STATS 306B: Unsupervised Learning Spring 2014
Lecture 8 — April 23

Lecturer: Lester Mackey Scribe: Kexin Nie, Nan Bi

8.1 Principal Component Analysis

Last time we introduced the mathematical framework underlying Principal Component Anal-
ysis (PCA); next we will consider some of its applications. Please refer to the accompanying
slides.

8.1.1 Examples

Example 1. Digit data (Slide 2:) Here is an example taken from the textbook. This set
of hand written digital images contains 130 threes, and each three is a 16 x 16 greyscale
image. Hence we may represent each datapoint as a vector of 256 greyscale pixels. (Slide
3:) The figure on the left shows the first two principal components of these images. The
rectangular grid is computed by selected quantiles of the two principal components. Based
on the projected coordinates on the two directions, the circled points refer to the images
that are closest to these vertices of the grid. The figure on the right displays the threes
corresponding to the circled points. The vertical component appears to capture changes in
line thickness / darkness, while the horizontal component appears to capture changes in the
length of the bottom of the three. (Slide 4:) This is a visual representation of the learned
two-component PCA model. The first term is the mean of all images, and the following v
and vq are two visualized principal directions (the loadings), which can also be called “eigen”
threes.

Example 2. Eigen-faces (Slide 5:) PCA is widely used in face recognition. Suppose
Xgxn is the pixel-image matrix, where each column is a face image. d is the number of
pixels and zj; is the intensity of j-th pixel in image i. The loadings returned by PCA are
linear combinations of faces, which can be called “eigen-faces.” The working assumption is
that the PC scores z;, gotten by projecting the original image onto the eigen-face space,
represent a more meaningful and compact representation of the i-th face than the raw pixel
representation. Then z; can be used in place of x; for nearest-neighbor classification. Since
the dimension of face-space has decreased from d to k, the computational complexity becomes
O(dk + nk) instead of O(dn). This is of great efficiency when n,d > k.

Example 3. Latent semantic analysis (Slide 6:) Another application of PCA is in text
analysis. Let d to be the total number of words in the vocabulary; then each document z; €
R? is a vector of word counts, and z;; is the frequency of word j in document i. After we apply
PCA here, the similarity between two documents is now z/ z;, which is often more informative
than the raw measure =] ;. Notice that there may not be significant computational savings,
since the original word-document matrix was sparse, while the reduced representation is
typically dense.

STATS 306B Lecture 8 — April 23 Spring 2014

Example 4. Anomaly detection (Slide 7:) PCA can be used in network anomaly de-
tection. In the time-link matrix X, z;; represents the amount of traffic on link j in the
network during time-interval i. In the two pictures on the left, traffic appears periodic and
reasonably deterministic on the selected principal component, which asserts that these two
are normal behaviors. In the contrast, traffic “spikes” in the pictures on the right, which
indicates anomalous behavior in this flow.

Example 5. Part-of-speech tagging (Slide 8:) Unsupervised part-of-speech tagging is a
common task in natural language processing, as manually tagging a large corpus is expensive
and time-consuming. Here it is common to model each word in a vocabulary by its context
distribution, i.e., ;; is the number of times that word 7 appears in context j. The key idea
of unsupervised POS tagging is that words appearing in similar contexts tend to have same
POS tags. Hence, a typical tagging technique is to cluster words according to their contexts.
However, in any given corpus, any given context may occur rather infrequently (the vectors
x; are too sparse), so PCA has been used to find a more suitable, comparable representation
for each word before clustering is applied.

Example 6. Multi-task learning (Slide 9:) In multi-task learning, one is attempting to
solve n related learning tasks simultaneously, e.g., classifying documents as relevant or not
for n users. Often task ¢ reduces to learning a weight vector x; which produces for example
the classification rule. Our goal is to exploit the similarities amongst these tasks to do
more effective learning overall. One way to accomplish this is to use PCA is to identify a
small set of eigen-classifiers among the learned rules xy, ..., x,. Then, the classifiers can be
retrained with an added regularization term encouraging each x; to lie near the subspace
spanned by the principal directions. These two steps of PCA and retraining are iterated until
convergence. In this way, low-dimensional representation of classifiers can help to detect the
shared structures between independent tasks.

8.1.2 Choosing a number of components

(Slide 10:) As in the clustering setting, we face a model selection question: how do we
choose the number of principal components? While there is no agreed-upon solution to this
problem, here are some guidelines.

e The number of principal components might be constrained by the problem goal, your
computational or storage resources, or by the minimum fraction of variance to be
explained. For example, it is common to choose 3 or fewer principal components when
doing visualization problems.

e Recall that eigenvalue magnitudes determine the explained variance. In the accompa-
nying figure, the first 5 principal components already explain nearly all of the variance,
so a small number of principal components may be sufficient (although one must use
care in drawing this conclusion, since small differences in reconstruction error may still
be semantically significant; consider face recognition for example). Furthermore, we
may look for elbow criterion or compare explained variance with that obtained under
a reference distribution.

STATS 306B Lecture 8 — April 23 Spring 2014

8.1.3 PCA limitations and extensions

While PCA has a great number of applications, it has its limitations as well:

e Squared Euclidean reconstruction error is not appropriate for all data types. Vari-
ous extensions, such as exponential family PCA, have been developed for binary,
categorical, count, and nonnegative data.

e PCA can only find linear compressions of data. Kernel PCA is an important gen-
eralization designed for non-linear dimensionality reduction.

8.2 Non-linear dimensionality reduction with kernel PCA

8.2.1 Intuition

-84

Figure 8.1. Data lying near a linear subspace Figure 8.2. Data lying near a parabola

Figure 8.1 displays a 2D example in which PCA is effective because data lie near a
linear subspace. However, in Figure 8.2 PCA is ineffective, because data the data lie near
a parabola. In this case, the PCA compression of the data might project all points onto
the orange line, which is far from ideal. Let us consider the differences between these two
settings mathematically.

e Linear subspace (Figure 8.1): In this example we have ambient dimension p = 2
and component dimension k£ = 1. Since the blue line is a k-dimensional linear subspace
of R”, we know that there is some matrix U € RP** such that the subspace S takes

the form
S={zcRF:0="UzzcR}
={(z1,m2) : 1 = U2, T2 = Uz}
U
= {(33'1,152) LTy = —21'1},
Uy
where U = [21} since (p, k) = (2,1) in our example.
2

8-3

STATS 306B Lecture 8 — April 23 Spring 2014

e Parabola (Figure 8.2): In this example we again have ambient dimension p = 2 and
component dimension k = 1. Moreover, there is some fixed matrix U € RP** such that
the underlying blue parabola takes the form

u
S = {(z1,22) : 70 = — 27}
Uy
which is similar to the representation derived in the linear model. Indeed, if we intro-
duce an auxiliary variable z, we get,

S = {(w1,22) : SE% = ulz,:cg = uyz, for z € R}
={r €RP: ¢(x) =Uz,2z € R"}

2
where ¢(z) = il is a non-linear function of x. In this final representation, U is still a
2

linear mapping of the latent components z, but the representation being reconstructed
linearly is no longer x itself but rather a potentially non-linear mapping ¢ of x.

8.2.2 Take-away

We should be able to capture non-linear dimensionality reduction in x space by performing
linear dimensionality reduction in ¢(z) space (we often call ¢(z) the feature space). Of
course we still need to find the right feature space to perform dimensionality reduction in.
One option is to hand-design the feature mapping ¢ explicitly coordinate by coordinate, e.g.,
é(x) = (1,73, 2119, 8in(x1), .. .). However, this process quickly becomes tedious and has to
be ad hoc. Moreover, working in feature space becomes expensive if ¢(x) is very large. For
example, consider the number of all quadratic terms x;z; = O(p?).

An alternative, which we will explore next, is to encode ¢ implicitly via its inner products
using the kernel trick.

8.2.3 The Kernel Trick

Our path to the kernel trick begins with an interesting claim: the PCA solution depends on
the data matrix

only through the Gram matrix (a.k.a. the Kernel matrix), K = XX € R™". The
kernel matrix is the matrix of inner products K;; =< z;, z; >.

Proof. Each Principal Component loading u; is an eigenvector of XTTX

T
= Muj = \ju; for some A;
n

R T R n -
= |u; = X" a; =) " ajx;| for some weights ;. That is, u; is a linear combination of

the datapoints. This is called a representer theorem for the PCA solution. It is analogous

8-4

STATS 306B Lecture 8 — April 23 Spring 2014

to representer theorems you may have seen for Support Vector Machines or ridge regression.
Therefore one can restrict attention to candidate loadings w; with this form.
Now consider the PCA objective

XX XTX
max ul u; st |y fo=1, ul w =0, Vl<j
XTX XTX
< max angXTaj s.t. a;FXXTaj =1, aergXTal =0, Vi<y
o n n
2 KQ
& rr;&;x ajr7ozj, s.t. oz;‘-FKaj =1, Q?WQZ =0,Vli<j (8.1)
which only depends on the data through K! O

The final representation of PCA in kernel form (8.1) is an example of a generalized
eigenvalue problem, so we know how to compute its solution. However, we will give a more
explicit derivation of its solution by converting this problem into an equivalent eigenvalue
problem. Hereafter we will assume K is non-singular.

Let B; = K%aj so that a; = K‘éﬁj. Now the problem becomes (8.1)

TKR. K
max M, s.t. BJTBJ =1, BJT—BJ =0,Vi<y
n n

Uj
This is a eigenvalue problem with solution given by

5

B; = the j-th leading eigenvector of K and hence o] = K_%ﬁ; = X(K).
Y

J

Furthermore, we can recover the principal component scores from this representation by
*T T * *1T T * *1T
z=u" X" =[a],...,q] XX =]o],...,a] K.

The punchline is that we can solve PCA by finding the eigenvectors and eigenvalues of K;
this is kernel PCA | the kernelized form of the PCA algorithm (note that the solution is
equivalent to the original PCA solution if K = X X7). Hence, the inner products of X are
sufficient, and we do not need additional access to explicit datapoints.

Why is this relevant? Suppose we want to run kernel PCA on a non-linear mapping of
data

- ¢(z,)
Then we do not need to compute or store ® explicitly; K¢ = ®®7 suffices to run kernel
PCA. Moreover, we can often compute entries of K f; =< ¢(z;), ¢(x;) > via a kernel function

K (z;,x;) without forming ¢(z;) explicitly. This is the kernel trick. Here are a few common
examples:

8-5

STATS 306B Lecture 8 — April 23 Spring 2014

Kernel trick examples

Kernel K(z;,x;) o(x)
Linear < @, x5 > x
Quadratic (I+ <z, >)* (Liay,..., 2,2 20, 2100, ..., Tp_1Tp)
Polynomial (1+ < ;25 >)4 all monomials of order d or less
Gaussian/ Radial basis function exp <_Hx;—_fﬁ”%> infinite dimensional feature vector

A principal advantage of the kernel trick is that one can carry out non-linear dimension
reduction with little dependence on the dimension of the non-linear feature space. However,
one has to form and operate on a n X n matrix (which can be quite expensive). It is
common to approximate the kernel when n is large using random (e.g., the Nystrom method
of Williams & Seeger, 2000) or deterministic (e.g., the incomplete Cholesky decomposition
of Fine & Scheinberg, 2001) low-rank approximations.

