �rms sets prices optimally,  () = e, for  2 [0 1];
� is not allowed to change the price,  () = ¬1 (), for  2 [0 1].

The pro�t-maximization problem of a reoptimizing �rm :

max


1X

=0

��

n
�+

h
e+ ()¬ +mc++ ()

io

s.t.  () = 

�
 ()



�¬

(3)

{ Eq (3) is the demand for an intermediate good ;
{ �+ is the Lagrange multiplier on the household's budget constraint;
{ mc+ is the real marginal cost of output at time + .



Government

The government budget constraint:

 +


exp
¬
�

�


= 


exp
¬
�

� +¬1 + 

{ 

exp(�)
=  is government spending;

{  is the subsidy to the intermediate-good �rms;
{ � is a government-spending shock,

�+1 = �� + �+1 �+1 � N
¬
0�2

�



Monetary authority

Taylor rule with ZLB on the net nominal interest rate:

 = max

8
<

:1 �

�
¬1

�

�� "�
�

��

��� � 



��

#1¬�
exp

¬
�

�9=
;

{ � = long-run gross nominal interest rate;
{ � = gross in ation rate between  ¬ 1 and ;
{ �� = in a tion target;
{  = natural level of output;
{ � = monetary shock

�+1 = �� + �+1 �+1 � N
¬
0�2

�



Natural equilibrium

"Natural equilibrium" - the model in which the potential
ine�ciencies have been eliminated:

� Natural level of output  in the Taylor rule is a solution to a
planner's problem

max
fg=01

0
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where  is given.
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 =

"
exp

¬
�

�1+�
exp

¬
�

��¬  
exp

¬
�

�#
1

+ 



Summary of equilibrium conditions

� Aggregate production

 = exp
¬
�

�
�

� Aggregate resource constraint

 + = 

� Taylor rule with ZLB on the net nominal interest rate

 = max
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;

� Natural level of output
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Summary of equilibrium conditions

We have

� Stochastic processes for 6 exogenous shocks�
� � � � � �

	
.

� 8 endogenous equilibrium equations & 8 unknowns
f   ��  g.

� 2 endogenous state variables f�¬1 ¬1g.

� Thus, there are 8 (endogenous plus exogenous) state variables.



Computational papers on ZLB

How to impose the ZLB on interest rate?

� Perturbation methods do not allow us to impose the ZLB in the
solution procedure.

� The conventional approach in the literature is to disregard the ZLB
when computing perturbation solutions and to impose the ZLB in
simulations when running accuracy checks (that is, whenever 

happens to be smaller than 1 in simulation, we set it at 1).

� Christiano, Eichenbaum&Rebelo (2009)

� In contrast, our global EDS method does allow to impose the ZLB
both in the solution and simulation procedures.



Parameter values

We calibrate the model using the results in Smets and Wouters (2003,
2007), and Del Negro, Smets and Wouters (2007).

� Preferences:  = 1;  = 209; � = 099

� Intermediate-good production:  = 445

� Fraction of �rms that cannot change price: � = 083

� Taylor rule: � = 007; �� = 221; � = 082

� In ation target: �� 2 f1 10598g
� Government to output ratio:  = 023

� Stochastic processes for shocks:
� = 092; � = 025; � = 022; � = 095; � = 015; � = 095
� = 054%; � 2 f1821% 4054%g; � = 023%; � = 045%;
� = 028%; � = 038%

We compute 1st and 2nd perturbation solutions using Dynare, and we
compute 2nd and 3rd degree EDS solutions.



Time-series solution and EDS grid



Table 4. Accuracy and speed in the NK model with 0%
in ation target and 18.21% volatility of labor shock

PER1 PER2 EDS2 EDS3

CPU 015 243 44
Mean ¬303 ¬377 ¬399 ¬486
Max ¬121 ¬164 ¬202 ¬273

 09916 09929 09931 09927
 10340 10364 10356 10358

(�1)% 207 143 169 168
4% 017 009 005 0
4% 100 019 012 0
4% 100 019 012 0
4% 065 033 016 0
4�% 030 016 011 0

PER 1 and PER 2 = 1st and 2nd order Dynare solutions; EDS2 and EDS3 = 2nd and 3rd degree

EDS algorithm; Mean and Max = average and max absolute errors (in log10 units); Rmin and

Rmax = min and max R; Fr = frequency of R� 1; 4X = max di�erence from EDS3.



Table 5. Accuracy and speed in the NK model with 5.98%
in ation target and 40.54% volatility of labor shock

PER1 PER2 EDS2 EDS3

CPU 015 221 120
Mean ¬252 ¬290 ¬343 ¬400
Max ¬059 ¬042 ¬131 ¬191
 10014 10065 10060 10060
max 10615 10694 10653 10660
(�1)% 0 0 0 0
4% 063 039 025 0
4% 657 149 072 0
4% 657 148 072 0
4% 316 130 054 0
4�% 105 079 060 0

PER 1 and PER 2 = 1st and 2nd order Dynare solutions; EDS2 and EDS3 = 2nd and 3rd degree

EDS; Mean and Max = average and max absolute errors (in log10 units); Rmin and Rmax = min

and max R; Fr = frequency of R� 1; 4X = max di�erence from EDS3.



Table 6. Accuracy and speed in the NK model with 0%
in ation target, 18.21% volatility of labor shock and ZLB

PER1 PER2 EDS2 EDS3

CPU 015 214 358
Mean ¬302 ¬372 ¬357 ¬365
Max ¬121 ¬134 ¬158 ¬181
 10000 10000 10000 10000
max 10340 10364 10348 10374
(�1)% 176 119 246 223
4% 033 034 034 0
4% 431 365 226 0
4% 433 365 226 0
4% 337 317 245 0
4�% 117 139 079 0

PER 1 and PER 2 = 1st and 2nd order Dynare solutions; EDS2 and EDS3 = 2nd and 3rd degree

EDS; Mean and Max = average and max absolute errors (in log10 units); Rmin and Rmax = min

and max R; Fr = frequency of R� 1; 4X = max di�erence from EDS3.



Simulated series: ZLB is not imposed versus ZLB is
imposed



Main lessons:

A mix of machine learning techniques taken together allows us to address
the challenges of high-dimensional problems:

� Clustering analysis for costructing domain - a tiny fraction of the
standard hypercube domain;

� monomial and one-node integration rules;

� �xed-point iteration for �nding policy functions;

� iteration-on-allocation and precomputation approaches for solving
for intratemporal choice.

A proper coordination of the above techniques is crucial for accuracy and
speed.
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Reinforcement learning

� Reinforcement learning (RL) is an area of machine learning
concerned with how software agents ought to take actions in an
environment in order to maximize some notion of cumulative reward.

� Reinforcement learning is one of three basic machine learning
paradigms, alongside supervised learning and unsupervised learning.

� It di�ers from supervised learning in that it needs not label
input/output pairs and correct sub-optimal actions explicitly. Instead
the focus is on �nding a balance between exploration (of uncharted
territory) and exploitation (of current knowledge).

� The environment is typically stated in the form of a Markov decision
process (MDP), because many reinforcement learning algorithms for
this context utilize dynamic programming techniques.

� The main di�erence between the classical dynamic programming
methods and reinforcement learning algorithms is that the latter do
not assume knowledge of an exact mathematical model of the MDP
and they target large MDPs where exact methods become infeasible.



De�ning reinforcement learning problem

� Markov property: Current state completely characterized the state of
the world

� De�ne by tuple of objects (  �)
{ : set of possible states (capital, productivity)
{ : set of possible actions (consumption choices)
{ : distribution of reward given (state, action) pair (utility level)
{  : transition probability, i.e., distribution over next state given
(state, action) pair (next period capital and shock)
{ �: discount factor



Markov Decision Process

� Markov decision process is mathematical formulation of RL problem

� At time  = 0, environment samples initial state 0 �  (0)

� Then, for t=0,T
- Agent selects action 

- Environment samples reward  �  (� j  )
- Environment samples next state +1 �  (� j  )
- Agent receives reward  and next state +1

� Recall Google DeepMind learns to play Atari.
https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.youtube.com/watch?v=V1eYniJ0Rnk


Policy function

� A policy � is a function from  to  that specify what action to
take in each state

� Objective �nd policy �� that maximizes cumulative discounted
reward

P
0 �

.

� Formally,

�� = argmax
�



"
X

0

� j �

#


where 0 �  (0),  � � (� j ), +1 �  (� j ) 

� Following a policy produces sample trajectories (or paths) 0, 0, 0,
1, 1, 1,...



Value function and Q-learning

� How good is a state?

� The value function at state  is the expected cumulative reward
from following the policy from state :

 � () = 

"
X

0

� j 0 = �

#

� How good is a state-action pair?

� The Q-value function at state  and action  is the expected
cumulative reward from taking action  in state  and them
following the policy

� ( ) = 

"
X

0

� j 0 =  0 = �

#



Bellman equation

� The optimal -value function � is the maximum expected
cumulative reward achievable from a given (state, action) pair:

� ( ) = max
�



"
X

0

� j 0 =  0 = �

#

� � satis�es the Bellman equation

� ( ) = 0�E

h
 + �max

0
[� (0 0) j  ]

i

� Intuition: if the optimal state-action values for the next time step
� (0 0) are known, then the optimal strategy is to take the action
that maximizes the expected value of  + �max

0
� (0 0).

� The optimal policy �� corresponds to taking the best action in any
state as speci�ed by �.



Solving for the optimal policy

� Value iteration algorithm: Use Bellman equation as an iterative
update

+1 ( ) = 0�E

h
 + �max

0
[ (

0 0) j  ]
i

 will converge to � as  ! in�nity.

� What is the problem with this?

� Not scalable. Must compute  ( ) for every state-action pair. If
state is current game state pixels, computationally infeasible to
compute for entire state space!



Solving for optimal policy: Q-learning

� Q-learning. Use a function approximator to estimate the
action-value function

 ( ; �) � � ( )

where � function parameters, weights.

� If the function approximator is a deep neural network ) deep
q-learning!

� Remember: want to �nd a -function that satis�es the Bellman
equation.



Forward and backward paths

� Forward pass:

Loss function:  (�) = ��(�)

h
( ¬  ( ; �))

2
i

where  = 0�E

h
 + �max

0
[ (0 0; �¬1) j  ]

i

� Backward pass:

Gradient update (with respect to Q-function parameters �):
r� (�) =

��(�)0�E

hh
 + �max

0
 (0 0; �¬1)¬  (0 0; �)

i
r� (

0 0; �)
i

� Iteratively try to make the Q-value close to the target value  it
should have, if Q-function corresponds to optimal � (and optimal
policy ��).



Training the Q-network: experience replay

� Learning from batches of consecutive samples is problematic
- samples are correlated ) ine�cient learning
- current Q network parameters determine next training samples
(e.g., if maximizing action is to move left, training samples will be
dominated by samples from left-handed size) ) can lead to bad
feedback loops

� Addresses these problems using experience replay
- Continually update a replay memory table of transitions
(   +1) as game (experience) episodes are played.
- Train Q-network on random minibatches of transitions from the
replay memory instead of consecutive samples.

� Each transition can also contribute to multiple weight updates )
greater data e�ciency.



Algorithm 1: Deep Q-learning with Experience Replay

Initialize replay memory  and function  with random weights

for  = 1 do

Initialize sequence 1
for  = 1  do

With probability � select a random action 

Otherwise, select  = max � ( ; �)
Execute action  in emulator and observe reward 

Set +1

Store transition (   +1) in D

Sample random minibatch of transition (      +1) from D

Set

 =

�
 for terminal +1

+�max0 
� (+1 

0; �) for non-terminal +1

�
Perform a gradient descent step on

¬
 ¬ 

¬
�   ; �

��2
end for

end for



The problem with Q-learning

� What is the problem with Q-learning?

� The function Q can be very complicated

� Examples. A robot gasping an object has a very high dimensional
state ) hard to learn exact value of every (state, action) pair.

� But the policy can be much simpler: just close your hand.

� Can we learn a policy directly, e.g., �nding the best policy from a
collection of policies? (without costly estimation of Q values).



Policy gradient (REINFORCE)

� Formally, let's de�ne a class of parameterized policies:
� = f�� � 2 g 

� For each policy, de�ne its value  (�) = 
�P

0 �
 j ��

�
� We want to �nd the optimal policy �� = argmax

�
 (�)

� Reinforce algorithm  (�) = ��(� �) [ (�)] =
R
�

 (�)  (�  �) d�
where  (�) is the reward of a trajectory � = (0 0 0 1 1 1 )

� Let's di�erentiate this:

� r� (�) =
R
�

 (�)r� (�  �) d�

� Gradient of an expectation is problematic when  depends on �.



Dealing with expectation function

� We can use a nice trick

r� (�  �) =  (�  �) r�(� �)
(� �) =  (�  �)r� log  (�  �)

r� (�) =
R
�

 (�)  (�  �)r� log  (�  �) d� =
��(� �) [ (�)r� log  (�  �)]

� Can estimate with Monte Carlo sampling.

� Can we compute these quantities without knowing these transition
probabilities?

We have  (�  �) = ��0 (+1 j  )�� ( j )
log  (�  �) = ��0 log  (+1 j  ) + log �� ( j )
r� log  (�  �) =

P
0r� log �� ( j ) does not depend on

transition probabilities.

� Therefore, when sampling a trajectory we can estimate r� (�) with

r� (�) �
P

0  (�)r� log �� ( j )



Intuition

r� (�) �
P

0  (�)r� log �� ( j )

� if  (�) is high, push up the probabilities of actions seen

� if  (�) is low, push down the probabilities of actions seen

� Might seem simplistic to say that if a trajectory is good then all its
actions were good but in expectation it averages out!

� However, this su�ers from high variance because credit assignment
is really hard. can we help the estimator?



Variance reduction: baseline

� Problem: the raw trajectory is not necessarily meaningful. For
example, if rewards are all positive, you keep pushing up probability
of actions.

� What is important then? Whether a reward is better or worse than
what you expect to get.

� Idea: Introduce a baseline function dependent on the state

r� (�) �
P

0

�P
0 �

0¬ 0 ¬  ()
�

r� log �� ( j )

� Baseline: want to push the probability of an action from a state if
this action was better than the expected value of what we should
get from that state.

� Intuitively, we are happy with an action  in a state  if
� ( )¬  � () is large. On the contrary, we are unhappy with
the action if it is small.

r� (�) �
P

0 (
�� ( )¬  �� ())r� log �� ( j )



Actor critic algorithm

� Problem; We do not know Q and V. Can we learn them?

� Yes, using Q learning. We combine Policy Gradients and Q-learing
by training both an actor (the policy) and a critic (the Q-function).
- The actor decides which action to take, and the critic tells the
actor how good its action was and how it should adjust.
- Also, alleviates the task of the critic as it only has to learn the
value of (state, action) pair generated by the policy.
- Can also incorporate Q-learning tricks, e.g., experience replay.

� Remark: we can de�ne by the advantage function how much an
action was better than expected

� ( ) = � ( )¬  � ()

� It only has to learn the value function along the path where it
matters



Algorithm 2. Actor-critic algorithm

Initialize policy parameters �, critic parameters �
for iteration = 1,2,... do

Sample the trajectories under the current policy
For i=1,...,m do

for t=1,T do
 =

P
0 �

0¬ 
 ¬ �

¬




�
��  �� +r� log ��

¬


 j 


�
��  

P


P
 r�

  


  2

end for



Materials

For preparing this content, we used multiple sources including:

� Fei-Fei Li, Justin Johnson, Serena Yeung. Reinforcement Learning.
Stanford University. Lecture 14.
https://www.youtube.com/watch?v=lvoHnicueoE

� Sutton R. and A. Barto (2018). Reinforcement Learning. Second
edition. The MIT Press.

� Silvero, D. Reinforcement learning. University College of London,
Lecture slides.

� Ng, A., Reinforcement Learning and Control. Lecture notes.
Stanford University.

� Ng, A., Policy Gradient (Reinforce). Lecture notes. Stanford
University.
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Large-scale DSGE models for projection and policy
analysis

Mostly used by central banks and government agencies:

� International Monetary Fund's Global Economy Model, GEM
(Bayoumi et al., 2001);

� US Federal Reserve Board's SIGMA model (Erceg et al., 2006);

� Bank of Canada Terms of Trade Economic Model, ToTEM II
(Dorich et al. 2013);

� European Central Bank's New Area-Wide Model, NAWM (Coenen
et al. 2008);

� Bank of England COMPASS model (Burgess et al., 2013);

� Swedish Riksbank's Ramses II model (Adolfson et al., 2013).



What are central bank models aimed to do?

1. Central bank models must mimic as close as possible the actual
economies in every possible dimension.

� Then, the policymakers can produce realistic simulation of
alternative policies and to choose the best one.

2. Central bank models must be rich and  e xible enough to describe
interactions between many variables of interest, including di�erent
types of foreign and domestic consumption, investment, capital,
labor, prices, exchange rate, etc.

� Central bank models may contain hundreds of equations.
� Their estimation, calibration, solution and simulation are highly

nontrivial tasks.

3. Central banks need DSGE models for policy analysis.

� Econometric models have limitations for policy analysis (Lucas
critique).



Linearized solutions to central bank models

� The central banks use linear (�rst-order) perturbation methods
{ dynare, IRIS.

� Advantages:
{ computationally inexpensive;
{ simple to use;
{ can be applied to very large problems.

� Potential drawbacks:
{ insu�ciently accurate in the presence of strong nonlinearities;
{ does not allow to study occasionally binding constraints (with an
exception of the linear case; see OccBin of Guerrieri and Iacoviello,
2015, and IRIS).

� Nonlinear e�ects can be economically signi�cant:
{ Approximation errors in the new Keynesian model can reach
hundreds percent near ZLB; see Judd, Maliar and Maliar
(Econometrica, 2017).



The view of nonlinearity before Great Recession

Policymakers were not concerned about nonlinearities before Great
Recession.

{ Leahy (2013): \Prior to the crisis, it was easier to defend the
proposition that non-linearities were unimportant than it was to defend
the proposition that non-linearities were essential for understanding
macroeconomic dynamics."

{ Bullard (2013): \... the idea that U.S. policymakers should worry
about the nonlinearity of the Taylor-type rule and its implications is
sometimes viewed as an amusing bit of theory without real rami�cations.
Linear models tell you everything you need to know. And so, from the
denial point of view, we can stick with our linear models..."



The view of nonlinearity after Great Recession

Policymakers were confronted with questions after Great Recession.

� Macroeconomists overlooked Great Recession. Why?

{ Is it because they had bad models?

{ Or is it because they used bad linear methods that distorted policy
implications of good models?

� In the light of these questions, Bank of Canada created a working
group whose objective was to construct a global solution to its
large-scale DSDE model which led to the present paper.



Methodological contribution

� Apply deep supervised and unsupervised learning techniques to break
the curse of dimensionality and to construct accurate global
nonlinear solutions to large-scale central bank models.

� Quantify the di�erence between local linear and global nonlinear
solutions in realistically calibrated central bank models.

� Explore whether inaccuracies of the linearization method can
signi�cantly distort policy implications of central bank models.

� Establish the key determinants of the recent ZLB episode in the
Canadian economy.

� Analyze policies that would allow to avoid the ZLB crisis in the
future.



Empirical �ndings
1. We demonstrate that the international transmission of ELB is

empirically plausible mechanism for explaining the Canadian ELB
experience.

2. We show that it is relatively easy to generate realistic ELB (or ZLB)
episodes in new Keynesian models via the foreign shocks unlike the
domestic shocks.

3. We �nd that the Canadian economy would entirely avoid the ELB
episode if the target in a tion rate were 3 instead of 2 percent.

4. Contrary to what we expected, we �nd that the ELB constraint
plays a relatively minor role in the bToTEM's performance.

5. We discover that other nonlinearities { those not associated with
ELB { can play an important role in the model's predictions such as
the uncertainty e�ect.

6. Most strikingly, we �nd that the closing condition, used to ensure
stationarity in open-economy models, plays an important role in the
bToTEM dynamics. This is at odds with well known result of
Schmitt-Groh�e and Uribe (2003) because we consider nonlinear
model while they focus on linearization.



Outline of the talk

1. Great Recession in Canada.

2. Bank of Canada ToTEM model for projections and policy analysis.

3. Breaking the curse of dimensionality using machine learning:
- clustering analysis;
- neural networks and deep learning.

4. Policy experiments:
understanding the Canadian ZLB crisis.

5. Conclusion.



Great Recession 2007-2009 and ZLB crisis in Canada

� Canada was not at the epicenter of Great Recession.

� Unlike the U.S. and Europe, the Canadian economy did not
experience a subprime crisis in 2007-2008.

� However, the contagion spread through a number of transmission
channels.

� For Canada, an important transmission channel was through a direct
impact on foreign trade.

There is a popular saying \When the U.S. sneezes, Canada catches a
cold". But this time it went the other way around: it was the U.S.
that caught the (subprime crisis) cold, and it was Canada that
sneezed.



Great Recession in Canada

A sharp decline in target interest rates



Great Recession in Canada

A faster drop and faster recovery in real GDP



Great Recession in Canada
A rapid drop in real �xed investment



Great Recession in Canada
A historic drop in real exports



Full-scaled ToTEM model of Bank of Canada

� The Terms of Trade Economic Model (ToTEM) { the main
projection and policy analysis model of the Bank of Canada.

� Small-open economy model.

� ToTEM includes 356 equations and unknowns
=) It is too large for the existing global solution methods.



A scaled-down version of ToTEM

� We construct a scaled-down version of ToTEM, which we call a
\baby ToTEM" (bToTEM) model.

� bToTEM includes 49 equations and unknowns
=) It is still a large-scale model.

� Two production sectors: �nal-good production and commodity
production.

� Meaningful trade: �nal goods, commodities, imports.

� One representative household, with di�erentiated labour services.

� Taylor-type interest rate rule

� Six shocks, including exogenous rest-of-the-world (ROW) shocks.



Di�erences between ToTEM and bToTEM
� ToTEM

{ 5 distinct production sectors (consumption goods and services,
investment goods, government goods, noncommodity export goods,
and commodities);
{ 4 sectors are identical except of parameters, while the commodity
sector is di�erent;
{ A separate economic model of the rest of the world (ROW);
{ 3 types of households (they di�er in their saving opportunities);
{ 8 Phillips curves.

� bToTEM
{ The �nal-good production sector is identical in structure to the
consumption goods and services sector of ToTEM;
{ Linear technologies for transforming the output of this sector into
other types of output that correspond to the remaining ToTEM's
sectors;
{ The ROW sector is modeled using exogenous processes for foreign
variables;
{ All households are of the same type;
{ 3 Phillips curves.



Production of �nal goods

Two stages:

1. In the �rst stage, intermediate goods are produced by identical
perfectly competitive �rms from labour, capital, commodities, and
imports.

2. In the second stage, a variety of �nal goods are produced by
monopolistically competitive �rms from the intermediate goods. The
variety of �nal goods is then aggregated into the �nal consumption
good.



First stage of production
� Perfectly competitive �rms produce an intermediate good:


 =

�
� ()

�¬ 1
� + � ()

�¬ 1
� +

�

¬




��¬ 1
� + � ()

�¬ 1
�

� �
�¬ 1

 (1)

, , 
 = labour, capital and commodity inputs, resp.,

 = imports,  = capital utilization,  = the level of
labour-augmenting technology,

log () =  log (¬1) + (1¬ ) log
¬
�
�
+ �

  (2)

� Capital depreciates according to the following law of motion

+1 = (1¬ ) +  (3)

where  is the depreciation rate, and  is investment.

� The depreciation rate increases with capital utilization:

 = 0 + �(¬1) (4)



First stage of production (cont.)

� The �rms incur a quadratic adjustment cost when adjusting the level
of investment. The net output is given by


 = 

 ¬ �

2

�


¬1
¬ 1
�2

 (5)

� The objective of the �rms is to choose , +1, , , , 

in order to maximize pro�ts

0

1X

=0

R0
¬
 

 
 ¬  ¬  

 
 ¬  

  ¬ 
 

�
s.t. (1)¬ (5)

R+ = �
 (�+=�) (+) = stochastic discount factor.



Second stage of production
� A monopolistically competitive �rm  2 [0 1] produces a
di�erentiated good

 = min

�




1¬ 







�



 = intermediate good; 

 = manufactured input;
 = a Leontief parameter.

� The di�erentiated goods  are aggregated into the �nal good 

according to a CES function:

 =

�Z 1

0


¬ 1


 

� 
¬ 1



� Cost minimization implies

 =

�




�¬



where  =
�R 1
0

 1¬
 

� 1
1¬ 

.



Second stage of production (cont.)

� The �nal good is used as the manufactured inputs by each of the
monopolistically competitive �rms.

� Two types of monopolistically competitive �rms: rule-of-thumb
�rms of measure  and forward-looking �rms of measure 1¬ .

� Within each type, with probability � the �rms index their price to
the (time-varying) in ation target ��.

� The rule-of-thumb �rms, which do not index their price in the
current period, partially index their price:

 = (�¬1)
 
(��)

1¬  
¬1



Second stage of production (cont.)

� The optimizing forward-looking �rms solve:

max
�





8
<

:

1X

=0

�R+

 
Y

=1

��+ �
 +

¬ (1¬ )

++ ¬ ++

�	
subject to demand constraints

s.t.+ =

 Q
=1 ��+ �



+

!¬

+ 



Relation between the �rst and second stages of
production

� Production in the �rst and second stages are related as


 =

Z 1

0


 = (1¬ )

Z 1

0

 = (1¬ )�

� =
R 1
0

�




�¬

 = price dispersion.

� Law of motion of the price dispersion:

� = �

�
��

�

�¬

�¬1 + (1¬ �)

 
(�¬1)

 
(��)

1¬  

�

!¬

�¬1

+ (1¬ �) (1¬ )

�
 �





�¬



� Investment goods and noncommodity exports are produced from the
�nal goods according to linear technology,  

 = � and


 = �.



Imports

� Intermediate imported goods  are bounded into the �nal
imported good  according to

 =

�Z 1

0


¬ 1


 

� 
¬ 1



� The demand for an intermediate imported good :

 =

�







�¬



where 
 =

�R 1
0
(

 )
1¬ 

� 1
1¬ 

.



Import (cont.)

� The optimizing forward-looking �rms solves

max
 �





2

4
1X

=0

(�)
 R+

 
Y

=1

��+�
 + ¬ +


++

!3

5

subject to demand constraints

+ =

 Q
=1 ��+�




+

!¬

+ 


 = foreign price of imports;

 = nominal exchange rate (domestic price of a unit of foreign
currency).



Foreign demand and foreign economy

� The foreign demand for Canadian noncommodity exports 
 is

given by the demand function


 =  

 








!¬


 


  = foreign price of noncommodity exports;

 
 = foreign general price level;


 = foreign output.

� The balance of payments








�
1 + �



� ¬ 

¬1 = 

 
 +  

 
 ¬ 

 


 = domestic holdings of foreign-currency denominated bonds.;

�
 = risk premium.



Foreign demand and foreign economy (cont.)

� The rest of the world is speci�ed by three exogenous processes that
describe the evolution of foreign variables.

� The foreign output 


log
�




�
=  log

�


¬1

�
+

¬
1¬ 

�
log

¬
�
�
+ �

 

� A foreign interest rate shock 


log
�



�
=  log

�

¬1

�
+

¬
1¬ 

�
log (�) + �

 

� A foreign commodity price 
 is

log
�




�
=  log

�


¬1

�
+

¬
1¬ 

�
log

¬
�

�
+�

 

�
 , �

 , �
 = normally distributed random variables;

 ,  ,  = autocorrelation coe�cients.



Commodity production

� The commodities are produced from the �nal goods by
representative, perfectly competitive domestic �rms:

 = (

 )

 ( )
1¬ ¬ �

2

�





¬1

¬ 1
�2


 

 = a �xed production factor (land).
Here, the second term is quadratic adjustment costs.

� The commodities are sold at the rest-of-the-world price adjusted by
the nominal exchange rate

 
 = 


 

� The commodities are sold domestically (
 ) or exported to the

rest of the world (
 )

 = 
 +

 



Households

� The representative household's period utility function:

 =
�

�¬ 1
¬
 ¬ � �¬1

��¬ 1
� exp

�
� (1¬ �)
� (1 + �)

Z 1

0

()
�+1
� 

�
�

 

 = consumption of �nished goods;
� = aggregate consumption;
 = labour service of type ;
�

 = a consumption demand shock.

� We assume
log (�

) =  log
¬
�

¬1
�
+ �

 

�
 = a normally distributed variable;  = an autocorrelation

coe�cient.



Households (cont.)
� The representative household solves



2

4
1X

=0

�+

3

5

s.t. +



+








�
1 + �



� = ¬1+

¬1+

Z 1

0

+�

 = holdings of domestic bonds;


 = holdings of foreign-currency denominated bonds;
� are pro�ts paid by the �rms.

� To induce the stationarity of the model, we assume that the risk
premium �

 is

�
 = 

�
� ¬ 



�



 = 


 
�
�

+1
�
�

= normalized bond holdings; see

Schmitt-Groh�e and Uribe (2003).



Wage setting

� Households;

� Aggregating �rms (labor packers) { in perfect competition;

� Labour unions { in monopolistic competition.



Labour packers

� The representative household supplies a variety of di�erentiated
labour service ,  2 [0 1] to the labour market.

� The di�erentiated labour service is aggregated by labor packers
according to

 =

�Z 1

0


¬ 1



 

� 
¬ 1



�  is used in the �rst stage of production.

� Cost minimization of the labor packer implies the demand

 =

�




�¬



 = wage for labour of type ;  �
�R 1
0

 1¬

 
� 1
1¬ 





Labour unions (cont.)
� Two types: rule-of-thumb (measure ) and forward-looking

(measure 1¬ ) unions.

� Within each type, with probability � a union indexes wage to the
in a tion target ��,  = ��¬1.

� The rule-of-thumb unions which do not index their wage set

 =
¬
�

¬1
�  (��)

1¬   ¬1

� The forward-looking unions that do not index their wage solve:

max
�





2

4
1X

=0

(��)

+

3

5

s.t. + =

 Q
=1 ��+ �



+

!¬

+ 

++ =

Y

=1

��+ �
 ++ 



Monetary policy
� Taylor rule:

 = �¬ 1+(1 ¬ �)
�
� + �� (�¬��) + �

�
log ¬ log �

��
+�

� �

� = potential output; �
 = interest rate shock,

�
 = �


¬1 + �


 

�
 = a normally distributed variable;  = autocorrelation

coe�cient.

� Potential output changes with productivity as

log � =  log �¬1 +
¬
1¬ 

�
log

�

�
�

�


� If an e�ective lower bound (ELB) is imposed on the nominal interest
rate, 

 , then

 = max
�
� 




	




Market clearing conditions

� Resource feasibility condition

 =  + � + �
 + 

 + �

� GDP
 =  +  +

 +
 ¬  + �

� GDP de ato r

 
  =  +  

  + 
 

 +  
 

 ¬ 
  + �

 



A list of model's variables
# variable notation

1 productivity 

2 labour input 

3 capital input 

4 investment 
5 commodities used domestically 



6 import 

7 capital utilization 
8 capital depreciation 
9 gross production of intermediate good 



10 net production of intermediate good 


11 total production 

12 consumption 

13 GDP 
14 marginal utility of consumption �
15 in
ation �
16 real marginal cost 
17 consumption Phillips curve term 1

18 consumption Phillips curve term 2

19 price dispersion �



A list of model's variables (cont.)
# variable notation

20 imported good in
ation �


21 imports Phillips curve term 
1

22 imports Phillips curve term 
2

23 in
ation target ��
24 real price of import 



25 real exchange rate 

26 nominal interest rate 

27 interest rate shock process �


28 real price of intermediate good 


29 real wage 

30 real price of commodities 


31 marginal product of capital 

32 interest rate on capital 


33 Tobin's Q 

34 real price of investment 


35 foreign-currency price of commodities 


36 foreign real interest rate 




A list of model's variables (cont.)
# variable notation

37 interest premium on foreign bonds �


38 holdings of foreign bonds in real terms 


39 non-commodity export 


40 export of commodities 


41 foreign demand 


42 total commodities produced  

43 �nal goods used in commodity production 


44 wage in
ation �


45 wage Phillips curve term 
1

46 wage Phillips curve term 
2

47 optimal wage �


48 wage dispersion �


49 foreign price of import 


50 GDP de
ator 


51 price of non-commodity export 


52 consumption demand shock process �


53 potential GDP �



Calibration

� 61 parameters to calibrate.

� Whenever possible, we use the same parameters as in ToTEM.

� We choose the remaining parameters to reproduce observations on
the Canadian economy.

� We target the ratios of the following variables to nominal GDP:

� consumption,
� investment,
� noncommodity export,
� commodity export,
� import,
� total commodities,
� labor input.



Parameters in endogenous model's equations
Parameter Symbol Value Source

Rates
{ real interest rate � 1.0076 ToTEM
{ discount factor � 0.9925 ToTEM
{ in
ation target �� 1.005 ToTEM
{ nominal interest rate � 1.0126 ToTEM
{ ELB on the nominal interest rate  1.01 �xed
Output production
{ CES elasticity of subtitution � 0.5 ToTEM
{ CES labor share paramater � 0.249 calibrated
{ CES capital share parameter � 0.575 calibrated
{ CES commodity share parameter � 0.0015 calibrated
{ CES import share parameter � 0.0287 calibrated
{ investment adjustment cost � 20 calibrated
{ �xed depreciation rate 0 0.0054 ToTEM
{ variable depreciation rate � 0.0261 ToTEM
{ depreciation semielasticity � 4.0931 calibrated
{ real investment price � 1.2698 ToTEM
{ real noncommodity export price � 1.143 ToTEM
{ labour productivity � 100 normalization



Parameters in endogenous model's equations

Parameter Symbol Value Source

Price setting parameters for consumption
{ probability of indexation � 0.75 ToTEM
{ RT indexation to past in
ation  0.0576 ToTEM
{ RT share  0.4819 ToTEM
{ elasticity of substitution of consumption goods  11 ToTEM
{ Leontie� technology parameter  0.6 ToTEM
Price setting parameters for imports
{ probability of indexation � 0.8635 ToTEM
{ RT indexation to past in
ation   0.7358 ToTEM
{ RT share  0.3 ToTEM
{ elasticity of substitution of imports  4.4 ToTEM
Price setting parameters for wages
{ probability of indexation � 0.5901 ToTEM
{ RT indexation to past in
ation   0.1087 ToTEM
{ RT share  0.6896 ToTEM
{ elasticity of substitution of labour service  1.5 ToTEM



Parameters in endogenous model's equations
Parameter Symbol Value Source

Household utility
{ consumption habit � 0.9396 ToTEM
{ consumption elasticity of substitution � 0.8775 ToTEM
{ wage elasticity of labor supply � 0.0704 ToTEM
Taylor rule
{ interest rate persistence parameter � 0.83 ToTEM
{ interest rate response to in
ation gap �� 4.12 ToTEM
{ interest rate response to output gap � 0.4 ToTEM
Other
{ capital premium � 0.0674 calibrated
{ exchange rate persistence parameter { 0.1585 ToTEM
{ foreign commodity price � 1.6591 ToTEM
{ foreign import price � 1.294 ToTEM
{ risk premium response to debt  0.0083 calibrated
{ foreign demand elasticity � 0.4 calibrated
{ elasticity in commodity production  0.8 calibrated
{ land  0.1559 calibrated
{ share of other components of output � 0.7651 calibrated
{ share of other components of GDP � 0.311 calibrated



Parameters in exogenous model's equations

Parameter Symbol Value Source

Shock persistence
{ persistence of interest rate shock  0.25 ToTEM
{ persistence of productivity shock  0.9 �xed
{ persistence of consumption demand shock  0 �xed
{ persistence of foreign output shock  0.9 �xed
{ persistence of foreign commodity price shock  0.87 calibrated
{ persistence of foreign interest rate shock  0.88 calibrated
Shock volatilities
{ volatility of interest rate shock � 0.0006 calibrated
{ volatility of productivity shock � 0.0067 calibrated
{ volatility of consumption demand shock � 0.0001 �xed
{ volatility of foreign output shock � 0.0085 calibrated
{ volatility of foreign commodity price shock � 0.0796 calibrated
{ volatility of foreign interest rate shock � 0.002 calibrated



A comparison of bToTEM to ToTEM and LENS

� The Bank of Canada uses a �rst-order perturbation method to solve
ToTEM.

� For ToTEM, we use IRIS { open-source software used by the Bank
of Canada for macroeconomic modeling.

� For bToTEM, we use IRIS Toolbox, as well as Dynare.

� We checked that the IRIS and Dynare packages produce
indistinguishable numerical solutions for bToTEM.

� Also, we include for comparison the LENS model { another model of
the Bank of Canada.

� LENS is a semistructural model.

� Both, the ToTEM and LENS models, include more shocks than
bToTEM:

� 52 shocks in ToTEM and 98 shocks in LENS.



Impulse response to a consumption demand shock
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Understanding the di�erence between the bToTEM
and ToTEM

� Consider a linearized version of the Phillips curve in the two models

�̂ = (1¬ �)  ~�
¬1
�̂¬1 + ��~�

¬1
 [�̂+1] + ~� ^ + 

 

 = real marginal cost;


 = weighted average of the in ation target and the deviation of
markup from the steady state;
�,  ,  are the price stickiness parameters;
~� and ~� = parameters that are identical in ToTEM and bToTEM
(de�ned in Dorich et al., 2013).

� We conclude that in ation dynamics are driven by di�ering ^.

� In ToTEM, a consumption shock triggers a reallocation of inputs
into the consumption good sector from the other four sectors. With
adjustment costs, this raises ^.

� In contrast, in bToTEM, there is one production sector and there are
no input adjustment costs. The responses and decays of the ^

are far less pronounced.



Impulse response to an interest rate shock
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Impulse response to a permanent productivity shock
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bToTEM: a serious challenge for global methods

� The models like bToTEM has not been yet studied in the literature
using global methods.

� bToTEM contains 21 state variables (6 exogenous and 15
endogenous ones) =) curse of dimensionality.

� Moreover, the bToTEM's equations are complex and require the use
of numerical solvers.

� To solve the bToTEM model, we ameliorate the curse of
dimensionality by focusing on the ergodic set of the model.



Advantages of ergodic set methods

� Ergodic set is constructed by stochastic simulation.

� "Grid" is adaptive: we solve the model only in the high-probability
area of the state space{this is where the solution "lives"!



Reduction in cost in a 2-dimensional case

� How much can we save on cost using the ergodic-set domain
comparatively to the hypercube domain?

� Suppose the ergodic set is a circle (it was an ellipse in the �gure).

� In the 2-dimensional case, a circle inscribed within a square occupies
about 79% of the area of the square.

� The reduction in cost is proportional to the shaded area in the �gure.

� It does not seem to be a large gain.



Reduction in cost in a d-dimensional case
� In a 3-dimensional case, the gain is larger (a volume of a sphere of

diameter 1 is 52% of the volume of a cube of width 1)

� In a -dimensional case, the ratio of a hypersphere's volume to a
hypercube's volume

V =

8
<

:
(�2)

¬ 1
2

1�3�� for  = 1 3 5
(�2)


2

2�4�� for  = 2 4 6


� V declines very rapidly with dimensionality of state space. When
 = 10 ) V = 3 � 10¬3 (03%). When  = 30 ) V = 2 � 10¬14.

� We face a tiny fraction of cost we would have faced on the
hypercube.



Cluster grid algorithm (CGA)

� CGA is an ergodic set algorithm of Maliar and Maliar (QE, 2015).

� It is a projection-style global solution method that uses adaptive grid:

� the model is solved only in the area of the state space visited in
simulation

� The essence of CGA is clustering methods from machine learning
analysis.

� Crude simulation produces points that are located close to one
another; many points are redundant.

� Clustering methods reduce the number of redundant points.

� CGA can accurately solve models with dozens of state variables.



Example: agglomerative hierarchical clustering
algorithm
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Figure 9. Agglomerative hierarchical clustering algorithm: an example.
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Example: Construction of a cluster grid
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Deep learning

� In the 2017 version of the paper, we constructed nonlinear solutions
using second-order polynomial approximation.

� But second-degree polynomial is not  e xible enough to accurately
approximate highly non-linear models like bToTEM.

� The di�erence between perturbation and global solutions cannot be
too large as both of them are built using the same quadratic
approximation function.

� To approximate nonlinearities more accurately, one needs more
 ex ible approximating functions.

� In the new 2019 version, we introduce neural networks and deep
learning techniques to produce more  ex ible approximations.



Arti�cial neural networks



Arti�cial neural networks

�  = (0 1  )
0 and

� 
(2)
1 =

(1)
11 1 + +

(1)
1  +(1)

� 
()
 = weights that control mapping from layer  to layer  + 1

� � = activation function (computation by a neuron).

� () = activated output in layer .

� 

¬
()
�
= hypothesis about our relationshio between 's and 's.

� Cost function  () allows us to evaluate how di�erent 

¬
()
�

is from .

� To prevent over�tting,  () may include penalty on large values of


()
 .

� min
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 (). Need to compute 


()


 (). Use backpropagation

to compute gradient of each layer.

� Use a mean-squered error (MSE):

 () = 1

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Understanding the role of nonlinearities
i). (Uncertainty e�ect). Linearized solutions do not depend on the

degree of volatility �, as do nonlinear solutions.
ii). (High-order e�ect). Linearization method neglects high-order

polynomial terms, unlike more  e xible nonlinear solutions.
iii). (Solution-domain e�ect). Perturbation (local) solutions are

constructed to be accurate in a deterministic steady state, and their
accuracy can deteriorate dramatically when deviating from the
steady state, in particular, in the area of ELB.

� Let's look at these three e�ects for perturbation solutions,

 (�) �  (� 0) +  (� 0) ( ¬ �)| {z }
1st-order perturbation solution

+
�� (� 0)�2

2| {z }
Uncertainty e�ect

+
 (� 0) ( ¬ �)

2

2| {z }
High-order e�ect

� The second-order perturbation method addresses i) and ii) by the

terms 12�� (� 0)�2 and 12 (� 0) ( ¬ �)
2, respectively. Plain

perturbation methods do not address iii) but IRIS and OccBin do.
� Our DL solution method addresses i) - iii) more conclusively than

the perturbation methods by using more  e xible neural network
approximation and global solution domain.



Experiment 1: Foreign-driven recession

� The U.S. is the main Canadian trade partner (around 75% of
Canadian exports goes to the US).

� In 2008, the Canadian economy experienced a huge 16% drop in
exports.

� In 2009{2010, the Bank of Canada targeted the overnight interest
rate at 0.25% (the lower bound).



Experiment 1: Exogenous ROW shocks
An important question is how to calibrate the rest of the world (ROW)
sector in the bToTEM model since foreign �nancial crisis a�ects not just
foreign demand but also foreign prices and foreign interest rates.

� we use ToTEM to produce impulse responses for 3 ROW variables
(interest rate, commodity price, output).

� we use them as exogenous shocks in the bToTEM model.

The ROW shocks generated by ToTEM is in line with the data.

� The ROW commodity price shock matches a 50 percent decline in
the global commodity price index documented by the IMF.

� The ROW real interest rate shock matches a 5 percent
peak-to-trough decline in the e�ective U.S. federal funds rate.

� The ROW activity measure shock is abut 18 percent decline in the
foreign activity measure estimated by the Bank of Canada.
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Experiment 1: Foreign-driven recession

Linear local, quadratic local and global solutions
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Experiment 1: Domestic-driven recession

Linear local, quadratic local and global solutions
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Approximation errors

Residuals in the model's equations on the simulated path, log 10 units
Maximum error Average error

Local Local Global Local Local Global
1st order 2nd order 2nd order 1st order 2nd order 2nd order

 -3.83 -3.84 -5.07 -4.13 -4.53 -5.74
� -4.40 -3.81 -4.38 -4.65 -4.49 -5.08
 -2.38 -1.96 -2.51 -3.16 -2.62 -3.24
 -2.59 -3.27 -3.42 -2.78 -3.90 -4.16
 -3.19 -3.13 -3.94 -3.44 -3.79 -4.74
 -3.01 -3.39 -3.51 -3.79 -4.01 -4.09

 -1.75 -2.32 -2.73 -1.97 -2.88 -3.43


 -2.78 -2.36 -2.91 -3.56 -3.01 -3.64

 -2.17 -2.90 -3.17 -2.41 -3.53 -3.88

Average -2.76 -2.81 -3.41 -3.20 -3.45 -4.11
Max -1.43 -1.44 -2.09 -1.92 -2.08 -2.75



Experiment 2: Higher in
ation target

� For the last 25 years, the Bank of Canada adhered to the in a tion
targeting, however, every three to �ve years it revises their
in a tion-control framework.

� Current in a tion target is 2%.

� A higher in ation target could be bene�cial by reducing frequency
and severity of ELB episodes.

� Kryvtsov and Mendes (2015), Dorich et al. (2017).

� We use the bToTEM model to assess the e�ects of an increase in
the in ation target from 2% to 3%.



Experiment 2: Higher in
ation target

A 3% in ation target could prevent ELB episodes similar to the 2009-10
episode
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Experiment 2: Higher in
ation target

Transition from the deterministic steady state with the in ation target of
2%
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Experiment 2: Higher in
ation target

Transition from the di�erent states with the target of 2%, 2nd order
solution
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Experiment 2: Higher in
ation target

Transition from the di�erent states with the target of 2%, global solution
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Closing condition
� We compare the closing condition in an exponential form, used in

Schmitt-Groh�e and Uribe (2003) �
 = 

h
exp

�
� ¬ 



�
¬ 1

i
and

the linear form �
 = 

�
� ¬ 



�
.

� The importance of stationarity condition in the bToTEM model is
surprising, given a well-known �nding of Schmitt-Groh�e and Uribe
(2003) that the closing condition used does not signi�cantly a�ect
the implications of open-economy models.

� However, their analysis is obtained for linearized solutions in which
the exponential and linear conditions coincide exactly but such
conditions are di�erent in our nonlinear analysis.
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ELB irrelevance
� In bToTEM, the probability of reaching ELB in bToTEM is large

(about 8 percent) and the average duration of ELB episodes is 5
quarters but its e�ect is very small.

� In Debartoli et al. (2019), the ELB constraint is irrelevant because
of the availability of unconventional monetary policies (forward
guidance, quantitative easing, etc.) while bToTEM, it is irrelevant
due to the presence of the rule-of-thumb agents introduced to deal
with the forward guidence puzzle.
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Conclusion

� Large-scale central banking models like ToTEM and bToTEM are
analyzed by linearization methods.

� Our novel DL algorithm combines supervised and unsupervised
learning to construct an accurate global fully nonlinear solution.

� What is the value added of deep learning for telling the Canadian
ELB tale?

� It is fair to say that we could have discovered the ELB contagion
mechanism by using linearization-based methods.

� But we would not know how reliable our linear solution is, and we
would miss some dramatic e�ects of nonlinearities on the solution.

� In particular, we would overlook the uncertainty e�ect.

� Furthermore, we would miss the nonlinearity e�ects associated with
the closing condition.

� On the other hand, the nonlinearity associated with the ELB turned
out to be of a lesser importance than we expected.



Conclusion (cont.)

� The bToTEM model constructed in the paper is a useful alternative
model to the Bank of Canada.

� While the full-scale ToTEM is not yet feasible for global nonlinear
methods, bToTEM can be solved nonlinearly and its accuracy can be
assessed.

� In addition to the Bank of Canada, our deep learning analysis can be
useful to all users of large-scale models, including researchers,
central banks and government agencies who can bene�t from our
methodology of calibrating, solving, and simulating large-scale
macroeconomic models, as well as designing nontrivial policy
experiments within such models.
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Discrete- versus continuous-set choices

� Macroeconomic models are generally built on continuous-set choices.

� For example, the agent can distribute wealth in any proportion
between consumption and savings or she can distribute time
endowment in any proportion between work and leisure.

� But certain economic choices are discrete: the agent can either buy
a house or not, be either employed or not, either retire or not, etc.

The progress in modeling discrete choices is still limited!



The results in the present paper

� We introduce a deep learning classi�cation (DLC) method that
solves models with both continuous-set and discrete-set choices.

� To solve for continuous-set choices:

� we parameterize decision functions with a deep neural network;
� and we �nd the coe�cients of the neural network (biases and

weights) to satisfy the model's equations.

� Our main novelty is a classi�cation method for constructing
discrete-set choices.

� We de�ne a state-contingent probability function that:

� for each feasible discrete choice, gives the probability that this
speci�c choice is optimal;

� we parameterize the probability function with a deep neural network;
� and we �nd the network parameters to satisfy the optimality

conditions for the discrete choices.



An illustration from data science: image recognition

� Consider the image recognition problem{a typical classi�cation
problem in data science.

� For example, a machine classi�es images into cats, dogs and sheep.

� We parameterize the probabilities of the three classes with a deep
neural network.

� The machine is given a collection of images and is trained to
minimize the cross-entropy loss (which is equivalent to maximizing
the likelihood function) that ensures the correct classi�cation of
images; see Goodfellow, Bengio and Courville (2016) for a survey of
classi�cation methods in data science.



Classi�cation method for discrete choices in economics

� Our classi�cation method in macroeconomics is analogous to the
above image-recognition analysis.

� For example, we use a deep neural network to parameterize the
probabilities of being full-time employed, part-time employed and
unemployed.

� The machine is given a collection of employment choices conditional
on state and is trained to maximize the likelihood function that
those choices are optimal.

� The same idea can be applied for analyzing the models with
retirement, default, house purchase, etc.

Remark:

� The earlier literature on indivisible labor (e.g., Rogerson (1996) and
Hansen (1994)) construct discrete choice by introducing lotteries.

� Our probabilities have totally di�erent meaning: they indicate which
discrete choices is most likely to be optimal and hence, is selected.



Problems with high dimensionality

� The DLC classi�cation solution method we propose can be used to
solve small-scale representative agent models.

� However, the power of deep learning consists in its ability to solve
large-scale applications that are intractable with conventional
solution methods.

� To illustrate these remarkable capacities of the DLC method, we
solve Krusell and Smith's (1998) model in which the agents face
indivisible labor choices.



The literature on heterogeneous agent models

� Krusell and Smith's (1998) model is computationally challenging
even in the absence of discrete choices.

� The state space may include thousands of state variables of
heterogenous agents and is prohibitively large.

� To make the model tractable, Krusell and Smith (1998) replace
distributions with few aggregate moments but that approach does
not always work.

� Several recent papers use linearization and perturbation to simplify
the analysis of equilibrium in heterogeneous-agent models, including
Reiter (2010), McKay and Reis (2016), Childers (2016), Boppart et
al. (2018), Mertens and Judd (2017), Ahn et al (2018), Winberry
(2018), Bayer and Luetticke (2020)

� Reiter (2019) provides for a thoughtful discussion of that literature.



DLC method

� A distinctive feature of our DLC method is that it does not rely on
moments, linearization, perturbation or any other pre-designed
reduction of the state space.

� It works with the actual state space consisting of all individual and
aggregate state variables { we let deep neural network to choose
how to condense large sets of state variables into much smaller sets
of features.

� Our code is written using Google's TensorFlow platform { deep
learning software that led to many ground breaking applications in
data science { and is it tractable in models with thousands of state
variables.



Relation to the literature on deep learning in economics

� Our DLC method is related to recent papers on deep learning,
including Duarte (2018), Villa and Valaitis (2019),
Fern�andez-Villaverde, Hurtado, and Nu~no (2019), Azinovi�c, Luca
and Scheidegger (2019), Lepetyuk, Maliar and Maliar (2020) and
especially, Maliar, Maliar and Winant (2018, 2019, 2021).

� However, this literature does not analyze models with discrete
choices, which is the main subject of the present paper.



Relation to the literature on discrete choices

� There are numerous methods in econometrics for estimating
discrete-choice models but these methods are limited to statistic
applications; see Train (2009) for a review.

� The macro literature with discrete choices includes Chang and Kim
(2007) and Chang, Kim, Kwon and Rogerson (2019) who solve a
similar model by using Krusell and Smith (1998) analysis.

� Iskhakov, J�rgensen, Rust and Schjerning (2017) developed an
endogenous grid method with taste shocks that is designed to deal
with discrete choices in dynamic environment.

� In the context of Carroll's (2005) analysis, that paper suggests to
apply logistic smoothing to the kinks by transferring the problem
into the choice probability space via the taste shocks.

� In contrast, we do not attempt to smooth the kinks but instead to
accurately approximate such kinks by using the-state-of-the-art deep
learning classi�cation method.



Applications: Krusell and Smith's (1998) model

� a version of Krusell and Smith's (1998) model with continuous
choices (i.e., divisible labor);

� an indivisible-labor version with 2 discrete labor states (employed
and unemployed);

� an indivisible-labor version with 3 discrete labor states (employed,
unemployed and part-time employed agent).



The model

� Heterogeneous agents  = 1  . Each agent  solves

max
f


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 are consumption, hours worked, capital and
idiosynratic labor productivity; � 2 (0 1) is the discount factor;
� 2 (¬1 1) and � � 0; and initial condition
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0 


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�
is given. The

capital choice is restricted by a borrowing limit  � 0.
� The three di�erent versions of the model are distinguished by the set

of allowable labor choices  .



Production side

� The production side of the economy is described by a Cobb-Douglas
production function exp () 

�¬1
 1¬� , where  =

P
=1 

 is

aggregate capital,  =
P

=1 



 is aggregate e�ciency labor, and

 is an aggregate productivity shock following a �rst-order
autoregressive process,

ln +1 = � ln  + �� with � � N (0 1) 

where � 2 (¬1 1) and � � 0.
� The interest rate  and wage  are given by

 = 1¬ + ��¬1 1¬� and  =  (1¬ �) � ¬� 

where  2 (0 1] is the depreciation rate.



Kuhn-Tucker condition

� The Kuhn-Tucker condition with respect to capital is

�
�


 = 0

where �
 � 

+1 ¬  � 0 is the distance to the borrowing limit, and
�

 � 0 is the Lagrange multiplier
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�
+1

i


where 1 denotes a �rst-order partial derivative of function  with
respect to the �rst argument.

� Whenever �
  0, the agent is not at the borrowing limit, i.e.,


+1  , so the Euler equation must hold with equality leading to
�

 = 0, and whenever the Euler equation does not hold with equality,
it must be that the agent is at the borrowing constraint �

 = 0



Three di�erent version of the model

We consider three versions of the model that di�er in the set of allowable
labor choices  2  :

i) divisible labor model  = [0 ] 
ii) indivisible labor model  = f0 g 
iii) three-state employment model  = f0  g 



Divisible labor model

� To characterize labor choice, we assume that the utility function
takes the form

 ( ) =
1¬  ¬ 1
1¬  

+
( ¬ )

1¬� ¬ 1
1¬ �



where  , �  0 and  is the total time endowment.

� We normalize time to  instead of the conventional normalization to
1 because it helps to calibrate the divisible and indivisible labor
models to the same steady state.

� The labor choice is characterized by a FOC


 =  ¬

"
¬  
 






#¬1=�




Indivisible labor model with 2 states

The agent chooses to be employed (
 = ) or unemployed (

 = 0)
depending on which of the two choices leads to a higher continuation
value, i.e.,


 =  if   = max

�
    

	


 = 0 otherwise.

where   and   denote value functions of the agent in the employed
and unemployed states, respectively.



Indivisible labor model with 3 states

The three employment states, 
 = , 

 =  and 
 = 0, correspond to

full-time unemployment, part-time employment and unemployment,
respectively,


 =  if   = max

�
       

	


 =  if   = max
�
       

	


 = 0 otherwise

where   ,   and   denote value functions of full-time employed,
part-time employed and unemployed agents, respectively.



Deep learning method for divisible labor model



Deep learning method for divisible labor model
The state space of Krusell and Smith's (1998) model has 2+ 1 state
variables; for example, with  = 1 000, the state space has 2 001 state
variables. To deal with so large dimensionality, we rely on a combination
of techniques introduced in Maliar et al. (2018, 2019, 2021), including:

1. stochastic simulation that allows us to restrict attention to the
ergodic set in which the solution "lives";

2. multilayer neural networks that perform model reduction and help
deal with multicollinearity;

3. a (batch) stochastic gradient descent method that reduces the
number of function evaluations by operating on random grids;

4. a Fischer-Burmeister function that e�ectively approximates the kink;

5. most importantly, "all-in-one expectation operator" that allows us to
approximate high-dimensional integrals with just 2 random draws (or
batches) on each iteration.

6. TensorFlow { a Google data science platform that is used to
facilitate the remarkable data-science applications such as image and
speech recognition, self driving cars, etc.



Stochastic simulation - ergodic set domain
� Under normally distributed shocks, stochastic simulation typically

have a shape of a hypersphere (hyperoval)

Figure 1. Hypercube versus
hypersphere.

� The ratio of a volume of a hypersphere to that of an enclosing
hypercube is an in�nitesimally small number in high-dimensional
applications; for example, for a 30-dimensional case, it is 10¬14; see
Judd, Maliar and Maliar (2011) for a discussion.



Neural networks
We use neural networks for parameterizing decision and value functions
instead of more conventional approximation families like polynomial
functions:

Figure 2a. Arti�cial neuron. Figure 2b. Neural network.

In Figure 1a, the circle represents an arti�cial neuron that receives 3
signals (inputs) 1, 2 and 3. In Figure 1b, we combine multiple
neurons into a neural network.



Activation functions
The activation function that we use in our benchmark experiments is a
sigmoid function �() = 1

1+¬  =
1

1+¬ �0+�11+�22++�
.

Figure 3. Sigmoid function.

The sigmoid function has two properties: First, its derivative can be
inferred from the function itself �0() = �()(1¬ �()). Second, it maps
a real line into a unit interval � : R ! [0 1] which makes it bounded
between 0 and 1.



Parameterization of decision functions
� We solve for two decision functions{hours worked




 and the

fraction of wealth that goes to consumption







which we

parameterized by a sigmoid function

�
�
�0 + 

�


 


�


 



	

=1
 ; �

��


where  (�) is a multilayer neural network parameterized by a vector
of coe�cients � (weights and biases), � () = 1

1+¬  is a sigmoid
function and �0 is a constant term.

� In addition, we parameterize the Lagrange multiplier �
 associated

with the borrowing constraint using an exponential activation
function

exp
�
�0 + 

�


 


�


 



	

=1
 ; �

��


The exponential activation function ensures that the Lagrange
multiplier is always non-negative.

� Since the agents are identical in fundamentals, the above three
2+ 1{dimensional decision functions are su�cient to characterize
the choices of all  heterogeneous agents.



Model reduction
� Our DLC solution method aims at solving models with thousands of

state variables by using model reduction.

� It condenses the information from a large number of inputs into a
smaller number of neurons in the hidden layers, making it
progressively more abstract and compact.

� This procedure is similar to a photo compression or principal
component transformation when a large dataset is condensed into a
smaller set of principal components without losing essential
information; see Judd, Maliar and Maliar (2011) for a discussion of
model reduction using principal-component analysis.

� Krusell and Smith (1998) proposed one speci�c model reduction
method, namely, they approximate the distribution with just one
moment { the mean.

� If Krusell and Smith's (1998) analysis is the most e�cient
representation of the state space, the neural network will also �nd it.

� However, the neural network will consider many other possible ways
of extracting the information from the distributions and condensing
it in a relatively small set of hidden layers trying to �nd the best one.



Objective function for deep learning
� The objective is to minimize the squared residuals in three model's

conditions:

�(�) � ()
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where  �
¬
1  

�
and  �

¬
1  

�
are state variables;  is

aggregate productivity; �+1 �
¬
�1+1  �


+1

�
the individual

productivity shocks; �+1 is the aggregate productivity shock; and

	 ( ) = +  ¬
p

2 + 2

is a 	 ( ) = 0 is a Fisher-Burmeister objective function is
equivalent to Kuhn Tucker conditions.



All in one expectation operator
� The constructed objective function �(�) is not convenient because it

contains a square of expectation
�
(�+1;�+1) [�]

�2
nested inside

another expectation () [�].
� Constructing two nested expectation operators is costly because the

inner expectation operator (�+1;�+1) [�] has high dimensionality; if
 = 1 000, it is 1 001-dimensional integral.

� This task would be simpli�ed enormously if we could combine the
two expectation operators but it is not possible

()

h�
(�+1;�+1) [�]

�2i 6= ()(�+1;�+1)

h
[�]2

i
.

� Maliar et al. (2021) propose a simple but powerful technique, called
all-in-one (AiO) expectation operator, that can merge the two
expectation operators into one.

� They replace the squared expectation function
�
(�+1;�+1) [�]

�2
under one random draw (�+1 �+1) with a product of two

expectation functions
h
(�0+1;�0+1)

[�]
i
�

h
(�00+1;�00+1)

[�]
i

under

two uncorrelated random draws
¬
�0+1 �

0
+1

�
and

¬
�00+1 �

00
+1

�
.

� Since the two random draws are uncorrelated, the expectation
operator can be taken outside of the expectation function.



The objective function under AiO expectation operator
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Thus, we are able to represent the studied model as an expectation
function across a vector of random variables¬
  �

0
+1 �

0
+1�

00
+1 �

00
+1

�
; see Maliar et al. (2021) for a

discussion and further applications of the AiO expectation operator.



Training: gradient descent, batches and parallel computing
� Given that AiO is an expectation function, we can bring the gradient

operator inside by writing r��(�) = r� [� (; �)] =  [r�� (; �)],
where r� is a gradient operator.

� The latter expectation function can be approximated by a simple
average across Monte Carlo random draws
 [r�� (; �)] � 1



P
=1r�� (; �), where  denotes a speci�c

realization of the vector of random variables.

� Thus, the gradient descent method can be implemented as

�  � ¬ �r��(�) with r��(�) �
1



X

=1

r�� (; �) 

where � and � are the parameter vector and learning rate,
respectively.

� Thus, we implement a cheap computation of the gradient of the
integrand instead of computing far more expensive gradient of the
expectation function. TensorFlow and PyTorch can compute such a
gradient using a symbolic di�erentiation, which facilitates an the
implementation of parallel computation.



Dealing with multicollinearity

� In the arguments of approximating functions, the state variables of

agent  appear twice 
�


 


�


 



	

=1
 ; �

�
because they enter

both as variables of agent  and as an element of the distribution.

� This repetition implies perfect collinearity in explanatory variables,
so that the inverse problem is not well de�ned.

� Such a multicollinearity would break down a conventional
least-squares method which solves the inverse problem (since an
inverse of a matrix with linearly dependent rows or columns does not
exist).

� However, neural networks are trained by using the gradient-descent
method that avoids solving an inverse problem. As a result, neural
networks can learn to ignore redundant colinear variables; see Maliar
et al. (2021) for numerical illustrations and a discussion.



Algorithm 1: Deep learning for divisible labor model

Algorithm 1: Deep learning for divisible labor model.

Step 0: (Initialization).

Construct initial state of the economy
��


0 


0

	

=1
 0

�
and parameterize three

decision functions by a neural network with three outputsn
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where 
 � 


 +





 is wealth; �

 is Lagrange multiplier associated with

the borrowing constraint;  (�) is a neural network; � () = 1
1+¬  is a sigmoid

(logistic) function; �0 is a constant; � is a vector of coe�cients.



Algorithm 1: Deep learning for divisible labor model (cont)

Algorithm 1: Deep learning for divisible labor model.

Step 1: (Evaluation of decision functions).

Given state
�


 


�


 
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
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, compute 
, �


,






from the neural

networks, �nd the prices  and ; and �nd 
+1 from the budget

constraint for all agents  = 1  .

Step 2: (Construction of Euler residuals).

Draw two random sets of individual productivity shocks �1 =
¬
�11  �


1

�
,

�2 =
¬
�12  �


2

�
and two aggregate shocks �1, �2, and construct Euler residuals
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where , � are given weights and 	 ( ) = +  ¬
p

2 + 2

is a Fischer-Burmeister function.



Algorithm: Deep learning for divisible labor model (cont.)

Algorithm 1: Deep learning for divisible labor model.

Step 3: (Training).

Train the neural network coe�cients � to minimize the residual function �(�)
by using a stochastic gradient descent method �  � ¬ �r��(�) with

r��(�) � 1


P
=1r�� (; �), where  = 1   denotes batches.

Step 4: (Simulation).

Move to + 1 by using endogenous and exogenous variables of Step 3 under

�1 =
¬
�11  �


1

�
and �1 as a next-period state

��


+1 



	

=1
 +1

�
.



Calibration

� For our numerical analysis, we assume � = 036;  = 008;
� = 096; � = 09; � = 01; � = 09; � = 021; and  = 0 { these
values are in line with the literature, e.g., Chang and Kim (2007),
Reiter (2010, 2019), Chang et al. (2019).

� We perform training using the ADAM stochastic gradient descent
method with the batch size of 100 and the learning rate of 0001.

� We �x the number of iterations (which is also a simulation length)
to be  = 100 000.

� The choice of these parameters must ensure both convergence and
low running time and it re ec ts our experience in constructing deep
learning approximations.

� Finally, we study numerically the role of the elasticities  and � of
the utility function by performing a sensitivity analysis..



Training errors and running time

Figure 4. Training errors and running time for divisible labor model.



The solution for divisible labor model

Figure 5. Solution to divisible labor mode.



Deep learning method for indivisible labor model



Logistic regression
Let us consider a typical classi�cation problem. We have a collection of 

data points
�
 

	

=1
where  �

¬
1 

1 

2 

�
is a collection of

dependent variables (features) and  is a categorical independent
variable (label) that takes values 0 and 1. The goal is to construct a
dashed line that separates the known examples of the two types.

Figure 6. Examples of binary classi�cation.

We restrict attention to one technique { logistic regression { which is
simple, general and can be conveniently combined with our deep learning
analysis.



A hypothesis

As a �rst step, we form a hypothesis about the functional form of the
separating line. For the left panel, it is su�cient to assume that the
separating line is linear

0 : �0 + �11 + �22 = 0

but for the right panel, we must use a su�ciently  e xible nonlinear
separating function such as a higher-order polynomial function,

0 : �0 + �11 + �22 + �3
2
1 + �412 + �5

2
2 +  = 0

where (�0 �1 ) � � are the polynomial coe�cients. When
� � �0 + �11 + �22 +   0, we conclude that  belongs to class 1
and otherwise, we conclude that it is from class 0.



Estimation
� Our next step is to estimate � coe�cients. Since  is a categorical

variable  2 f0 1g, we cannot use ordinary least-squares estimator,
i.e., we cannot regress  on �. Instead, we form a logistic
regression

0 : log


1¬ 
= �

where  is the probability that a data point with characteristics
 �

¬
1 1 2 

2
1 

�
belongs to class 1, and

� � (�0 �1  �  � ) is a coe�cient vector.

� The logistic function is an excellent choice for approximating
probability:

� First, it ensures that  = 1
1+exp(¬�) 2 (0 1) for any � and , and

hence  and (1 ¬ ) can be interpreted as probabilities that a data
point belongs to classes 1 and 0, respectively.

� Second,  = 1
2
corresponds to the separation line � = 0. Hence,

when   1
2
, the data point is "above" the separating line �, and

thus, belongs to the class 1 and if   1
2
, the opposite is true.

� Finally, when � ! ¬1 and � ! +1, we have that  ! 0 and
 ! 1, respectively.



Probability of an observation

The logistic regression provides a convenient way to estimate the decision
boundary coe�cients � by using a maximum likelihood estimator. A
probability that the data point  belongs to classes 0 and 1 can be
represented with a single formula by

Prob ( j ; �) =  (1¬ )
1¬



Indeed, if  = 1, we have Prob( = 1 j ; �) = ()
1
(1¬ )

0
= ; and if

 = 0, we have Prob( = 0 j ; �) = ()
0
(1¬ )

1
= 1¬ .



Likelihood function

We search for the coe�cient vector � that maximizes the (log)likelihood

of the event such that a given matrix of features
�

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given output realizations
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, i.e.,
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¬
; �

��1¬

=

X

=1

�
 ln

¬


¬
; �

��
+

¬
1¬ 

�
ln

¬
1¬ 

¬
; �

���
,

where the probability 
¬
; �

�
� 1
1+exp(¬�) is given by a logistic

function.



Constructing a maximizer

To �nd the maximizer, we compute the �rst-order conditions with respect
to all coe�cients � for  = 0  ,

 ln (�)

�
=

X

=1

"


 (; �)


¬
; �

�
�

¬
¬
1¬ 

�
(1¬  (; �))


¬
; �

�
�

#

=
X

=1

�




¬
1¬ 

¬
; �

��
¬

¬
1¬ 

�



¬
; �

��
=

X

=1

�
 ¬ 

¬
; �

��




where 
 is the feature  of agent .

The constructed gradient r ln� (�) �
h

 ln(�)
�1

   ln(�)
�

i0
can be

used for implementing the gradient descent-style method
�  � ¬ �r ln� (�).



Decisions in divisible versus indivisible labor

� In the divisible labor model, we construct a policy function that

determines the hours worked




 .

� In the indivisible labor model studied here, we construct a decision
boundary 

¬


; �
�
= 0 that separates the employment and

unemployment choices conditional on state


 �

�


 


�


 



	

=1
 

�
.

� Whenever 
¬


; �
�
� 0, the agent is employed 

 =  and
otherwise, the agent is unemployed 

 = 0.

� Let us show how such a decision boundary can be constructed by
using the logistic regression classi�cation method.



Decisions in divisible versus indivisible labor
� Since our model has a large number of explanatory variables (state

variables) as well as a highly nonlinear decision boundary, we use
neural networks for approximating such boundary (instead of the
polynomial function).

� We estimate the coe�cients of the neural network (weights and
biases) by formulating a logistic regression,

0 : log


1¬ 
=  (; �) 

� We parameterize the decision functions 
 and







by a sigmoid

function in the indivisible labor model:

�
�
�0 + 

�


 


�


 



	

=1
 ; �

��


where  (�) is a multilayer neural network parameterized by a vector
of coe�cients � (weights and biases), � () = 1

1+¬  is a sigmoid

function which ensures that







and 
 are bounded in the interval

[0 1], respectively, and �0 is a constant term. (Here, we also
parameterize the Lagrange multiplier.



Decisions in divisible versus indivisible labor

� The function 
, allows us to infer the indivisible labor choice

directly, speci�cally, an agent is employed 
 =  whenever 

 � 1
2

and is unemployed otherwise 
 = 0.

� We can then compute  =
P

=1 


 and �nd  and  restore
the remaining individual and aggregate variables.

� Our next goal is to check if the constructed labor choices are
consistent with the individual optimality conditions.

� We use the decision functions 
,







and �
 to restore the value

functions for the employed and unemployed agents  
�


; �

�

and

 
�


; �

�



� We next construct the labor choice b
 implied by these two value

functions

b
 =

�
 if   = max

�
    

	


0 otherwise.



Decisions in divisible versus indivisible labor

In the solution, the labor choice b
 implied by the value functions must

coincide with the labor choice 
 produced by our decision function for all

 and . If this is not the case, we proceed with training our classi�er. To
this purpose, we construct the categorical variable 

 2 f0 1g such that


 =

�
1 if b

 = ,
0 otherwise,

and we use it to form the (log)likelihood function

ln (�) =
1



X

=1

�


 ln
¬


¬


; �
��
+

¬
1¬ 



�
ln

¬
1¬ 

¬


; �
���

.

We then maximize the likelihood function by using a conventional /
stochastic / batch stochastic gradient descent methods. We iterate on

the decision functions 
,







and �
 until convergence.



Implementation di�erence in construction of divisible and
indivisible labor.

� There is an important implementation di�erence in the construction
of the labor choice in the divisible and indivisible labor models.

� In the former model, the optimal labor choice must satisfy FOC and
hence, it can be constructed by considering just the current period
variables.

� However, this is not true for the indivisible labor model in which the
agent chooses to be employed or unemployed depending on which of
the two continuation values is larger   or   .



Prescott et al. (2009): intensive and extensive margins

� Prescott et al. (2009) propose a cleaver approach to modeling the
indivisible labor choice under which such a choice can be
constructed from the current state variables without the need of
constructing value functions.

� They allow for intensive and extensive margins by "discretizing" the
FOC. To be speci�c, they assume that the labor choice is divisible as
long as it is above a given threshold  but it jumps to zero
whenever the labor choice falls below  (i.e., the agent becomes
unemployed):

b
 =

8
<

:
 ¬

�
¬  

  exp(
)



�¬1=�
�  

0 otherwise.



Determining indivisible labor: value functions versus
"discretized" FOC

� We borrow from Prescott et al. (2009) the idea of discretizing the
FOCs of the divisible labor model, however, we go a step further and
we make the labor choice entirely indivisible by assuming that 

 can
take just two values 0 (unemployed) and  (employed):

b
 =

8
<

:
 if  ¬

�
¬  

  exp(
)



�¬1=�
�  

0 otherwise.

� The above approach can be a simple and e�ective alternative to
conventional methods that solve for indivisible labor by constructing
the value functions   and   explicitely.



Algorithm 2: Deep learning for indivisible labor model

Algorithm 2: Deep learning for the indivisible labor model.

Step 0: (Initialization).

Construct initial state
��


0 


0

	

=1
 0

�
and parameterize the decision functions byn


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





o
= �

�
�0 + 
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
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 

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 ; �

��


�
=exp

�
�0 + 

�


 


�


 



	

=1
 ; �

��


where 
 is the probability of being employed.



Algorithm 2: Deep learning for indivisible labor model
(cont.)

Algorithm 2: Deep learning for the indivisible labor model.

Step 1: (Evaluation of decision functions).

Given
�


 


�


 



	

=1
 

�
 compute 

 =  if 
 � 1

2 and 
 = 0 if 

  1
2 .

Compute 
 and






,and �nd  and and ; and �nd 

+1 from the budget

constraint for all agents  = 1  .

Option 1: Construct   and   and �nd b
 =

�
 if   = max

�
    

	


0 otherwise.

Option 2: Use the discretized FOC b
 =

8
<

:
 if  ¬

�
¬  

  exp(
)



�¬1=�
�  

0 otherwise.

De�ne 
 =

�
1 if b

 = ,
0 otherwise,

for each 
.



Algorithm 2: Deep learning for divisible labor model
(cont.)

Algorithm 2: Deep learning for the indivisible labor model.

Step 2: (Construction of Euler residuals).

Draw two random sets of individual productivity shocks �1 =
¬
�11  �


1

�
,

�2 =
¬
�12  �


2

�
and two aggregate shocks �1, �2, to construct

�(�) =

�h
	

�
1¬ 





 1¬ �



�i2
+

�
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 ln
¬


¬
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; �
��
+

¬
1¬ 



�
ln

¬
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¬
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���2

+ �

�
�

(

+1)
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+1

����0+1;�0+1
(

)
¬  ¬ �



� �
�

(

+1)
¬  

+1

����00+1;�00+1
(

)
¬  ¬ �



��


where 	 ( ) = +  ¬
p

2 + 2 is a Fischer-Burmeister function;

and , � are given weights.

Step 3: (Training).

...

Step 4: (Simulation).

...



Training errors and running time

Figure 7. Training errors and running time for indivisible labor model.



The solution for divisible labor model

Figure 8. Solution to indivisible labor model under  = 1 and
� = 1.



Deep learning method for the model with 3 states



Multiclass classi�cation problem
We again have a collection of  data points

�
 

	

=1
where

 �
¬
1 

1 

2 

�
is composed of dependent variables (features) but

now  is a categorical independent variable (label) that takes  values.
Our goal is to construct the lines that separate the classes 1, 2 and 3.

Figure 9. Examples of multiclass classi�cation.



From multiclass to binary classi�cation problem

� A popular approach in machine learning is to reformulate a
multiclass classi�cation problem as a collection of binary
classi�cation problems.

� The key assumption behind this approach is the hypothesis of an
independence of irrelevant alternatives.

� In our analysis, that means that the choice between f�g and f4g
is independent of the availability of fog, the choice between f4g
and fog is independent of the availability of f�g and the choice
between fog and f�g is independent of the availability of f4g.

� Two binary reformulations of a multiclass classi�cation problems are
the one-versus-one and one-versus-rest (or one-versus-all) classi�ers,

ln (�)
(o) = �(1) ln (4)

(o) = �(2) ln (4)
(�)= �(3)

ln (�)
(o)+(4)= �(1) ln (4)

(o)+(�)= �(2) ln (o)
(4)+(�)= �(3)

where �(1), �(2) and �(3) are the regression coe�cients and  is the
matrix of features.



Training multi class classi�ers

� To train the constructed multiclass classi�ers, we may omit one of
three regressions by imposing the restriction that the probabilities
are added to one.

� For the one-versus-one classi�er, the �rst two regressions imply

 (�) =  (o) exp
�
�(1)

�
and  (4) =  (o) exp

�
�(2)

�
so that

 (o)
�
1 + exp

�
�(1)

�
+ exp

�
�(2)

��
= 1.

� In turn, for the one-versus-rest classi�er, in the �rst regression, we
replace  (o) +  (4) with 1¬  (�) and in the second regression,
we replace  (o) +  (�) with 1¬  (4).

Consequently, we can re-write two classi�ers as

 (�)= exp
�
�(1)

�
 ()   (4)= exp

�
�(2)

�
 (o) 

 (o)= 1

1+exp(�(1))+exp(�(2))


 (�)= 1
1+exp(¬�(1))

 (4)= 1
1+exp(¬�(2))

 (o)= 1¬  (�)¬ (4) 



Symmetric one-versus-rest classi�er
� Note that in the above expressions, we treat the normalizing class

fog di�erently from the other two classes f4�g.
� There is also a symmetric version of the one-versus-rest method in

which all  classes are treated identically by estimating 
unnormalized one-versus-rest logistic regressions ln  (�) = �(1),

ln  (4) = �(2), ln  (o) = �(3) and by normalizing the
exponential function ex-post by their sum.

� This classi�er is called softmax and it is a generalization of a logistic
function to multiple dimensions,

 (�)= 1� exp
�
�(1)

�
 (4)= 1� exp

�
�(2)

�


 (o)= 1� exp
�
�(3)

�


where � = exp
�
�(1)

�
+ exp

�
�(2)

�
+ exp

�
�(3)

�
.

� The symmetric treatment is convenient in deep learning analysis
because it allows us to use a neural network with  symmetric
outputs.



Likelihood function for softmax classi�er

The log-likelihood function for the softmx classi�er is similar to the one
for the binary classi�er except that we also do a summation over  of
possible outcomes,

max
�1:;�

ln (�1  �)

=
1



X

=1

X

=1

h
 ln

�

�
; �

��
+

¬
1¬ 

�
ln
�
1¬ 

�
; �

��i
,

where  is a categorical variable constructed so that  = 1 if
observation  belongs to class  and it is zero otherwise. Again, we
maximize the constructed likelihood function by using a gradient descent
style method, �  � ¬ �r ln� (�).



Discrete choice in three state model

� We next extend our indivisible labor heterogeneous-agent model
with two employment choices f0 g to three employment choices
f0  g.

� We parameterize not one but three decision boundaries that separate
the three employment choices, so we use a sigmoid function to

parameterize four functions


()
� 


()
� 


(0)
� 






, speci�cally:

�
�
�0 + 

�


 


�


 



	

=1
 ; �

��


where  (�) is a multilayer neural network parameterized by a vector
of coe�cients � (weights and biases), � � 

 () + 
 () + 

 (0)
normalizes the probabilities to one; � () = 1

1+¬  is a sigmoid

function which ensures that







and


()
� 


()
� and


(0)
� are

bounded in the interval [0 1], and �0 is a constant term. (In
addition, we also parameterize the Lagrange multiplier).



Verifying the optimality conditions
� Our next goal is to check if the constructed labor choices are

consistent with the individual optimality conditions.

� To validate the individual choices, we use the decision functions


()
� 


()
� 


(0)
� 







and �
 to recover the value functions for

employed, part-time employed and unemployed agents,   ,  

and   , respectively, using the appropriately formulated Bellman
equations; see Chang and Kim (2007).

� We then construct the labor choice b
 implied by such value

functions,

b
 =

8
<

:

 if   = max
�
       

	


 if   = max
�
       

	


0 otherwise.

� In the solution, the labor choice implied by the value function b


must coincide with the labor choice produced by our decision
function 

 for all  .

� If this is not the case, we proceed to training of our classi�er.



Training the model
� To this purpose, we construct the categorical variable


 �

�
1

  2
  3



�
such that


 =

8
<

:

(1 0 0) if b
 = 

(0 1 0) if b
 = 

(0 0 1) otherwise.

� We then formulate the (log)likelihood function

ln
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=
1
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��i

.

� We train the model to maximize the likelihood function by using a
conventional / stochastic / batch stochastic gradient descent
method.

� We iterate on the decision functions 
 ()  


 ()  


 (0),







and �


until convergence.



Determining three-state labor: value functions versus
"discretized" FOC

� Chang and Kim (2007) consider a related heterogeneous-agent
model with three states but they allow for intensive and extensive
margins.

� In contrast, we assume an entirely discrete choice between the three
employment states:

b
 =

8
>>>>><

>>>>>:

 if  ¬
�

¬  
  exp(

)


�¬1=�
� 

 if  ¬
�

¬  
  exp(

)


�¬1=�
2 [  ]

0 otherwise

� Thus, we assume that the agent chooses full-time employment,


 = , whenever her labor choices implied by the FOC of the
divisible labor mode is above a threshold  ; she chooses part-time
employment, 

 = , whenever it belongs to the interval [  ];
and she chooses unemployment whenever it falls below the part-time
employment threshold .



Algorithm 3: Deep learning for model with full and
part-time employment

Algorithm 3: Deep learning for the model with full and partial employment.

Step 0: (Initialization).

Construct initial state
��


0 


0

	

=1
 0

�
and parameterize the decision functions byn


()
� 


()
� 


(0)
� 







o
= �

�
�0 + 

�


 


�


 



	

=1
 ; �

��


where 
 ()  

 () and 
 (0) are the probabilities to be full- and part-time

employed and unemployed, respectively;

and � � 
 () + 

 () + 
 (0) is a normalization of probability to one.



Algorithm 3: Deep learning for model with full and
part-time employment (cont.)

Algorithm 3: Deep learning for the model with full and partial employment.

Step 1: (Evaluation of decision functions).

Given state
�


 


�


 



	

=1
 

�
 set 

 = , 
 =  and 

 = 0 depending on

on which probability 
 ()  

 () and 
 (0) is the largest. Compute 








from

the decision rules and �nd 
+1 from the budget constraint for all agents  = 1 

Reconstruct      and   , respectively.

Find b
 =

8
<

:

 if   = max
�
       

	


 if   = max
�
       

	


0 otherwise.

and de�ne 
 =

8
<

:

(1 0 0) if b
 = 

(0 1 0) if b
 = 

(0 0 1) otherwise.
for each 

.



Algorithm 3: Deep learning for model with full and
part-time employment (cont)

Algorithm 3: Deep learning for the model with full and partial employment.

Option 1: Construct         and b
 =

8
<

:

 if   = max
�
       

	


 if   = max
�
       

	


0 otherwise.

Option 2: From discretized FOC b
 =

8
>>>>><

>>>>>:

 if  ¬
�

¬  
  exp(

)


�¬1=�
� 

 if  ¬
�

¬  
  exp(

)


�¬1=�
2 [  ]

0 otherwise

De�ne 
 =

8
<

:

(1 0 0) if b
 = 

(0 1 0) if b
 = 

(0 0 1) otherwise.
for each 

.



Algorithm 3: Deep learning for model with full and
part-time employment (cont)

Algorithm 3: Deep learning for the model with full and partial employment.

Step 2: (Construction of Euler residuals).

Draw two random sets of individual productivity shocks �1 =
¬
�11  �


1

�
,

�2 =
¬
�12  �


2

�
and two aggregate shocks �1, �2, and construct the residuals

�(�) =
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
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where 	 ( ) = +  ¬
p

2 + 2 is a Fischer-Burmeister function;

and , � are given weights.

Step 3: (Training).

...

Step 4: (Simulation).

...



Training errors and running time

Figure 10. Training errors and running time for three-state employment model.



The solution for divisible labor model

Figure 11. Solution to the three-state employment model.



Conclusion

� This paper shows how to use deep learning classi�cation approach
borrowed from data science for modeling discrete choices in dynamic
economic models.

� A combination of the state-of-the-art machine learning techniques
makes the proposed method tractable in problems with very high
dimensionality { hundreds and even thousands of heterogeneous
agents.

� We investigate just one example { discrete labor choice { but the
proposed deep learning classi�cation method has a variety of
potential applications such as sovereign default models, models with
retirement, and models with indivisible commodities, in particular,
housing.
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Conclusion: Enthusiastic view

Data scientists:

� developed powerful AI techniques for data analysis (e.g., deep
learning)

� created software for their e�cient implementation (e.g., TensorFlow)

Economists mostly develop own method & codes

� We show how to cast the broad class of rational-expectation models
into the form suitable for the state-of-the-art DL methods and
software

� We hope that this approach augments vastly the set of models that
is tractable in economics



Grain of salt, black magic and no-free-lunch (1)

- We o�er AI-based technology but do not know whether it is best
possible for all economic models.

First, it is not clear if neural network is useful or not.

Several reasons to doubt it:

� Neural networks are promising and universal approximators but have
a large number of parameters and are highly non-linear.

� Convergence to global solution is not guaranteed.

� Solutions in economic models are often well described by simple
polynomials.



Grain of salt, black magic and no-free-lunch (2)

Second, Monte Carlo integration lying in the basis of AI technology is
simple but has a low, square-root rate of convergence.

� Mindless drawing of random number is not necessarily the best.

� More e�cient outcomes can be obtained if we engineer better
sequences or grids to enhance interpolation or integration results.



Grain of salt, black magic and no-free-lunch (3)

Third, stochastic optimization is magical: it replaces numerical
approximation of integral over a large number of points with an
evaluation of its integrand in few of such points.

� But there is no free lunch: its convergence rate is slower and not
guaranteed.

� The latter method is more expensive than stochastic gradient and
may be intractable for complex approximating functions.



Grain of salt, black magic and no-free-lunch (4)

Finally, there is a variety of AI technologies that can be used for solving
dynamic economic models.

� Alphazero plays Go but not chess and Deepblue plays chess but not
Go.

� Again, there is no free lunch: for one application where a method
works, there is another where it does not.

� The idea that there is an all-purpose procedure, which will remove
the curse of dimensionality, without any trade-o�s, for any kind of
models, and will produce highly precise and uniformly accurate
solution belongs to magical thinking.

� The human input is still critical to see trade-o�s



Computational economists may still be useful

� The bottom line is that we probably should not retire all
computational economists at the moment.

� At least, not until they �gure out what type of AI works best for
economic models.



Thank you!
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