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Abstract

This paper considers two methods for pricing assets and examines the relations between
them. The first method is based on the principle of no-arbitrage, which asserts that introduction
of the new asset should not create an arbitrage in a market that was before arbitrage free.
This condition is satisfied by prices for the new asset between specific lower and upper limits,
determined as the values of certain linear programming problems. The duals of these problems
determine a pricing random variable. In the second method of pricing, a new asset is priced so
that a given utility maximizing investor will include this asset in his or her portfolio at a zero
level. The corresponding price is called the zero-level price. A zero-level price is universal for
a class of utility functions if it is a zero-level price for every utility function within that class.
This paper shows that universal zero-level prices exist in several important situations.
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1 Introduction

A fundamental problem of finance is that of pricing a new asset introduced into a existing, well-
functioning market. The new asset may be a new security, a derivative security, a project in a
firm, or a new venture. The price determined, should in some appropriate sense be consistent
with prices in the market and with investor characteristics.

One method of determining a suitable price is by use of the no-arbitrage principle. If the
existing market is assumed to be arbitrage-free, it is reasonable to require that introduction of
the new asset, at the assigned price, will not create an arbitrage opportunity. This is a powerful
and general criterion that is used frequently in modern finance. However, in many cases, the
no-arbitrage criterion is not strong enough to produce a single price; rather a range of prices
satisfy the condition. To obtain a unique price, additional criteria must be introduced. Like
most researchers, we favor criteria that are relatively simple, possess a strong degree of logic,
and do not rely on arbitrary parameter choices.

We go beyond the no-arbitrage principle by considering zero-level pricing, which has been
introduced earlier in Luenberger (1998), Smith and Nau (1995), and Holtan (1997). In this
method, the price is determined such that an investor with a specific utility function will elect
to include the new asset in his or her portfolio at the zero level. This has the advantage of being
a linear pricing scheme, with the price of a combination of two assets being the corresponding
combination of the two individual prices. We show that zero-level prices exist and give conditions
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for such a price to be unique. This theory uses the special characterization of arbitrage-free prices
obtained in the first part of the paper.

A zero-level price has the apparent disadvantage of being dependent on the particular utility
function used for its derivation. To address this, we say that a zero-level price is universal if
it is a zero-level price for all utility functions within a large class. Universal zero-level prices
are therefore independent of particular parameter choices. We show that in many situations
zero-level prices are in fact universal.

A simple situation that illustrates some of the issues associated with non-marketed assets is
that of pricing a coin flip. Suppose that the coin flip pays ten thousand dollars for an outcome
of heads and zero for an outcome of tails. Assume that the coin is known to be fair, and that
the rate of interest over the period between betting on the flip and its payment is zero. What
should be the price of a flip?

The principle of no-arbitrage is of little help for this example. It implies only that the price
must lie between zero and ten thousand dollars. Zero-level pricing determines the price at which
a particular risk-averse investor would “purchase” the coin flip asset at zero level. That is, it
is assumed that a fractional share of the coin flip proposition can be purchased, and the price
is assigned so that a specific investor would purchase the asset at zero level. For the coin flip,
this price is five thousand dollars, and most importantly, this price is (essentially) independent
of the investor’s utility function and level of wealth. In this sense, five thousand dollars is a
universal zero-level price. Because of the universality, this price is free from assumptions on
parameter values or functional forms. Universality holds for several important classes of assets.

2 Assets, Prices, and Arbitrage

We assume that the collection of marketed assets defines a perfect market in the sense that:
there are no transactions costs, it is possible to divide any asset arbitrarily, it is possible to short
any asset and receive its price immediately, and the activity of any single individual does not
influence prices. These are idealizations, but they have the agreeable property of being general
structural assumptions rather than specific assumptions about parameter values or functional
forms. We adhere to these assumptions throughout.

In addition to these assumptions concerning the perfect nature of transactions, we assume
that the prices of marketed assets are such that arbitrage is impossible. (We make this precise
later in this section.) This assumption provides the basis for a good portion of modern pricing
theory and it is useful as a starting point for analysis of non-marketed assets.

We define an asset payoff space, say X, in which the payoffs of all relevant assets exist.
In our framework X is a space of random variables on a probability space (consisting of a set
Ω of underlying possibilities together with a probability measure on Ω). We assume that the
elements of X are square-integrable over the probability space, meaning that the expected value
of the square exists and is finite. We consider two elements in X to be identical if they differ
only on a set of probability zero. We also assume that X is complete, in the sense of a norm as
will be discussed later in this section.

The linear span of the marketed payoffs is the linear space generated by linear combinations
of the marketed payoffs. In general, the linear span of the marketed assets is a subset of the
given X. However, if the linear span of marketed assets is X, any payoff in X can be achieved
as a combination of the marketed assets, and the market is said to be complete (with respect to
X). Any new asset with payoff in X can then be priced by linear pricing: pricing a combination
of assets by the corresponding combination of prices.
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Assets live for a common single period of time and have payoffs at the end of the period
which are in X. If such an asset is a marketed asset it also has a unit price, which is paid at
the beginning of the period to acquire one unit, and scaled proportionately for other levels.

There is a set of n marketed assets with payoffs (final prices) d1, d2, . . . , dn and correspond-
ing prices p1, p2, . . . pn. We define D = [d1, d2, · · · , dn] as the linear mapping that for an n-
dimensional vector of amounts α = (α1, α2, · · · , αn) gives the random variable Dα = x =
α1d1 + α2d2 + · · · + αndn. Hence, D : Rn → X.

Likewise, we define the price vector p = (p1, p2, . . . , pn). Marketed assets are priced linearly,
with the price of an asset with payoff x = Dα being p · α ≡

∑n
i=1 piαi.

An arbitrage is a combination of assets that produces a (random) payoff that is nonnegative
and yet has a nonpositive price, one of these conditions being nontrivial. An arbitrage is therefore
defined by a vector α satisfying

Dα ≥ 0 (1)
p · α ≤ 0, (2)

where either the top inequality is nontrivial in the sense that there is a set of positive probability
where Dα > 0 or the lower inequality is strict. We usually assume that there is no possibility
of arbitrage among the marketed assets.

If no arbitrage is possible, then, in particular, if there is a non-zero α satisfying Dα = 0,
it follows that p · α = 0, for otherwise either α or −α would be an arbitrage. From this it
immediately follows that if dk =

∑
i �=k αidi, then pk =

∑
i �=k αipi, which is the linear pricing

rule.
Consider now a new asset with payoff e ∈ X that is not marketed and not priced. We wish

to assign a price pe to this asset. This is the basic pricing problem.
If e is in the linear span of the di’s and if we require that the price pe of e not introduce an

arbitrage, we deduce immediately that e is also priced linearly; that is, if e is a linear combination
of the di’s, then pe is the same linear combination of the pi’s. Hence, extending pricing to assets
in the linear span of the marketed assets is straightforward under the no-arbitrage principle.

When the market is incomplete, there are assets in X that cannot be priced by linearity.
Still, we can use the no-arbitrage principle as a first step of analysis by finding the range of prices
such that inclusion of a particular new asset along with the marketed assets does not lead to the
possibility of arbitrage. Such price bounds have been considered previously; see Harrison and
Kreps (1979). In Holtan (1997) it is shown that the bounds are related to linear programming
problems as expressed in our somewhat more general setting by the following lemma which is
proved in the Appendix.

Lemma 1 Assume there is no arbitrage among the marketed assets. There are pl
e and pu

e

defining lower and upper bounds of the price pe that can be assigned to e such that no arbitrage
is possible for pe ∈ (pl

e, p
u
e ). Arbitrage is possible for pe /∈ [pl

e, p
u
e ]. The bounds are given by

pl
e = sup {p · α : Dα − e ≤ 0} (3)

pu
e = inf {p · α : Dα − e ≥ 0}. (4)

Note that the constraints may not be feasible, pl
e or pu

e may not be finite, and even if they
are finite, the inf and sup in the lemma may not be achieved. Furthermore, although it is clear
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from their definitions that pl
e ≤ pu

e , it is not obvious that the prices of lemma 1 satisfy this
inequality1.

We can obtain results that are more definitive and provide additional insight by considering
the dual of each of the linear programs in lemma 1. However, since the original linear programs
have constraint sets that are in (possibly) infinite-dimensional spaces, we must develop the dual
programs carefully.

The dual programs involve the adjoint of the operator D. As stated earlier D : Rn → X. We
assume that X is complete under the norm defined by ‖x‖ =

√
E(x2). We therefore consider

X to be a Hilbert space with the inner product of two elements w ∈ X, v ∈ X defined by
w · v = E(wv). The adjoint of D maps from X into Rn. Applied to an element w ∈ X the
adjoint produces wD defined as satisfying wD · α = w · Dα for all α ∈ Rn.

With these notions we have dual characterizations of both pl
e and pu

e expressed by the
following two theorems, which are proved in the appendix.

Theorem 1 Assume there is no arbitrage among the marketed assets and that e ≥ 0, e �= 0.
Then pl

e is finite and has the two dual characterizations:

pl
e = max

α
p · α (5)

sub to Dα − e ≤ 0.

and

pl
e = min

w
w · e (6)

sub to wD = p

w ≥ 0.

Theorem 2 Assume there is no arbitrage among the marketed assets, that there is an α such
that Dα ≥ 1, and e is bounded. Then pu

e is finite and has the two dual characterizations:

pu
e = min

α
p · α (7)

sub to Dα − e ≥ 0.

and

pu
e = max

w
w · e (8)

sub to wD = p

w ≥ 0.

The assumption in theorem 1 that e be nonnegative is usually satisfied in applications. The
assumption in theorem 2 that there is an α such that Dα > 1 is satisfied, for example, by the
existence of a risk-free asset.

The characterizations (6) and (8) of pl
e and pu

e based on duality clearly demonstrate the
fundamental inequality pl

e ≤ pu
e since these are the minimum and maximum over the same

constraint set.
1However, a short proof assuming feasibility of the constraints is possible: Assume that pu

e < pl
e. Let αl, αu satisfy

Dαl ≤ e, Dαu ≥ e, and define pl = p ·αl, pu = p ·αu. Then D(αu −αl) ≥ 0. And pu − pl ≤ pu
e − pl

e < 0. Thus αu −αl

is an arbitrage of the marketed assets, which is a contradiction.
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The dual characterizations also provide an alternative interpretation of the price bounds.
A random variable w satisfying the dual constraints is a pricing variable in the sense that any
payoff in the linear span of the marketed assets is priced by taking the expected value of its
product with w. Specifically, a portfolio defined by weights α of marketed assets, has price
pα = p · α = wD · α = w · Dα = E(wDα).

If we find a random variable w that correctly prices the market assets by pi = E(wdi), for
each i = 1, 2, . . . n, we may attempt to price a payoff e outside the market span by the same
formula: pe = E(we). To avoid arbitrage possibilities for all e ∈ X we must require w ≥ 0, for
otherwise a positive payoff could have a negative price. Hence the dual programs (6) and (8)
imply that the price bounds are the bounds obtained with respect to all possible arbitrage-free
pricing variables w that correctly price the marketed assets.

A final technical point of interest is the case where pl
e = pu

e . A strong conclusion can be
inferred.

Theorem 3 Assume that pl
e = pu

e and both are finite. Then either e is linearly dependent on
the marketed assets, there is a dependency among the marketed assets, or there is an arbitrage
among the marketed assets.

Proof: Lemma A.5 (in the appendix) implies that there is an αl that solves (5), the primal for
the lower bound. We have p ·αl = pl

e and Dαl − e ≤ 0. Likewise, there is αu that solves (7), the
primal for the upper bound. Then p · αu = pu

e and Dαu − e ≥ 0. Subtracting the lower primal
relations from the upper primal relations and accounting for pl

e = pu
e yields p · (αu −αl) = 0 and

D(αu − αl) ≥ 0. If αu �= αl then either αu − αl represents an arbitrage among the marketed
assets or it represents a linear dependency among those assets. If αl = αu, then Dαl = e which
means that e is linearly dependent on the other assets.

3 Zero-Level Pricing

The idea of zero-level pricing of a nonmarketed payoff e is to find the price pe such that a certain
investor will elect to neither purchase nor short it. At the price pe the investor is indifferent to
the inclusion of e. This section shows that this concept is well defined in the sense that such a
pe exists.

Consider an investor having a utility function U defined for positive values of final wealth.
Positive random payoffs x ∈ X are ranked by their expected utility E[U(x)]. We assume that
U is continuous, strictly increasing, and strictly concave. The investor has initial wealth W > 0
that is to be allocated among the available assets.

As before, the n marketed assets are defined by their payoffs di ∈ X, i = 1, 2, . . . , n. There
is an additional asset with payoff e. We assume that there is no linear dependency among the
marketed assets.

Given a price pe the investor seeks to solve the following problem, which is standard in the
finite-state case; see e.g. Luenberger (1998).

max
α, αe

E[U(x)] (9)

subject to p · α + peαe ≤ W

Dα + eαe = x

x ≥ 0.
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Theorem 4 If there is no arbitrage and all assets are linearly independent, there is a unique
solution to problem (9).

Proof: Without loss of generality we take e = 0 and pe = 0 (and αe = 0). Consider the
constraint set A = {α : Dα ≥ 0, p · α ≤ W}. We will show that A is bounded. Assume not.
Then there is, by convexity of A, a sequence of αk’s in A with ||αk|| = k. Let βk = αk/k. Then
||βk|| = 1 for each k. Therefore, there is a subsequence of the βk’s converging to a β. For this
limit point β, we have Dβ ≥ 0, p · β ≤ 0. If either of these inequalities is strict, there would be
an arbitrage. If Dβ = 0 there would be a linear dependency. Since neither of these is possible,
A is bounded.

It is also clear that A is closed. Hence it follows from continuity that (9) has a solution.
To prove that the solution is unique, assume that α1 and α2 are solutions, both with value V .

By the convexity of the constraints it follows that α0 = 1
2α1 + 1

2α2 is feasible. By the concavity
of U it follows that E[U(Dα0)] ≥ 1

2E[U(Dα1)]+ 1
2E[U(Dα2)] = V . By strict concavity we must

have Dα1 = Dα2, for otherwise E[U(Dα0)] > V which is impossible. However, Dα1 = Dα2

implies α1 = α2 since otherwise α1 − α2 would represent a dependency among the assets which
is ruled out. Hence the solution is unique.

The solution to the utility maximization problem (9) defines a mapping F from a price pe to
a purchase level αe = F (pe). Under appropriate conditions, as spelled out in the next theorem,
there is a pe that yields αe = 0. This pe is the zero-level price for the investor.

In theorem 5 below, we require a differentiability assumption for uniqueness. For technical
simplicity we take this to mean that functions of the form E[U(α1d1 + α2d2 + · · · + αndn)] are
continuously differentiable with respect to the αi’s.

Theorem 5 Assume no arbitrage is possible among the n marketed securities, and that e ≥ 0,
e is bounded above, and e is independent of the marketed assets. Then there is a (zero-level)
price p0

e such that F (p0
e) = 0. This price is unique if: there is a marketed portfolio defined by α0

such that2 Dα0 > 1, utility is continuously differentiable, and the solution x∗ to (9) with e = 0,
pe = 0 has x∗ > 0.

Proof: According to theorems 1 and 2, pl
e and pu

e are finite and their corresponding primal
problems achieve their extreme values. Assume first that pl

e < pu
e . Let αl solve (5), the primal

problem for the lower limit. It is clear that e−Dαl ≥ 0 and that this inequality is not satisfied
as equality, since e is linearly independent of the marketed assets. Therefore there is ε > 0 and
∆ > 0 such that on a set of probability ∆, there holds e − Dαl ≥ ε.

Define δ1 = 1
2 [pu

e − pl
e]. Let V be the maximum expected utility that can be achieved using

nonpositive levels of e in the portfolio for pe = pl
e + δ1 ≡ 1

2 [pl
e + pu

e ]. (V exists by theorem 4.)
There is a positive constant c such that ∆U(cε) > V. Set pe = pl

e+δ where 0 < δ < min(W/c, δ1).
At this price there is no arbitrage (since pl

e < pe < pu
e ), and the portfolio defined by the payoff

x = ce− cDαl has total price cpe − cp ·αl = c[pe − pl
e]+ cpl

e − cp ·αl = c[pe − pl
e] = cδ < W . The

expected utility of this (feasible) portfolio is E[U(x)] = E[U(ce− cDαl)] ≥ ∆U(cε) > V. Hence,
at price pe, there is a positive level of e that produces expected utility above V .

Since reducing pe cannot increase the value obtained with nonpositive values of e, it follows
that for δ the optimal solution will have αe > 0. Hence, F (pe) > 0 for values of pe > pl

e

sufficiently close to pl
e.

2A risk-free asset would qualify.
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Likewise let αu solve (7), the primal for the upper bound pu
e . An argument similar to that

above shows that pe = pu
e − δ for sufficiently small positive δ will lead to optimal solutions of

(9) with a negative amount of e. Thus F (pe) < 0 for values of pe < pu
e sufficiently close to pu

e .
Since U is continuous and the budget constraint is linear, it follows (see Berge (1963, p116))

that F is continuous on (pl, pu). Hence from the intermediate-value theorem there is p0
e such

that F (p0
e) = 0. In other words there is a zero-level price.

We now show that p0
e is unique, and for this we assume the existence of the portfolio α0

with Dα0 > 1, differentiability of U , and that the optimal solution (of the marketed system)
has x∗ > 0. The necessary conditions for the solution x∗ to (9) when pe = p0

e are

E[U ′(x∗)di] = λpi (10)

for each i = 1, 2, . . . , n, and
E[U ′(x∗)e] = λp0

e. (11)

The budget constraint will be met with equality because it is always advantageous to spend
surplus wealth on the portfolio α0. Accordingly, owing to the concavity of U and the inequality
in the budget constraint, the Lagrange multiplier λ is positive; see Luenberger (1969).

Suppose that there were two zero-level prices. Since the asset e is held at zero level, a
solution pair x∗, λ for one of these values must be a solution pair for the other. From (11) it
follows immediately that p0

e is unique.
Now consider the case pl

e = pu
e . From theorem 3 we know that e is in the linear span of

marketed assets and is consistent with the prices of those assets. This is a zero-level price, since
any solution having e at a non-zero level can be converted to a solution having e at zero level
by substituting the combination of marketed assets that duplicate e.

If there is a marketed risk-free asset with return R, we may use it in (10) to obtain

E[U ′(x∗)R] = λ.

Hence (11) may be written as

p0
e =

1
R

E[U ′(x∗)e]
E[U ′(x∗)]

. (12)

The condition that x∗ > 0 will be automatically satisfied for a U that severely penalizes final
wealth values close to zero. For example, the utility functions U(x) = ln x and U(x) = −x−γ

for γ > 0 have this property. It can be argued that utility functions of this form are likely to
represent the preferences of sophisticated investors. See Luenberger (1993).

The results of theorems 4 and 5 can be easily extended to the case where U is defined over
both positive and negative values of final wealth and the constraint x ≥ 0 is eliminated. In
particular, the necessary conditions are then the same as above.

Combining these conditions, we say that a utility function is in class U if it is continuously
differentiable and x∗ > 0 is known to hold or the constraint x∗ ≥ 0 is not present3).

3.1 Linearity and Arbitrage-Free Pricing

Under the uniqueness assumptions of theorem 5, we have from (11)

p0
e = E[U ′(x∗)e]/λ. (13)

3Strictly speaking, therefore, membership in U depends on the constraint as well as U .
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This can be written as
p0

e = E[we], (14)

where w = U ′(x∗)/λ.
It is clear that if x∗ is optimal when the price of e is p0

e, then it is also optimal when a new
asset e′ is adjoined with a price of p0

e′ . In other words, p0
e′ = E[we′] as well. Indeed, once w is

found, the formula p0
e = E[we] produces the zero-level price for any payoff e in X. Furthermore,

this is linear pricing, since for any two payoffs e and e′ there holds p0
αe+βe′ = αp0

e + βp0
e′ .

Since U is strictly increasing, U ′(x∗) > 0. Also λ > 0. It follows that w > 0, which means
that w is a positive pricing variable, and this means that the prices that w produces lead to an
overall system that is arbitrage free (since e ≥ 0 implies p0

e ≥ 0). We state these observations
as a corollary.

Corollary 1 Under the uniqueness conditions of theorem 5, zero-level pricing is linear and
arbitrage free.

4 Universality

Zero-level pricing provides an arbitrage-free price for a new asset, but it has the apparent
disadvantage of being dependent on the utility function and the wealth of the individual. This
is not a disadvantage for a particular individual who wishes to determine the threshold value
for purchase of the asset, but it lacks the definiteness associated with a robust pricing theory.
Fortunately, there are several situations in which the zero-level price is independent of the utility
function and wealth. The most important case is when utility functions are restricted to the
class U . Accordingly, we say the zero-level price is universal if it is the same for all utility
functions in U and all positive wealth levels. The simplest case of universality (within U is when
the marketed assets are complete. We discuss other important cases below.

4.1 Statistical Independence

Suppose e is statistically independent of all marketed assets and there is a risk-free asset with
return R. Then (12) reduces to

p0
e =

1
R

E[U ′(x∗)e]
E[U ′(x∗)]

=
1
R

E(e), (15)

which is independent of U and W , and hence is universal.
The coin flip example falls into this category. Its outcome is independent of all marketed

assets and hence the zero-level price is its expected value, discounted by the risk-free rate. This is
true regardless of the utility function and wealth. Thus p0

e is universal for the coin flip example.
This result can be used to price any asset subject to private uncertainty—uncertainty that

is independent of any marketed asset—for example, projects that are subject only to isolated
technical uncertainties. Any such asset can be priced according to the discounted expected value
of its payoff, and this price is a universal zero-level price.
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4.2 Normal Random Variables

Consider next the case where the payoffs of all assets are normally distributed. The random
variable e can then be written as e = y + z where y is a linear combination of the di’s (that
is, y = Dα for some α) and z is uncorrelated with (and hence independent of) the di’s. The
zero-level price of e is then the sum of the zero-level prices of y and z. The zero-level price of y
is p · α (for the α for which y = Dα) and the zero-level price of z is E(z)/R. The total price is
independent of the utility function and hence is universal.

4.3 Partially Complete Markets

Roughly speaking, a single-period market is partially complete if it is complete with respect to
all (measurable) functions of market payoffs, although there are other assets whose payoffs are
not functions of market payoffs. See Smith and Nau (1995) and Holtan (1997). We present the
concept here for the single-period case with n linearly independent marketed assets with payoffs
di, i = 1, 2, . . . , n.

Let Ω (as defined earlier) be the underlying set of possible outcomes. Let F be a partition
of Ω into a finite number k of measurable sets such that: (1) the payoff of each marketed asset
is constant on every set in F , (that is, the payoffs are adapted to F), and (2) F is the coarsest
partition with property (1), (that is, k is minimal). We say F is the partition generated by the
market. The market is said to be partially complete (with respect to F) if n = k and there are
other asset payoffs in X that are not adapted to F .

Consider a finite-state model, where Ω consists of a finite number S of elements. If the n
marketed assets are linearly independent, a partially complete market has n = k < S. If n = S
the market is complete.
Example 1 To illustrate, suppose there are 4 states s1, s2, s3, s4 and two marketed assets: a
stock with payoff represented by the 4-tuple (u, u, d, d) (with u = “up” and d =“down”), and
a bond with payoff (1, 1, 1, 1). The generated partition F is {s1, s2}, {s3, s4}. Hence k = 2 =
n < S = 4 so the market is partially complete if there are additional assets not adapted to this
partition.

We have the following theorem (which is a variation of a result in Holtan (1997)).

Theorem 6 Suppose the market is partially complete. Then the zero-level price of a payoff e
is universal.

Proof: Let F be the partition generated by the marketed assets, and suppose that p0
e is the

zero-level price determined by the uniqueness criteria of theorem 5. We have

p0
e = E[U ′(x∗)e/λ].

Since U ′(x∗) is adapted to F , we may use the tower property of conditional expectation to
write

p0
e = E

{
E[(U ′(x∗)/λ)e|F ]

}

= E{(U ′(x∗)/λ)E[e|F ]}.

Now E[e|F ] is adapted to F and hence by partial completeness, it can be represented as a linear
combination of the marketed payoffs, and thus it is priced uniquely according to that linear
combination. Its price does not depend on U ′(x∗)/λ. Hence p0

e is independent of U and the
wealth W .
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As a special case, suppose the risk-free asset is the only marketed asset. We may then take
F = Ω and the price of any payoff e is p0

e = E[e]/R, which is universal. In general, if the market
is partially complete, only the expected value of e on each of the elements of F is required to
determine the universal zero-level price.

4.4 Quadratic Utility

We can show that the zero-level price of e is the same for all individuals with quadratic utility,
independent of their level of wealth and the specific parameters of the quadratic.

Quadratic utility is problematic, of course, because it is not increasing everywhere. However,
we can treat it formally and in practice assume that it is employed only over the range where it
is increasing.

Concave quadratic utility functions have the form U(x) = a + bx − cx2 where c > 0. It
is clear that a constant can be added to U and U can be multiplied by a positive constant
without changing the relative assessment of payoffs. Hence, it is sufficient to consider the family
U(x) = bx− 1

2x2, or equivalently, U ′(x) = b−x. Let us first formally take the case b = 0; (we say
formally because with b = 0 the quadratic decreases for positive x). We assume that a risk-free
asset with return R is marketed.

If α0 is the optimal portfolio of marketed assets for a level of wealth W = 1, α0 satisfies the
necessary conditions

E[−Dα0 × di] = λ0pi (16)

for all i = 1, 2, . . . n and some λ0. It must also satisfy p · α0 = 1.
For b �= 0 and W �= 1 consider the portfolio defined by amounts αb = γα0 and an additional

amount b of the risk-free asset with payoff 1, where γ will be selected later. The payoff is
xb = Dαb + b. Let λb = γλ0. These choices satisfy the necessary conditions

E[U ′(xb)di] = E[(b − xb)di] = E[(b − Dαb − b)di] = γE[−Dα0 × di] = γλ0pi = λbpi

for each i. We select γ to satisfy the budget constraint

p · γα0 + b/R = W,

giving γ = W − b/R. Then xb is optimal for the values b and W .
We show that all these solutions assign the same price to e. We find
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p0
e = E[(b − Dαb − b) · e]/λb

= E[−γDα0 · e]/(γλ0)
= E[−Dα0 · e]/λ0

which is independent of b and W . Hence p0
e is universal with respect to all quadratic utility

functions.

5 Conclusions

The range of arbitrage-free prices for a new asset consists of an interval whose endpoints can
be expressed as values of certain linear programming problems. This range may be so broad
that it is of little use for determining a price. However, the structure of these linear programs
and their duals provide valuable analytic information. The range of acceptable prices is reduced
considerably by requiring that a price be a zero-level price for some utility function. And it is
the analytic structure of the arbitrage-free interval that provides the means for establishing the
existence of zero-level prices.

If the range of acceptable prices under the zero-level requirement shrinks to a single point,
that price is termed a universal zero-level price. Universal zero-level prices exist in many situa-
tions, and such prices have great appeal as the single logical price to assign to a new asset.

A Appendix: Arbitrage Proofs

Lemma A.1 Assume there is no arbitrage among the marketed assets. There are pl
e and pu

e

defining lower and upper bounds of the price pe that can be assigned to e such that no arbitrage
is possible for pe ∈ (pl

e, p
u
e ). Arbitrage is possible for pe /∈ [pl

e, p
u
e ]. The bounds are given by

pl
e = sup {p · α : Dα − e ≤ 0} (A.1)

pu
e = inf {p · α : Dα − e ≥ 0}. (A.2)

Proof: Following Holtan (1997), arbitrage is possible only in a portfolio with e included at
some nonzero level. First suppose that e is included at a negative level, which without loss of
generality can be taken to be the level −1. An arbitrage is then defined by an α satisfying

Dα − e ≥ 0 (A.3)
p · α − pe ≤ 0, (A.4)

with one of these inequalities being nontrivial as described earlier. If a value of pe satisfies this
condition, then clearly any larger value satisfies it as well. Hence,

pu
e = infα {p · α : Dα − e ≥ 0}.

If Dα − e ≥ 0 is not feasible, we set the inf to +∞.
To establish the formula for pl

e we consider e at the +1 level and use −α to represent positions
in the marketed assets. Hence an arbitrage is an α satisfying

Dα − e ≤ 0 (A.5)
−p · α + pe ≤ 0, (A.6)
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with one of these inequalities being nontrivial. If a value of pe satisfies this condition, then
clearly any smaller value also satisfies it. Hence,

pl
e = supα {p · α : Dα − e ≤ 0}.

If Dα − e ≤ 0 is not feasible, we set the sup to −∞.

Theorem A.1 Assume there is no arbitrage among the marketed assets and that e ≥ 0, e �= 0.
Then pl

e is finite and has the two dual characterizations:

pl
e = max

α
p · α (A.7)

sub to Dα − e ≤ 0.

and

pl
e = min

w
w · e (A.8)

sub to wD = p

w ≥ 0.

Theorem A.2 Assume there is no arbitrage among the marketed assets and that there is an α
such that Dα > 1 and e is bounded. Then pu

e is finite and has the two dual characterizations:

pu
e = min p · α (A.9)

sub to Dα − e ≥ 0.

and

pu
e = max w · e (A.10)

sub to wD = p

w ≥ 0.

To prove theorems A.1 and A.2 we proceed in steps defined by a series of lemmata that assure
that the linear programs of theorems are well-defined dual pairs and achieve their extreme values.

Lemma A.2 The dual programs (A.8) and (A.10) are feasible.

Proof: Suppose not. Then p /∈ S ≡ {wD : w ≥ 0}. S is a convex cone in Rn. S is closed since D
is continuous, and hence its adjoint is continuous as well. Thus there is a hyperplane separating
p and S. See Luenberger (1969). That is, there is a non-zero α such that p · α < wD · α for all
w ≥ 0. Setting w = 0 gives p · α < 0. Then wD · α ≡ w · Dα ≥ 0 for all w ≥ 0; for if there were
w′ ≥ 0 with w′ ·Dα < 0, then w′′ = cw′ would have w′′ ·Dα < p ·α for large c > 0. Next notice
that w · Dα ≥ 0 for all w ≥ 0 implies Dα ≥ 0 almost everywhere. Thus we have p · α < 0 and
Dα ≥ 0, showing that α is an arbitrage among the marketed assets, contrary to our assumption.

Next we state the standard inequality that holds between feasible solutions of a linear pro-
gram and its dual.

Lemma A.3 Suppose α is feasible for (A.7) and w is feasible for (A.8). Then p · α ≤ w · e.
Proof: We have

p · α = wD · α = w · Dα ≤ w · e.
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We now show that the dual program (A.8) achieves a minimum.

Lemma A.4 Assume that pl
e is finite. Then there is w ≥ 0 with wD = p and w · e = pl

e.

Proof: Suppose not. Let
Ŝ = {(w · e, wD) : w ≥ 0} ⊂ Rn+1.

Ŝ is a closed, convex cone. The half-line {(pe, p) : pe ≤ pl
e} is not in Ŝ. Hence there is a

hyperplane separating Ŝ and the half-line. That is, there is a non-zero (y, α) with ype + p · α >
yw · e + wD · α for all w ≥ 0 and all pe ≤ pl

e. Clearly ypl
e + p · α > 0. Suppose y = 0. According

to lemma A.2 there is w ≥ 0 with p = wD and this w would violate the hyperplane inequality.
Hence y �= 0.

Setting w = 0 shows that ype + p · α > 0 for all pe ≤ pl
e. Hence y < 0 and we may take

y = −1. Then from the right hand side of the hyperplane inequality we have −e + Dα ≤ 0.
Thus α is feasible for (A.7), and as stated earlier ypl

e + p · α > 0 which means p · α > pl
e which

is impossible.

Using the construction employed in the proof of lemma A.4, we can establish that the primal
achieves its maximum.

Lemma A.5 Assume that pl
e is finite. Then there is α with p · α = pl

e, Dα − e ≤ 0. That is,
the maximum is achieved in (A.7).

Proof: We know that (pl
e, p) is a boundary point of Ŝ = {(w · e, wD) : w ≥ 0}. By the

construction in the proof of lemma A.4 there is a hyperplane supporting Ŝ of the form (−1, α).
Thus −pl

e + p ·α ≥ −e ·w +wD ·α for all w ≥ 0. Hence p ·α ≥ pl
e and Dα− e ≤ 0. So p ·α = pl

e.

Combining these lemmata we obtain the strong characterizations of the main arbitrage the-
orems.

Proof of theorem A.1: That (A.7) is feasible is seen by noting that α = 0 is feasible. That
(A.8) is feasible follows from lemma A.2. Both (A.7) and (A.8) are then finite by lemma A.3.
Lemma A.4 shows that (A.8) achieves a minimum of pl

e. Lemma A.5 shows that (A.7) achieves
a maximum of pl

e.

Proof of theorem A.2 Feasibility of the primal (A.9) is obtained by scaling α of the assumption
so that Dα ≥ e. The dual is feasible by lemma A.2. The remainder of the proof follows from
the analogs of the lemmata derived earlier.
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