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Abstract

In strict terms, the Capital Asset Pricing Model applies only to marketed assets, but the
CAPM is frequently used to assign prices to nonmarketed assets as well. The Correlation Pricing
Formula (CPF) is similar in form to the CAPM, and gives the same result. However, the CPF
expresses the price of a nonmarketed asset in terms of a priced asset that is most correlated
with the nonmarketed asset, rather than in terms of the market portfolio. This method is a
rigorous version of the common practice of assigning a price to a new asset by considering prices
of comparable marketed assets. The method sometimes has accuracy advantages when values
in the formula must be estimated.

1 Introduction

We consider a collection of marketed assets in a single-period environment. One of these assets is
risk-free with payoff R and price 1. There are n additional assets whose payoffs are, respectively,
the random variables A1, A2, . . . , An with corresponding prices p1, p1, . . . , pn. There may be
additional marketed assets as well, but the given collection of n+1 assets is assumed to be basic
in the sense that any other marketed asset has a payoff that is a linear combination of those in
the basic collection. It is further assumed that there is no possibility of arbitrage in the market.

The span of the basic n+1 asset payoffs is the set of all linear combinations of A1, A2, . . . , An, R.
We denote this span by N . With this framework, any asset whose payoff is duplicated by a
linear combination of the basic n + 1 payoffs represented by the Ai’s and R is in N and can be
priced by linearity—the price being equal to linear combination of prices that corresponds to
the linear combination used to duplicate the payoff.

The pricing formula of the Capital Asset Pricing Model (CAPM) [1], [2] automatically prices
assets in N according to this linearity rule, as long as the market portfolio used in the CAPM is
the mean–variance efficient portfolio of risky assets (alternatively termed the Markowitz port-
folio).

Now consider a new asset with payoff defined by the random variable B which is not in the
span N of the original assets. A unique price cannot be inferred from the marketed asset prices.
The market is incomplete and hence to assign a price to the new asset, a new criterion must be
introduced. Several approaches have been investigated. See, for example, [3], [4].

One widely accepted method for assigning a price in this situation is to apply the CAPM
formula to this asset as well, by simply entering the random payoff B into the CAPM formula
the same way that it would be entered if it were in N . In fact, this procedure is commonly
used to price projects within firms, evaluate companies that do not have public securities, price
hypothetical new ventures, and so forth.

The price of B obtained this way (by CAPM) has a systematic relationship to the prices of
the basic assets. Specifically, it is the price of the asset with payoff in N that best approximates
B in the sense of minimum expected squared error. (See [5].) In a vector space framework (with

1The author wishes to thank an anonymous referee whose comments and advice greatly improved this paper.
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inner product defined by expectation of the product), the payoff that best approximates the
new asset payoff B is the projection of B onto the subspace N . Hence, one way to think about
the pricing of B is to imagine that B is projected onto the space of basic assets, giving a payoff
BN . The price of this payoff is then found in terms of the basic assets by expressing BN as a
linear combination of the basic assets.

We can carry out this pricing process in an alternative (but equivalent) manner to derive an
alternative to the CAPM formula. We term this new formula the Correlation Pricing Formula
(CPF), and although it produces the same price as the CAPM, it is more convenient than
CAPM in many practical and theoretical situations.

2 Derivation of the CPF

The projection of a payoff B onto the space of payoffs defined by A1, A2, . . . , An, R is the linear
combination (with real coefficients xi for i = 0, 1, 2, . . . , n)

BN = x0R + x1A1 + x2A2 + · · · + xnAn (1)

that minimizes the expected squared error

e = E[(B − BN )2]

with respect to all combinations of the form (1). According to the classic projection theorem
[6], the projection BN is such that the error B − BN is orthogonal to each of of basic payoffs,
where orthogonality is defined as the expected value of the product being zero.

An elementary transformation enormously simplifies the algebra required to carry out this
approach. We choose as basic payoffs the alternative collection R, A1 − A1, A2 − A2, . . . , An −
An, (where the overbar indicates expected value). This collection has the same span as the
original collection. In terms of these payoffs the projection BN will have the form (with different
coefficients than (1))

PB = x0R + x1(A1 − A1) + x2(A2 − A2) + · · · + xn(An − An). (2)

The orthogonality condition for the projection then leads directly to the equations2

E
{[

B − x0R − x1(A1 − A1) − x2(A2 − A2) − · · · − xn(An − An)
]
R

}
= 0

E
{[

B − x0R − x1(A1 − A1) − x2(A2 − A2) − · · · − xn(An − An)
]
(A1 − A1)

}
= 0

E
{[

B − x0R − x1(A1 − A1) − x2(A2 − A2) − · · · − xn(An − An)
]
(A2 − A2)

}
= 0

...
E

{[
B − x0R − x1(A1 − A1) − x2(A2 − A2) − · · · − xn(An − An)

]
(An − An)

}
= 0

In the first of these equations all products except the first two are zero, and hence this equation
can be solved immediately to produce x0 = B/R.

Note also that x0 cancels out of the remaining equations since in the i-th such equation
x0 occurs only as E[x0R(Ai − Ai)] which is zero. Hence these remaining equations define n
equations for the n unknowns x1, x2, . . . , xn.

2Alternatively, these equations can be found by writing the necessary conditions for minimization of the expected
squared error.
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These equations can be written in the simplified form

cov(B, Ai) =
n∑

k=1

cov(Ai, Ak)xk (3)

for i = 1, 2, . . . n. The n equations can be solved for the xk’s in terms of the covariance matrix of
the Ai’s but for our purposes it is not necessary to solve them. Instead, we find an alternative
interpretation of the equations by considering a new problem.

The correlation coefficient of two payoffs B and C is

ρ =
cov(C, B)
σ(C)σ(B)

. (4)

where σ denotes the standard deviation. The new problem we pose is that of finding an asset
within the span of the original assets whose payoff is most correlated with a given payoff B. Such
an asset is not unique because correlation is not affected by a positive scale factor nor by the
addition of a risk-free payoff. However, if the maximum ρ is greater than zero, the maximizing
asset payoff is unique to within such changes.

If in (4) we consider C to be a payoff in the span of basic assets and B to be fixed, we can
maximize the correlation ρ with respect to C by maximizing the numerator while holding the
denominator constant (since a scale factor cancels out). Hence we maximize cov(C, B) subject
to var(C) = 1. The choice of 1 for the value of the constraint is arbitrary and merely sets the
scale factor.

Since correlation is not affected by the addition of a risk-free payoff, we can restrict the
search to those C’s with zero expected value. Specifically, for the problem of finding an asset
from the basic collection that is most correlated with B we may look for an asset of the form

C = y1(A1 − A1) + y2(A2 − A2) + · · · + yn(An − An).

The problem of finding a most-correlated marketed asset (or more precisely, the most-correlated
portfolio of marketed assets) is then

maximize cov
{
B, y1(A1 − A1) + y2(A2 − A2) · · · yn(An − An)

}
subject to var

{
y1(A1 − A1) + y2(A2 − A2) · · · yn(An − An)

}
= 1

We can simplify this problem in a few ways. First, the expected values can be dropped
from both the covariance and variance expressions. Second, the equality in the constraint can
be changed to ≤ for with this inequality the maximum will be attained at a point of equality.
Finally, the variance expression in the constraint can be expanded to show the cross product
terms. With these transformations, the maximization problem becomes

maximize
∑n

k=1 cov(B, Ak)yk

subject to
∑n

j,k=1 yj cov(Aj , Ak) yk ≤ 1.

Introducing a Lagrange multiplier λ we may move the constraint up to the objective, and find
the necessary conditions by differentiating the result with respect to each of yi’s separately. The
Lagrange multiplier λ will be positive, owing to the inequality in the constraint and the fact
that the function on the left is convex [7]. Setting the derivatives to zero produces

cov(B, Ai) = 2λ

n∑
k=1

cov(Ai, Ak)yk (5)
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for each i = 1, 2, . . . , n.
Except for the factor 2λ these equations are exactly the same as those of (3) that define the

xi’s (for 1 ≤ i ≤ n) of the projection BN . We conclude that the set of yi’s is the same as the
set of xi’s except for a positive scale factor.

Then
C = y1(A1 − A1) + y2(A2 − A2) + · · · + yn(An − An),

where the yi’s are found as above, is a payoff in N that has maximum correlation with B. Since
we know that x0 = B, the projection BN is given by

BN = B + βC (6)

for some real number β. Then from the fact that the error B − BN is orthogonal to all payoffs
in the span of basic payoffs, we have

E[(B − BN )C] = 0.

Substituting (6) for BN we have

E[(B − B − βC)C] = 0.

Since C = 0 this becomes
cov(B, C) − βvar(C) = 0,

or finally,

β =
cov(B, C)

var(C)
. (7)

We know that the appropriate price pB for B (using projection) is the price of BN = B+βC.
Hence

pB =
B

R
+

cov(B, C)
var(C)

pC

=
1
R

[B + βRpC ]

where pC is the price of C. In this expression, C is an asset in the span N that is most correlated
with B and has zero expected value. We may generalize the formula by adding a risk-free payoff
to C. Addition of a risk-free component to C changes its expected value to, say C, and this has
price C/R. However, the change does not influence beta. Hence

pB =
1
R

[B + βRp(C−C)]

=
1
R

[B − β(C − RpC)]. (8)

This is the final version of the Correlation Pricing Formula.
In the CPF (8), the payoff C is any payoff made up from the original marketed assets that

has maximal correlation with the new payoff B. There are two degrees of freedom in the choice
of C: its expected value can be changed by the addition of a risk-free asset, and it may be
positively scaled. The formula remains the same for any such C.
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As a simple application of the CPF let us apply it to an asset whose payoff B is in the
subspace N . In this case, a most-correlated payoff in N is B itself, which means that β = 1.
Hence the CPF gives

pB =
1
R

[B − (B − RpB)] ≡ pB ,

which is of course correct.
It should be clear that the general form of the CPF is similar to that of the CAPM in

certainty-equivalent form, with C replacing the return RM of the market portfolio used in the
CAPM. However, in the CAPM, the same RM is used to price every asset, while in the CPF
the choice of C depends on the asset being priced.

Beta

We introduce the notation

βB,C =
cov(B, C)

var(C)
(9)

to define a “beta” for any two random variables B and C (and the order is clearly important).
The beta used in the CPF has an important composition property that relates it to the

standard beta of the CAPM and therefore establishes a relation between the two pricing formu-
las. Let X be any random payoff in the span N of basic payoffs. Let B be any random payoff
(possibly outside N) and C a payoff in N most correlated with B. From (6) we have

BN = B + βB,C(C − C). (10)

From the fact that B − BN is orthogonal to N we have

0 = E[(B − BN )X] = E[
(
B − B − (BN − B)

)
X] = cov(B, X) − cov(BN , X).

Hence,
cov(B, X) = cov(BN , X).

Then, using (10) we have
cov(B, X) = βB,C cov(C, X).

Dividing both sides by var(X) we obtain the important relation

βB,X = βB,C βC,X , (11)

which holds for any X ∈ N , any B, and a C most correlated with B.
As an application of this result, suppose that we use the correlation pricing formula to price

B but we do not know the price of the correlated asset C. We find the price of C by using the
CAPM formula. Hence, we have

pB =
1
R

[
B − βB,C (C − pCR)

]
(12)

pC =
1
R

[
C − βC,M (RM − R)

]
(13)
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where RM is the return on the Markowitz portfolio (possibly equal to the market portfolio) and
βC,M is the beta of C andRM . Substituting the formula for pC into the formula for pB , we
obtain

pB =
1
R

[
B − βB,C [(C − [C − βB,M (RM − R)])]

]
=

1
R

[
B − βB,C βB,M (RM − R)

]
=

1
R

[
B − βB,M (RM − R)

]
(14)

where the last equation uses the composition relation (11). This last formula, is of course, the
CAPM formula for the price of B.

Accuracy Considerations

An advantage of the correlation pricing formula is that in some circumstances it is more conve-
nient and more accurate than the CAPM when the relevant quantities must be estimated. This
is especially true if a most-correlated asset is easily identified. Analysis of a new real estate
venture, for example, may best be accomplished by comparison with similar projects in the
same locale rather than by correlation with a general asset market portfolio.

Two issues concerning accuracy arise. First, there are likely to be errors in determining a
most-correlated asset or the Markowitz portfolio. These errors will produce corresponding errors
in the determined price. Second, even assuming that a most-correlated asset or the Markowitz
portfolio is correctly identified, it is necessary to estimate the associated statistics—the means,
covariances and variances—called for in the corresponding pricing formula. We explore these
issue by considering the following points.

1. Pricing a known asset. As shown above, the CPF applied to a payoff B in the span N
leads directly to the proper price pB (as a tautology). The CAPM on the other hand,
because of errors in the definition of the optimal portfolio and errors in beta, would likely
give an incorrect price. Similarly, for payoffs that can be identified as being close to the
span of N , the CPF is likely to more accurate than the CAPM.

2. Market portfolio. In the CAPM the market portfolio is frequently substituted for the
Markowitz portfolio, based on the assumption that the market portfolio is mean–variance
efficient. In practice this market portfolio is taken to be one of the popular market indices,
such as the S&P 500. However, the evidence that the market is efficient, although plausible,
is not strong and use of it in the pricing formula introduces errors.

3. Projection Price. Ideally, both CAPM and CPF assign a price to the payoff B equal to
the price of the projection of B onto the span N of priced assets. For CAPM to produce
this price faithfully, it is necessary that it price any most-correlated payoff C correctly. To
prove this note that the critical component in the CAPM formula is cov(B, RM ) where
RM is the return of the market. However, from (6)

cov(B, RM ) = cov(BN , RM ) = β cov(C, RM )

where β is a constant independent of RM . Hence, for CAPM to be accurate, it must be
able to evaluate cov(C, RM ) accurately. On the other hand, the CPF uses C and the price
of C directly.
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4. Accuracy of Statistical Quantities. Assume that both the Markowitz portfolio and a most-
correlated asset are accurately identified. Both the CAPM and the CPF require a beta,
determined by covariances and variances. We can roughly investigate the accuracy inherent
in the two methods. As a first approach, consider the problem of estimating covariance
from historical data. Suppose the random variables x and y are correlated and we have n
independent sample pairs (x1, y1), (x2, y2) . . . (xn, yn). We form the estimates x̂ and ŷ

x̂ =
1
n

n∑
i=1

xi

ŷ =
1
n

n∑
i=1

yi.

The error in these estimates can be characterized by the error variance, which for x̂ (for
example) is

var(x̂ − x) =
σ2

x

n
. (15)

We estimate the covariance through the formula

ˆcov(x, y) =
1

n − 1

n∑
i=1

(xi − x̂)(yi − ŷ). (16)

The expected value of this estimate is in fact cov(x, y). If the samples are drawn from
a jointly normal distribution of x and y, then the sample covariance (16) is distributed
according to a Wishart distribution [9], [10] and has a variance (see [11])

var[côv(x, y)] = σ2
x σ2

y

1 + ρ2

n − 1
. (17)

We expect ρ(RM , B) to be smaller than ρ(C, B) (since in fact ρ(C, B) is maximal). From
(17) we see that the accuracy of the estimate of covariance is relatively independent of
ρ, so the cov(B, RM ) used by CAPM and the cov(B, C) used by CPF are likely to have
similar absolute accuracy when estimated this way.
We can do better by estimating the correlation coefficients directly. We can estimate the
ρ of x and y from samples by finding the ρ that solves

1
n − 1

n∑
i=1

(xi − x̂)(yi − ŷ) − ρ

n − 1

[
n∑

i=1

(xi − x̂)2
]1/2 [

n∑
i=1

(yi − ŷ)2
]1/2

= 0. (18)

For ρ = 0 the second term vanishes and the error in the first term is (from (17)) 2σ2
xσ2

y/(n−
1), implying3 a large variance in the estimate of ρ. If ρ = 1 then xi = cyi for some constant
c, and the error in the formula is zero implying that the correct value of ρ will be found
exactly. Hence, in general, high correlation leads to lower error than low correlation. This
implies that estimates may be more accurate for the CPF than for the CAPM.

3Of course, the error in the estimate of ρ may be larger than this, since the solution of (18) involves the coefficient
of ρ as well.
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The same technique can be applied directly to the estimation of beta by defining the
estimate of beta as that solving

1
n − 1

n∑
i=1

(xi − x̂)(yi − ŷ) − β

n − 1

n∑
i=1

(yi − ŷ)2 = 0.

For ρ = 0 it follows that β = 0 and the variance in the equation is 2σ2
xσ2

y/(n − 1). For
ρ = 1 there is no error and hence the estimate of β will be exact. Again, high values of ρ
yield more accurate results than low values.

5. Expected Payoff Estimates. The most difficult quantity to measure in asset pricing formu-
las of this type is the expected payoff; or more precisely, the difference between the payoff
and a reference payoff. From (15) we see that the standard deviation of an error in, say
RM , is σM/

√
n. For a market volatility of 15% and 9 years of data the error is 5% which

is considerably larger than we wish; see [8] Chapter 8.
Assuming again that the Markowitz (or market) portfolio is identified, the CAPM formula
is

pB =
1
R

[B − βB,M (RM − R)].

If we assume that βB,M is reasonably accurate (and we have shown above that it may not
to be), we still must estimate B and RM −R, both of which are difficult. We can simplify
the calculation by introducing a transformation.
If the market portfolio is scaled so that its price is, say, pM rather than 1, and its payoff
is M , the CAPM formula is

pB =
1
R

[
B − βB,M [M − pMR]

]
,

where now βB,M = cov(B, M)/var(M). We may select the scale factor so that βB,M = 1.
This scaling does not require knowledge of M . With that scale factor the CAPM reduces
to

pB − pM =
1
R

[B − M ]. (19)

The issue thus boils down to the estimation of B − M.

The CPF can likewise, by scaling of C, be transformed to the form

pB − pC =
1
R

[B − C]. (20)

When B is closely related to C we might expect (20) to be superior to (19). First, the
transformation to the simple form depends on the beta of the formula and this is likely to
be more accurate for the CPF. Second, if judgment used to estimate B −M or B−C, the
latter may be better when B and C are similar.

6. Identification Errors. A further issue, of course, is that a most-correlated asset C or the
Markowitz portfolio M may not be perfectly identified. This will of course cause errors in
the pricing formulas. We can examine the first-order effect of such mis-identification.
We define pM

B and pC
B to be the prices of B estimated by the CAPM and the CPF,

respectively. Also we let qM = B − RpM
B and qC = B − RpC

B .
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From the CAPM we have
qM = βB,M [M − RpM ]

where M is the payoff of the Markowitz portfolio. Now suppose that the true Markowitz
portfolio is mis-indentified as M + ε∆, where ∆ is a random payoff and ε is a small
constant. We let EM be the resulting error factor defined as dqM+ε∆/dε evaluated at
ε = 0. specifically,

EM =
d
dε

[
βB,M+ε∆(M + ε∆ − RpM+ε∆)

]∣∣∣∣
ε=0

Using

pM+ε∆ =
1
R

[M + ε∆ − βM+ε∆,M (M − RpM )]

we differentiate qM+ε∆ to obtain (after some algebra)

EM =
[

cov(B,∆)
cov(B, M)

− cov(M, ∆)
σ2

M

]
qM (21)

Likewise, assuming that a most-correlated asset C is mis-identified as C + εδ, we define

EC =
d
dε

qC+εδ =
d
dε

[
βB,C+εδ(C + εδ − RpC+εδ)

]
.

Using (13) for pC and for pC+εδ we find

EC =
[

cov(B, δ)
cov(B, C)

+
cov(δ, M)
cov(C, M)

− 2
cov(C, δ)

σ2
C

]
qC . (22)

Note that if ∆ is proportional to M , then EM is zero. Likewise, if δ is proportional to C,
then EC is zero (as expected, since C or M can be changed by scale factors).
It is difficult argue that one of the values (21) or (22) is typically lower than the other.
We might assume that on average cov(M,∆) and cov(C, δ) are small (reflecting the notion
that the mis-identification error is uncorrelated with what is being identified) and that B
is not strongly correlated with M but strongly correlated with C. Then

EM ≈ cov(B,∆)
cov(B, M)

qM (23)

EC ≈ cov(δ, M)
cov(C, M)

qC . (24)

These two are essentially symmetric, and either could be superior to the other, depending
on the particular nature of the mis-identifications. In practice, proxies for both M and C
are often found without explicit calculation. M is frequently taken to be the payoff of a
broad market index. C can be approximated by study of marketed assets whose payoffs
are obviously similar to that of the asset being priced. Both of these have advantages and
weaknesses.

The six points explored in this section constitute only a rough analysis. However, this analysis
tends to support the notion that when a nonmarketed asset is highly correlated with a portfolio
of marketed assets, the CPF offers an attractive alternative to the CAPM. The error due to
mis-identification of the pricing asset (C or M respectively) is about equally troublesome for
both methods, and the estimation of associated statistical quantities is perhaps less troublesome
for the CPF than for the CAPM.
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3 Simultaneous Pricing

The CPF can be extended to a formula that prices a collection of assets by using a common
priced asset to determine the betas for each asset in the collection. The result is a combination
of the CPF and the CAPM. The procedure is simple. Suppose that B1, B2, . . . Bm are risky
assets to be priced, and let C1, C2, . . . , Cm be corresponding most-correlated assets in the space
N of marketed assets. Assume these most-correlated assets have prices p1, p2, . . . , pm. We then
find a portfolio of these Ci’s and the risk-free asset R that is efficient (and is not the trivial
risk-free asset). Call this portfolio C. Then the projection price of any asset B in the space
spanned by the Bi’s will be

pB =
1
R

[
B − βB,C [C − pCR]

]
.

This formula is verified in three steps. First, although the operation of determining a most-
correlated asset is not linear, the operation of orthogonal projection is linear. Hence, the or-
thogonal projection of the space of Bi’s onto N is a linear subspace N ′ of N . This subspace N ′

is contained in the space N0 spanned by the Ci’s and R. Second, we know that the (reduced)
CAPM formula derived for N0 will price all the Ci’s correctly. Finally, this restricted CAPM will
also price all the Bi’s correctly since it will price them according to their orthogonal projection
onto N0 which is the same as their orthogonal projection onto N .

This result might be used in the design of optimal financial projects. For example, sup-
pose that a planned project has two distinct components whose relative weights vary in dif-
ferent project designs. Suppose also that the two components each have a corresponding
most-correlated marketed asset. By computing the appropriate combination of the two most-
correlated assets, we can write a general expression that gives the value of the project as a
function of the weights of the two components. We can then optimize the project with respect
to the choice of weights of the two components.

4 Conclusions

In the case of perfect estimates of all relevant quantities, the Correlation Pricing Formula and
the CAPM assign exactly the same prices to assets. The two formulas are similar in structure,
the only difference being that the role of the Markowitz (or market) portfolio used in the CAPM
is replaced by a marketed asset most closely correlated with the asset being priced. The CPF
appears to have advantages when assets with payoffs closely correlated with that of the asset to
be priced can be easily identified by the nature of the situation. The CPF can be regarded as a
formalization of the common practice of pricing new assets by using the prices of similar assets
as points of comparison.

The CPF is especially valuable in the pricing of derivative securities when the underlying
asset is not marketed. The correlation pricing formula provides a framework that can be used
for theoretical purposes and as a basis for efficient computation. This application of the CPF
will be reported in a subsequent report.
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