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Abstract. A significant problem in modern finance theory is how to price assets whose payoffs are
outside the span of marketed assets. In practice, prices of assets are often assigned by using the
Capital Asset Pricing Model. If the market portfolio is efficient, the price obtained this way is equal
to the price of an asset whose payoff, viewed as a vector in a Hilbert space of random variables, is
projected orthogonally onto the space of marketed assets. This paper looks at the pricing problem
from this projection viewpoint. It is shown that the results of the CAPM formula are duplicated
by a formula based on the Minimum Norm Portfolio, and this pricing formula is valid even in cases
when there is no efficient portfolio of risky assets. The relation of the pricing to other aspects of
projection are also developed. In particular a new pricing formula, called the Correlation Pricing
Formula, is developed that yields the same price as the CAPM but is likely to be more accurate
and more convenient than the CAPM in some cases.
Key Words. Asset pricing, projection theorem, correlation pricing, Hilbert space.

1 Introduction

The pricing formula derived from mean–variance portfolio theory (Ref. 1) is one of the principal
foundations of modern finance theory. Starting with a set of assets with known return character-
istics, this pricing formula expresses the expected return of any one of those assets in terms of
the expected excess return (above the risk-free return) of an optimal portfolio and in terms of the
beta of the asset with respect to the optimal portfolio. Mathematically, the pricing formula is a
tautology; it is essentially a restatement of the necessary conditions for the optimal portfolio.

The pricing formula takes on vast power, however, when it is assumed (by an equilibrium
argument) that the optimal portfolio is the market portfolio. Then, expected returns of individual
assets can be determined from a knowledge only of their betas with respect to the market portfolio.
This is the essence of the Capital Asset Pricing Model (CAPM).

In practice the CAPM formula is applied to any asset, including assets not necessarily in the
family of marketed assets. Application of the CAPM formula in this way extends the range of
mean–variance theory, but it raises the question of how to interpret the price that is produced.

One way to characterize this price is in terms of approximation. If the new asset is approximated
as closely as possible (in the sense of minimum expected squared error) by a linear combination of
marketed assets, the new asset is assigned a price equal to that of the corresponding approximating
linear combination of market assets.

This can be stated more elegantly in terms of orthogonal projection in Hilbert space. The
random payoffs of an original set of n priced assets can be regarded as n vectors in a subspace of a
Hilbert space of random variables. To assign a price to a payoff vector outside of this subspace, this
payoff is first projected orthogonally onto the subspace; then the price is assigned to be consistent
with prices in the subspace.

1Professor, Department of Management Science and Engineering, Stanford University
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Orthogonal projection not only provides a nice interpretation of the CAPM-style pricing for-
mula, it opens up the possibility of applying the powerful results of Hilbert space projection to other
aspects of the pricing problem. This paper explores the relation between Hilbert space projection
methods and pricing (both to interpret known results and to develop new ones).

One important result, based on a duality associated with projection, is that the basic CAPM-
style pricing formula can be stated in terms of a minimum norm vector rather than in terms of
an optimal portfolio; see Ref. 2. We shall show that an advantage of this result is that the
minimum norm vector always exists, whereas the optimal portfolio may not. Indeed, the minimum
norm method provides a pricing formula even when the efficient frontier contains no (nontrivial)
marketed asset.

The Hilbert space view also leads to an alternative pricing formula in which the optimal portfolio
(or market portfolio) is replaced by a marketed asset most correlated with the asset being priced.
This Correlation Pricing Formula is a rigorous implementation of the common idea of finding a
comparable marketed asset when pricing a new one. It is likely that this method will be preferred
in many pricing situations.

In the final section, the projection approach is extended to the case where portfolios are evalu-
ated according to a utility function.

2 Projection Theorems

The classic projection theorem generalizes the highly intuitive fact that in 3-dimensional space the
shortest distance between a point and a plane is achieved by a line perpendicular to the plane
(Ref. 3). The generalized theorem is stated in an arbitrary Hilbert space, and in that setting
it characterizes the solution to approximation and efficiency problems in numerous applied fields.
There are, in addition, several extensions and modifications of the classic theorem which also have
strong intuitive geometric interpretations and numerous applications. This section states some of
these important results in a general Hilbert space setting. Subsequent sections apply these results
to issues of asset pricing.

A (real) pre-Hilbert space H is a vector space with a real-valued inner product defined for any
two elements. The inner product of vectors x and y in H is denoted (x|y). The inner product
is linear in each argument and (x, x) > 0 unless x = θ, the zero element of H. The norm of an
element x ∈ H is ‖x‖ =

√
(x|x). A pre-Hilbert space is a Hilbert space if it is complete2 under the

norm. We say x is orthogonal to y if (x|y) = 0; in this case we write x ⊥ y. One important lemma
is the Cauchy–Schwarz inequality: |(x, y)| ≤ ‖x‖ · ‖y‖ for any x and y in H, with equality if and
only if x = αy for some α or y = βx for some β.

A subspace M of a pre-Hilbert space is a set M ⊂ H that is itself a linear space. Many of
the results stated here apply only to closed subspaces. However, in our applications, the relevant
subspaces are finite dimensional—and all finite-dimensional subspaces are closed.

The classic projection theorem is in many respects the most important theorem of Hilbert space.
2A normed space is complete if every Cauchy sequence converges (with respect to the norm) to a limit in the

space.
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It is the theorem that generalizes the concept that the shortest distance from a point to a plane is
attained by the line perpendicular to the plane. See Ref. 3 for proof.

Theorem 2.1 (The Classic Projection Theorem) Let H be a Hilbert space and M a closed
nonempty subspace of H. Let x ∈ H. Then there is an m0 ∈ M such that ‖x−m0‖ ≤ ‖x−m‖ for
all m ∈ M . Furthermore, x−m0 ⊥ m for all m ∈ M . Conversely, if m0 ∈ H is a vector such that
x − m0 ⊥ m for all m ∈ M , then ‖x − m0‖ ≤ ‖x − m‖ for all m ∈ M .

In practice, computation of the projection may be difficult. It is often advisable to carry out
the computation in a series of steps, each of which is a simpler projection problem. The abstract
way to do this is to represent the subspace as the sum of smaller subspaces. For example, we may
write a subspace S as S = M + N where M and N are smaller subspaces. The overall projection
decomposes if M and N are mutually orthogonal; that is, if (m|n) = 0 for all m ∈ M and m ∈ N .
We shall use this principle to derive the Correlation Pricing Formula. We state the general principle
here.

Theorem 2.2 (Projection Splitting) Let H be a Hilbert space and let M and N be nonempty
subspaces which are closed and mutually orthogonal. Then the orthogonal projection of x onto the
subspace M + N is m0 + n0 where m0 and n0 are the projections of x onto M and N , respectively.

Proof. We find (x−m0−n0|m) = (x−m0|m)−(n0|m) = 0 for all m ∈ M . Likewise (x−m0−n0|n) =
0 for all n ∈ N . Hence x − m0 − n0 is orthogonal to all elements in M + N . By the projection
theorem m0 + n0 is the the projection of x onto M + N.

There is another way to carry out the projection operation in steps. Suppose M and N are
subspaces with N ⊂ M , and we wish to find the projection of x onto N . We can first project x
onto M and then project that result onto N .

Theorem 2.3 (Nested Projection) Let M and N be subspaces of a Hilbert space with N ⊂ M .
Let x ∈ H. Let xM and xN be the projections of x onto M and N , respectively. Then xN = (xM )N ,
the projection of xM onto N .

Proof. We have x − (xM )N = x − xM + xM − (xM )N . The first two terms on the right form a
vector that is orthogonal to N because it is orthogonal to M and N ⊂ M . The second two terms
form a vector orthogonal to N because it is the difference between xM and its projection onto N .

The classic projection theorem has a dual, which is expressed in terms of a maximization
problem. Geometrically, again consider 3-dimensional space. Given a horizontal plane that contains
the origin, and given a vector x lying outside the plane, we seek the vector of unit length in the
plane that has maximum cosine with x. It should be clear that the appropriate vector in the plane
is “directly below” x. That is, it is pointing in the direction of the projection of x onto the plane.
This result, when generalized, is the content of the dual projection theorem. In the dual theorem
given here, the cosine of the angle between two vectors is replaced by the inner product of those
vectors. As long as the norms are fixed, this is a valid generalization.
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Theorem 2.4 (Dual Projection Theorem) Let H be a Hilbert space and M a closed nonempty
subspace of H. Let x ∈ H. Then there is an m′ ∈ M with ‖m′‖ = 1 such that (x|m′) ≥ (x|m) for
all m ∈ M with ‖m‖ = 1. Furthermore, if the projection m0 of x onto M is nonzero, then m′ is
unique and is a positive multiple of m0.

Proof. If x is orthogonal to every m ∈ M then we may take m′ to be any vector in M with ‖m′‖ =
1. Otherwise, let m0 be the projection of x onto M . Since m0 
= θ we may set m′ = m0/‖m0‖. Then
for any m ∈ M with ‖m‖ ≤ 1 we have (x|m) = (x − m0 + m0|m) = (m0|m) ≤ ‖m0‖ · ‖m‖ ≤ ‖m0‖
by the Cauchy–Schwarz inequality. On the other hand, (x|m′) = (x−m0 + m0|m0)/‖m0‖ = ‖m0‖.
Comparing the last two sentences proves that m′ has the required property.

Now suppose m0 
= θ and suppose m′′ ∈ M with ‖m′′‖ = 1 is another vector with the desired
property. Then (x|m′′) = (x|m′). Hence 0 = (x|m′′−m′) = (x−m0+m0|m′′−m′) = (m0|m′′−m′) =
(m′|m′′−m′)‖m0‖. Thus (m′|m′′) = (m′|m′). This means 1 = (m′|m′) = (m′|m′′) ≤ ‖m′‖ · ‖m′′‖ =
1. Equality must hold throughout, and the condition for equality in the Cauchy–Schwarz inequality
requires m′′ = m′.

The next theorem is a powerful result for pricing theory. Stated in algebraic terms the result may
be surprising; but stated geometrically the result is again quite intuitive. The theorem combines
duality with the projection theorem.

Geometrically, suppose that in 3 dimensions there is a given plane containing the origin. (Think
of it as a horizontal plane.) There is also a given line in that plane not passing through the origin.
We want to construct an additional plane that contains the given line and is such that the projection
of any point in the new plane onto the first plane falls on the given line. It should be clear that
the new plane rises perpendicularly from the first. (It must be a vertical plane.) This new plane
has the property that the minimum distance from this plane to the origin is achieved by a vector
in the first plane (that is, it is a horizontal vector).

Here is an interpretation of the theorem that will be used in the context of asset pricing (and
is closely related to the CAPM formula). Suppose that on M , a closed subspace of H, there is a
linear functional f (defined only on M). It can be thought of as a way to assign a price to any
vector in M . The price of m ∈ M is f(m). We would like to assign prices to vectors outside of
M as well. One way to assign a price to a vector x is to project x onto M giving, say mx, and
then assign the price f(mx) to x. This is a two-step process: project, and then apply f . The next
theorem states that there is a shortcut method. There is a vector g ∈ M such that the price of any
vector x ∈ H is (g|x). Furthermore the vector g is proportional to the vector in M of minimum
norm having price 1.

Theorem 2.5 (Orthogonal Extension Theorem) Let H be a Hilbert space and let M be a
closed nonempty subspace of H. Let f be a linear functional defined on M . Then there is a unique
vector g ∈ M such that for any x ∈ H there holds (g|x) = f(mx) where mx is the projection of x
onto M . Furthermore, if f 
= θ, the vector g is the (unique) vector of minimum norm in M with
f(g) = ‖f‖2 ≡ {supf(m) : ‖m‖ = 1, m ∈ M}.

Proof. According to the Riesz–Fréchet theorem (Ref. 3), there is a unique vector g ∈ M such
that f(m) = (g|m) for all m ∈ M . Suppose x ∈ H. By the projection theorem x = mx + nx where

4



nx ⊥ m for all m ∈ M . Therefore, (g|x) = (g|mx) + (g|nn) = (g|mx) = f(mx). This shows that a
g exists which duplicates f on M and gives f(x) = f(mx) in H. Clearly ‖f‖ = ‖g‖.

Assume now f 
= θ. Then g 
= θ. Suppose that h is a vector in M such that f(h) = ‖f‖2. Then
(g|h) = ‖g‖2. By the Cauchy–Schwarz inequality, (h|g) ≤ ‖h‖‖g‖, with equality only if h = αg for
some α ≥ 0. If equality does not hold we have ‖g‖2 < ‖h‖‖g‖; and thus ‖g‖ < ‖h‖. If equality
does hold then h = αg and f(h) = (h|g) = α(g|g). But the requirement f(h) = ‖g‖2 implies α = 1;
so in this case h = g.

3 Basic Pricing Concepts

In order to use the concepts of the previous section we must set up the appropriate Hilbert space.
Vectors in this space are random variables.

Corresponding to a random variable y, we denote the expected value of y by E(y) or by y. The
variance of y is σ2 = E[(y − y)2]. The standard deviation of y is σ =

√
σ2. We consider only those

random variables that are bounded in the sense that E[y2] < ∞.
The Hilbert space we use has elements (vectors) which are bounded random variables.3 The

inner product of two such elements y1, y2 is (y1|y2) = E[y1y2]. The norm of an element y in H is
thus ‖y‖ =

√
E[y2]. Throughout this paper, there is no loss in generality in assuming that H is

finite-dimensional: that is, a finite number of independent vectors (random variables) generate all
the others by linear combination.

We associate assets with random variables. Assets are purchased at time 0 and sold at time
1. The amount for which an asset is sold is its payoff, which is a random variable. Assume that,
initially, there is available a set of n assets with payoffs y1, y2, . . . , yn respectively. These payoffs
are each members of H.

Associated with each asset is a price, which is paid at time 0. The n prices corresponding to
the n assets are p1, p2, . . . , pn, respectively.

We assume that any linear combination of the given n payoff vectors defines an asset with a
price determined by the linear combination. That is, the asset w1y1 + w2y2 + · · ·+ wnyn has price
w1p1 + w2p2 + · · · + wnpn. This linear pricing rule can be inferred from an arbitrage argument if
the n original assets can be arbitrarily divided and bought or sold without transactions costs. The
n original assets and their linear combinations define a subspace M in H.

The basic problem we consider is how to price payoffs y that are not in M . It is well known that
there is not a unique solution to this problem. We investigate one simple (and standard) method.

Standard Projection

We price an arbitrary payoff x ∈ H by projecting x onto the subspace M generated by y1, y2, . . . , yn.
The price of the projection is then found by the linear pricing rule in M , and this price is assigned
to x.

3We assume throughout that there is a fixed underlying probability space and probability measure. All of our
random variables are measurable functions on this space.
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To carry out this process, we seek the vector mx of the form mx = w1y1 + w2y2 + · · · + wnyn

that minimizes ‖x − mx‖, where the weights w1, w2, . . . wn are real numbers.
The solution is given immediately by noting that according to the projection theorem, the

error x − mx must be orthogonal to each of the vectors y1, y2, . . . , yn. In equation form, we have
(x − mx|yi) = 0 for all i = 1, 2, . . . , n.

These equations can be expressed algebraically in terms of the (symmetric) matrix

Y =




(y1|y1) (y1|y2) · · · (y1|yn)
(y2|y1) (y2|y2) · · · (y2|yn)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(yn|y1) (yn|y2) · · · (yn|yn)




and the vectors

w =




w1

w2
...
wn


 , b =




(y1|x)
(y2|x)
...
(yn|x)


 .

Using this notation, the orthogonality conditions can be written as E(x − yTw|yi) = 0 for i =
1, 2, · · ·n, where y is considered a column vector of the random variables yi, i = 1, 2, · · · , n. With
a further obvious extension of notation we may combine all n orthogonality conditions and write
them together as

(x − yTw|y) = 0.

This becomes
Yw = b.

If the matrix Y is nonsingular, we may write the explicit solution

w = Y−1b. (1)

Hence the projection of x onto M is
mx = bTY−1y. (2)

Let p denote the column vector of prices associated with the yi’s. The vector mx has the price
px = w1p1 + w2p2 + · · · + wnpn = pTw. In view of (1) we have

px = pTw = pTY−1b. (3)

This px is the price that is assigned to x. Using the definition of b this can be written as

px = pT E[Y−1y x]. (4)
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Orthogonal Extension

The orthogonal extension theorem can now be employed—which within the framework we have
developed is merely a rearrangement of the solution. However, this rearrangement provides an
important interpretation of the solution.

We may rewrite (3) as
px = gTb (5)

or, equivalently,
px = E[gTy x] = (gTy|x) = (g|x) (6)

where g = Y−1p. Hence
g = gTy = pTY−1y. (7)

This shows that px can be expressed as an inner product with a fixed vector g independent of x.
We have extended the pricing functional defined only on the subspace M to the entire space H,
and the extension is consistent with the result that would be obtained by orthogonal projection of
x onto M .

The advantage of this version is that, once g is computed and the random variable g = gTy
formed, equation (6) can be used to find the price of any x; it is not necessary to first compute the
projection of x onto the subspace M generated by the yi’s.

We use the second part of the orthogonal extension theorem to develop an alternative interpre-
tation of g and an alternative method of computation. According to that theorem the proper g is,
first of all, in M ; which means that g = gTy for some g. Second, this g has minimum norm with
respect to all vectors in M that have price equal to ‖f‖2 where f is the original pricing function
on M . (We do not need to know ‖f‖ yet.)

Hence the minimum norm problem is

min
g

E[gTyyTg]

subject to gTp = ‖f‖2.

Since Y = E[yyT ] the above problem is

min
g

E[gTYg]

subject to gTp = ‖f‖2.

Introducing a Lagrange multiplier 2λ for the constraint, the appropriate first-order necessary
conditions are

Yg − λp = 0.

Hence
g = λY−1p

We know from the previous development that λ = 1 or it can be found by calculating ‖f‖2 directly.4

4‖f‖2 = max (wT p)2/E[(wTy)2] = max (wTp)2/(wTYw) = pTY−1p.
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In general, to avoid calculating ‖f‖2 we may find g′ ∈ M minimizing the norm subject to the
price of g′ being 1. The pricing vector g is then a scalar multiple of this g′. The scale factor can
be found by matching the known price of any asset in M .

Covariance Form

It is conventional to express the results of a pricing problem in terms of the means and covariance
matrix of the underlying assets. To convert the pricing formula above to this form, we define the
n-dimensional vector y as the vector of expected values of the yi’s and we define the covariance
matrix V = E[(y − y)(y − y)T ], and throughout this paper we assume that V is nonsingular.

We will make use of the following standard lemma (which can be verified by cross multiplication).

Lemma 3.1 (Sherman–Morrison Formula) Let A be a nonsingular symmetric n × n matrix
and let a be an n-dimensional column vector. If A + aaT is nonsingular, then

[A + aaT ]−1 = A−1 − A−1aaTA−1

1 + aTA−1a
.

Applying the Sherman–Morrison formula to the matrix Y = V + y yT , we may rewrite (7) in
the explicit form

g = gTy = pTY−1y = pT {V−1 − V−1y yTV−1

1 + yTV−1y
}y (8)

=
pTV−1y

1 + yTV−1y
− {pTV−1 − pTV−1y yTV−1

1 + yTV−1y
}(y − y) (9)

This is the general pricing equation. We can greatly simplify it by determining the price it
implies for a risk-free asset. This will define an implied risk-free return which we denote by R0. In
particular, the implied price of the asset with payoff identically 1 is defined to be 1/R0.

Using g from (9) as a pricing vector, the price of the asset with payoff identically equal to 1 is
found from (g|1) = E(g) = 1/R0 to be5

1
R0

=
pTV−1y

1 + yTV−1y
. (10)

5Another important return value is Rmv which is the expected return of the minimum-variance point. We easily
find

Rrm =
yT V−1p

pT V−1p
.

We then have
R0

Rmv
=

(1 + yT V−1y)(pT V−1p)

(yV−1p)2
>

(yT V−1y)(pT V−1p)

(yV−1p)2
≥ 1

by the Cauchy–Schwarz inequality. Hence R0 > Rmv.
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Substituting this into (8) we have

gT = pTV−1 − 1
R0

yTV−1 (11)

We may now state the following theorem.

Theorem 3.1 (Minimum Norm Pricing) Let x be a payoff. Then the price of x as determined
by its projection onto the space of priced assets is

px =
1

R0
[x − cov(zTV−1y, x)] (12)

where
z = y − R0p.

Example 3.1 Suppose there are two assets. Their returns have expected values R1 = 1.4, R2 = .8,
and standard deviations σ1 = σ2 = .20, respectively. The two assets are uncorrelated. In terms of
the previous notation we have

V =

[
.04 0

0 .04

]
, p =

[
1
1

]
, y =

[
1.4
.8

]
.

One way to find the pricing formula related to these assets is to directly minimize the norm of a
portfolio subject to the price being 1. We have assumed that the original assets are normalized so
that their prices are 1; and hence their payoffs are equal to their returns. We let w be the amount
of asset 1 and 1 − w be the amount of asset 2 in a portfolio with payoff y. The price constraint is
then satisfied for all w. The norm of y is [E(y)2 + var(y)]1/2; hence the problem becomes:

min [1.4w + .8(1 − w)]2 + .04w2 + .04(1 − w)2 (13)

which has solution w = −1, 1 − w = 2. The price of any asset x will accordingly be

px = αE[(−y1 + 2y2)x)]

where α is a scale factor. We can find α by applying the formula to y1 which gives

p1 = αE[−y2
1 + 2y1y2] = α[−1.42 − .04 + 2(1.4)(.8)] = 0.24α.

Since p1 = 1 we find α = 1/0.24 . The pricing vector g is thus g = (−y1 + 2y2)/0.24 .
As an application of the formula, we can compute the implied risk-free return R0, determined

by projecting the 1 payoff onto the space of the two risky assets. We have

1
R0

= E[g] = (−1.4 + 1.6)/.24 = 1/1.2,

which means R0 = 1.20 .
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The situation can be illustrated in a familiar Expected Return–Standard Deviation diagram
as shown in Fig. 1. The returns of the two assets are shown as heavy dots. The curved line
represents payoffs of linear combinations of the two assets. The line drawn from the origin to the
curve is the shortest distance to the curve, and is the minimum norm vector. It is formed by
taking a weight of −1 for asset 1 and 2 for asset 2 in accordance with the solution to (13). When
properly scaled this vector serves as the general pricing vector g. The dashed line in the figure is
the line tangent to the curve at the minimum norm point. The vertical intercept of this line is
‖g‖2/E(g) = α‖g‖2/(E(g)α) = R0α‖g‖2 = R0, the last equality following from the fact that the
price of g is 1. Therefore, R0 = 1.2 is equal to the vertical intercept of the dashed line. (The
minimum-variance expected return is Rmv = 1.1 in this case.) The vector g is found by scaling the
minimum norm vector so that its vertical height is 1.2, which in this case means scaling by a factor
of 1.2/.2 = 6 .

Extension of Standard Form

We can find the a general formula for the scale factor α to apply to the minimum-norm vector
which converts the pricing formula to familiar form. We have

px = αE(y0 x) (14)

where y0 is the minimum-norm portfolio. We can apply this formula to the payoff y0 − y0 which
has price p0 − y0/R0. Thus

p0 − y0/R0 = αE[y0(y0 − y0)] = ασ2
0.

Solving for α and substituting in (14) we find px = αE[y0 x] = αE[y0(x + x − x)] and hence, we
may state the following result.

Theorem 3.2 (Standard Form for Minimum Norm Pricing) Let x be a payoff. Then the
price of x as determined by its projection on the space of priced assets is

px =
1

R0
[x − cov(y0, x)(y0 − p0R0)/σ2

0]

where y0 is a minimum-norm payoff, R0 is the implied risk-free return, and σ2
0 and p0 are the

variance and price of y0.

This looks similar to the CAPM formula in pricing form with R0 used as the risk-free return, but
with the minimum norm payoff used in place of the efficient portfolio.

4 Inclusion of a Given Risk-Free Asset

Suppose that in addition to the n risky assets, there is an asset (the (n + 1)-st asset) which is risk
free, (as first considered in Ref. 4). This asset is priced such that its return is Rf . Inclusion of
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such an asset does not change the general principle of minimum norm pricing, and in fact does not
much influence the formula. It does, however, allow a direct comparison between the minimum
norm formula and the standard CAPM-style pricing formula, where the price is expressed in terms
of a unique efficient portfolio of risky assets. As we shall see, the minimum norm solution is the
more general of the two approaches, since it always exists while the efficient portfolio of risky assets
may not.

Minimum Norm Formulation

We may directly formulate the problem of finding the minimum norm vector with price equal to
1. We denote by w the vector of weights for the risky assets. Then 1 − pTw is the weight of the
risk-free asset. The problem is

min [wTy + (1 − wTp)Rf ]2 + wTVw

This leads to
w = −Rf [V + zzT ]−1z (15)

where
z = y − Rfp.

Using the Sherman–Morrison formula this becomes

w = −Rf

[
V−1 − V−1zzTV−1

1 + zTV−1v

]
z = − V−1z

1 + zTV−1z
Rf (16)

Hence the pricing vector g is of the form

g = α
[
wTy + (1 − wTp)Rf

]

= α

[
−zTV−1(y − Rfp)

1 + zTV−1z
+ 1

]
Rf

We may find α by applying the pricing vector to the risk-free asset with payoff 1. We have

1
Rf

= E(g)

= α

[
− zTV−1z

1 + zTV−1z
+ 1

]
Rf

= α
Rf

1 + zTV−1z

Thus
α = (1 + zTV−1z)/R2

f (17)
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and we have

g =
1 + zTV−1z

R2
f

[
−zTV−1(y − y + y − Rfp)

1 + zTV−1z
+ 1

]
Rf

=
1 + zTV−1z

R2
f

[
−zTV−1(y − y + z)

1 + zTV−1z
+ 1

]
Rf

=
1

Rf
[1 − zTV−1(y − y)]

Theorem 4.1 (Minimum Norm Pricing with Risk-Free Asset) When there is a risk-free as-
set with return Rf , the price of an arbitrary asset with payoff x is

px =
1

Rf

[
x − cov(zTV−1y, x)

]
(18)

where z = y − Rfp. Equivalently,

px =
1

Rf
[x − cov(y0, x)(y0 − p0Rf )/σ2

0], (19)

where y0 is a minimum-norm payoff and p0 and σ2
0 are the price and variance of that payoff.

The second part of this result is derived from the first in the same way that Theorem 3.2 is derived.
Note that in general a minimum-norm payoff may be modified by adding or subtracting a multiple
of the risk-free asset. Likewise, y0 may be scaled arbitrarily.

Optimal Portfolio Formulation

A standard way to derive the asset pricing formula when there is a risk-free asset is to find the
portfolio of risky assets that maximizes the price of risk: (yM − pMRf )/σM (where yM , pM , and
σM are the expected value, the price, and standard deviation of the optimal portfolio), leading to
a CAPM-type formula. (See Refs. 5, 6, 7.)

Mathematically, the payoff of the optimal portfolio is of the form wTy where wTp > 0. The w
that maximizes the price of risk solves

maximize
wT (y − Rfp)√

wTV−1w
(20)

Under appropriate conditions (to be discussed later), this will have a solution w and a corresponding
optimal yM of the form

yM = γzTV−1y (21)

where γ > 0.
We may eliminate γ by noting that the price of yM is pM = γzTV−1p. Thus

yM =
zTV−1y
zTV−1p

pM . (22)
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Then we note that

zTV−1y =

[
zTV−1y
zTV−1p

pM

] [
zTV−1z
zTV−1p

pM

] [
zTV−1z

(zTV−1p)2
p2

M

]−1

.

This can be written6

zTV−1y = yM (yM − pMRf )/σ2
M

and hence the the minimum norm formula (18) can be written as

px =
1

Rf

[
x − cov(yM , x)(yM − pMRf )

σ2
M

]
(23)

which is the standard CAPM-style formula in pricing form.
A weakness of this formulation is that the required portfolio yM may not exist. This is true

even though the mathematical manipulations used to obtain it lead to the same solution as the
minimum norm solution. The problem is with the maximization of the price of risk ratio. This
ratio may not have a maximum even though the necessary conditions have a solution. Indeed there
may be no portfolio of risky assets on the upper portion of the feasible region. This is the case if
the risk-free return Rf is higher than some threshold value. The price of risk ratio will then have
a minimum, rather than a maximum, and in that case we must take γ < 0 in (21). The minimum
norm solution still exists of course, and gives the price corresponding to orthogonal projection.
Since the formal mathematics for the expression of zTV−1y in terms of yM is identical to the case
where this is a maximum, we see that the pricing formula can be written exactly like (23) where
yM is the portfolio that minimizes the price of risk ratio if a minimum exists.

The threshold value of Rf , defining the upper limit of risk-free returns that lead to maximum
yM ’s, corresponds to the case where wTz = 0 and a risk-free return equal to the return at the
minimum-variance point, namely

Rmv =
yTV−1p
pTV−1p

(24)

For Rf > Rmv there is no portfolio of risky assets that achieves a maximum price of risk ratio, as
pointed out, for example, in Ref. 8. For Rf = Rmv there is neither a maximum nor a minimum.
Example 4.1 Suppose we have the same two risky assets as in example 3.1 and we adjoin a risk-free
asset with return Rf . According to (24) (or by inspection) the threshold value for this example is
Rmv = (1.4 + .8)/2 = 1.1 .

If Rf < 1.1, there is a portfolio that maximizes the price of risk. For example, for Rf = 1 we
find easily from (22), with pM = 1, that yM = (.4y1−.2y2)/.2 = 2y1−y2. Hence yM = 2.8−.8 = 2.0
and σ2

M = .04(4 + 1) = .20, which gives σM = .447 . This yM can be used as the optimal portfolio
in the CAPM-style pricing formula.

6Note that
zT V−1z

zT V−1p
pM =

zT V−1(y − Rfp)

zT V−1p
pM = yM − pMRf .
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We can also find the corresponding minimum-norm vector for Rf = 1. From (16) we have
w1 = −(1.4− 1.0)/(.04 + (.16 + .04)) = −10/6 = −1.66 ; and w2 = −(.8− 1.0)/(.04 + (.16 + .04)) =
5/6 = .833 . The amount in the risk-free asset must therefore be 1+(10/6)− (5/6) = 11/6 = 1.833 .
The portfolio with these weights has expected return R = (−10 · 1.4 + 5 · .8 + 11)/6 = 1/6 = 1.666
and standard deviation σ =

√
(102 + 52).04/62 = .372 . Note that the ratio of weights w1/w2 is −2,

which is exactly the same as the ratio of weights in yM

If Rf > 1.1 there is no portfolio that maximizes the price of risk, but there is a portfolio that
minimizes the price of risk. For example, suppose Rf = 1.3. Then from (22) the minimizing
portfolio is yM = −(.1y1 − .5y2/(.4) = −.25y1 + 1.25y2. This has yM = .65, σM = .255 which is on
the lower part of the minimum-variance frontier of risky assets.

For Rf = 1.3 there is also a minimum-norm portfolio (of y1, y2, and Rf ). It is found from (16)
to have weights w1 = −1.3(1.4 − 1.3)/(.04 + (.01 + .25)) = −.433 and w2 = −1.3(.8 − 1.3)/(.04 +
(.01+ .25)) = 2.166. Hence the weight of the risk-free asset is 1+ .433− 2.166 = −.733. This yields
R = .1733 and σ = .2

√
652 + 132/30 = .442 . When normalized using the α of (17) this vector

serves as a pricing vector. Again, the result is the same as using yM for it can be seen that the
ratio of weights is w1/w2 is −1/5 in both cases.

What about the critical case of Rf = 1.1?. There is neither a maximum nor a minimum
extremum of the price of risk. However, there is still a minimum-norm solution. We find z1 = .3
and z2 = −.3. Using (16) we find w1 = −.3 × 1.1/(.04(1 + .09 × 2/.04)) = −1.5 . Likewise,
w2 = 1.5 . Notice that in this case the price of w1y1 + w2y2 is zero. (This is why the standard
method breaks down.) The weight of Rf in the minimum-norm portfolio is 1. The portfolio has
R = −1.5 × 1.4 + 1.5 × .8 + 1.1 = .20 and σ = 1.5 × .2 ×

√
2 = .424 . This is a point on the line

tangent to the lower part of the minimum-variance curve of risky assets.
All three cases are shown in Fig. 2. Part (a) of the figure represents the typical situation when

the risk-free return is lower than the threshold (minimum-variance) value. The second shows the
situation when the risk-free return is higher than the threshold value. And the third shows the
situation when the risk-free return is exactly equal to the threshold value, in which case there is no
solution to extremizing the price of risk.

5 Correlation Pricing

We now employ the remaining three concepts of projection presented in Section 2; namely, the dual-
ity theorem, the splitting theorem, and the nested projection theorem. These lead to a new pricing
formula, equivalent to the CAPM-style formula, but which is advantageous in many situations.

Suppose, as before, we are give n + 1 assets, n of which are risky and the last of which is risk
free. For convenience, we assume that the n+1 assets are linearly independent. These n+1 assets
span a subspace S. The first n assets define the subspace M ⊂ S of risky assets. Consider the new
set of payoffs y′i = yi − yi for i = 1, 2, . . . n and Rf . These payoffs span the same subspace S as the
original payoffs. Let us denote the subspace spanned by the first n of these transformed payoffs by
M ′ and the (one-dimensional) subspace spanned by the risk-free payoff by N . The risk-free payoff
is orthogonal to each of the other payoffs, since E[y′iRf ] = 0, for each i = 1, 2, . . . , n. Hence M ′ and
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N are mutually orthogonal. According to the orthogonal splitting theorem, we may determine the
projection of an arbitrary payoff x onto the subspace S by projecting separately onto M ′ and N
and then adding the results.

To carry out the projection onto M ′ we use the duality theorem. According to that theorem,
the projection onto M ′ is proportional to the payoff y′m′ of norm 1 in M ′ that maximizes the
inner product E(y′m′x). Since any vector in M ′ has expected value equal to 0, it follows that
E(y′x) = cov(y′, x) for any y′ ∈ M ′. Hence y′m′ maximizes cov(y′, x) subject to σ2(y′) = 1, y′ ∈ M ′.

Actually, any y′ ∈ M ′ that maximizes the correlation coefficient

ρ(y′, x) = cov(y′, x)/[σ(y′)σ(x)]

will work, because these are scalar multiples of each other. The projection of x onto M ′ is then
xM ′ = βx,m′y′m′ where βx,m′ = [cov(y′m′ , x)/σ2(y′m′)]. (That xM ′ is the projection can be verified
by noting that x − xM ′ is orthogonal to M ′.

The projection of x onto N is easily computed to be x and hence the total projection of x on
S is

xS = x + βx,m′y′m′ .

The vector y′m′ is a unique linear combination of the y′i’s, and so we define ym as the correspond-
ing linear combination of the yi’s. Furthermore, if y′m′ maximizes cov(y′, x)/σ(y′) over M ′, then
the corresponding ym = y′m′ + ym maximizes cov(y, x)/σ(y) over the subspace M because adding a
constant to any y does not change covariance or variance. We may therefore write the projection
of x onto S as

xS = x + βx,m[ym − ym].

Since the price of the payoff yi is pi, the price of the payoff yi − yi is pi − yi/Rf . It follows that the
price of ym − ym is pm − ym/Rf and the price of the projection xS is

px =
1

Rf
[x + βx,m(ym)(Rfpm − ym)] . (25)

This leads to the following result.

Theorem 5.1 (Correlation Pricing Theorem) The projection price of a payoff x is

px =
x − βx,m[ym − pmRf ]

Rf
(26)

where ym is the payoff of a priced asset that is most correlated with x, pm is the price of ym, and

βx,m = cov(x, ym)/σ2(ym). (27)

Note that the scale factor in ym is arbitrary, since the expression for price is homogeneous of
degree zero in ym. Likewise, it is clear that the addition of a constant payoff to ym does not effect
the formula, and therefore the theorem is written without the restriction that ym belong to M ;
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any payoff in S which achieves the maximum correlation can be used. (We may think of ym in the
theorem as denoting a “most correlated” asset.)

Formula (26) is similar in structure to the familiar CAPM formula in pricing form, with the
correlated payoff ym replacing the market (efficient) payoff. A major difference between the two
formulas, however, is that ym depends on x, while the efficient portfolio does not.

An advantage of the correlation pricing formula is that a most correlated asset frequently may be
computed more reliably than the efficient portfolio computed either directly from data or indirectly
by using the market portfolio and assuming that the market is mean–variance efficient. In many
cases a most correlated asset may be close at hand. For example, if the assets are securities of
various corporations, an asset most correlated with the payoff of a new corporation may be the
security of a similar corporation in the same industry. Indeed, it is common practice to value
companies through a comparative analysis that looks to similar companies. Correlation pricing is
a formalization and generalization of this common pricing technique.

Let us examine some special cases of the formula. First, suppose x = yi for some i = 1, 2, . . . , n.
In that case a risky asset most correlated with x is yi itself. Substituting ym = yi, the pricing
formula gives px = (yi − [yi − piRf ])/Rf = pi, as it should.

Second, suppose that given x we can find a ym that is most correlated with x but we do not
know the price of ym. We can use the standard CAPM to find this latter price. Let yM be the return
of the efficient portfolio of risky assets (or, more generally, the risky part of the scaled minimum
norm payoff). Then according to the CAPM-style formula,

pm =
1

Rf
[ym − βm,M (yM − Rf )].

Substituting this in (26), we find

px =
x − βx,m[ym − [ym − βm,M (yM − Rf )]

Rf
=

x − βx,mβm,M (yM − Rf )
Rf

.

According to the nested projection theorem, the projection of x onto yM can be found by first
projecting onto M and then projecting the result onto yM . From this it can be deduced that
βx,mβm,M = βx,M , and the pricing formula reduces to

px =
1

Rf
[x − βx,M (yM − Rf )],

which is the CAPM formula for the price of x. (Alternatively, since the CAPM holds, it must be
the case that βx,mβm,M = βx,M .)

6 Zero-Level Pricing

Suppose an investor is an expected utility maximizer with utility function U for wealth, where
U is continuously differentiable, increasing, and concave. We assume that the investor has cash
endowment e which is invested optimally in the n + 1 assets with payoffs y1, y2, . . . , yn, Rf which
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span the subspace S. For convenience we let yn+1 = Rf . The optimal portfolio has payoff y∗ of the
form y∗ = α1y1 + α2y2 + · · ·αnyn + αn+1Rf which satisfies α1p1 + α2p2 + · · ·+ αn+1pn+1 = e (with
pn+1 = 1).

Suppose a new asset with payoff yn+2 = x is introduced. Let S be the subspace of H spanned
by all n + 2 payoffs. We wish to assign a price px to x. The zero-level price is the price px such
the optimal portfolio constructed with the possibility of including this asset, as well as the others,
would include this asset at the zero level. In other words, the optimal portfolio would not change.
(See Refs. 9 and 10.)

The necessary conditions for the optimal portfolio (which are sufficient as well) are

E[U ′(y∗)yi] = λpi, for i = 1, 2, . . . n + 2. (28)

for some λ > 0. The quantity E[U ′(y∗)y] is a linear functional with respect to y ∈ H. Hence,
according to the Riesz–Fréchet theorem, there is a vector h ∈ H such that E[U ′(y∗)y]/λ = (h|y)
for all y ∈ H. This h is a pricing vector for all n+2 assets. It is clear that the projection of h onto
the n + 1 dimensional subspace S spanned by the first n + 1 asset payoffs is the pricing vector g in
that subspace. In other words, h is equal to g plus a vector orthogonal to S.

In minimum norm pricing the overall pricing vector is g itself; the extra orthogonal vector is
zero. Hence, minimum norm pricing is a special case of zero-level pricing where the vector h defined
by the functional U ′(y∗) lies in the subspace S.

One case where the price can be uniquely determined is when x is independent of all payoffs in
S. In this case the necessary condition (28) applied to Rf and to x gives

E[U ′(y∗)]Rf = λ

E[U ′(y∗)]E[x] = λpx.

Hence,

px =
E[x]
Rf

. (29)

We note that in the notation of Section 5, x is orthogonal to M ′. Hence px defined by (29)
is the same as px defined by the projection of x onto N + M ′ = S. It follows that h = g in this
case. In other words, if x is independent of the yi’s, (orthogonal) projection pricing is equivalent
to zero-level pricing for any utility function U .

If all payoffs are normal random variables, x can be written as x = s + t where s ∈ S and t is
orthogonal to S. The price of x is then equal to the price of s which is well-defined since S is the
subspace of marketed payoffs. Hence, projection pricing is equivalent to zero-level pricing for any
utility function U when payoffs are jointly normal.
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Figure 1: Feasible Set and Minimum Norm Vector

Figure 2: Feasible Set For Various Cases
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