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Fig. 1 Toy example for spectral clustering where the data points have
been drawn from a mixture of four Gaussians on R. Left upper corner:
histogram of the data. First and second row: eigenvalues and eigenvec-
tors of Lrw and L based on the k-nearest neighbor graph. Third and

fourth row: eigenvalues and eigenvectors of Lrw and L based on the
fully connected graph. For all plots, we used the Gaussian kernel with
σ = 1 as similarity function. See text for more details

dashed line and the different shapes of the eigenvalues in
the plots for the unnormalized case; their meaning will be
discussed in Sect. 8.5). In the eigenvector plots of an eigen-
vector u = (u1, . . . , u200)

′ we plot xi vs. ui (note that in the
example chosen xi is simply a real number, hence we can
depict it on the x-axis). The first two rows of Fig. 1 show
the results based on the 10-nearest neighbor graph. We can
see that the first four eigenvalues are 0, and the correspond-
ing eigenvectors are cluster indicator vectors. The reason is
that the clusters form disconnected parts in the 10-nearest
neighbor graph, in which case the eigenvectors are given as
in Propositions 2 and 4. The next two rows show the re-
sults for the fully connected graph. As the Gaussian simi-
larity function is always positive, this graph only consists
of one connected component. Thus, eigenvalue 0 has multi-

plicity 1, and the first eigenvector is the constant vector. The

following eigenvectors carry the information about the clus-

ters. For example in the unnormalized case (last row), if we

threshold the second eigenvector at 0, then the part below 0

corresponds to clusters 1 and 2, and the part above 0 to clus-

ters 3 and 4. Similarly, thresholding the third eigenvector

separates clusters 1 and 4 from clusters 2 and 3, and thresh-

olding the fourth eigenvector separates clusters 1 and 3 from

clusters 2 and 4. Altogether, the first four eigenvectors carry

all the information about the four clusters. In all the cases

illustrated in this figure, spectral clustering using k-means

on the first four eigenvectors easily detects the correct four

clusters.
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Spectral	
  clustering	
  example:	
  noisy	
  circles	
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Spectral	
  clustering	
  image	
  segmenta:on	
  
§  Spectral	
  clustering	
  widely	
  used	
  in	
  image	
  segmenta:on	
  	
  

Image segmentation using Spectral
Clustering

Shi and Malik, 2000

Sriram Sankararaman Clustering

Shi	
  and	
  Malik	
  2001	
  



How	
  to	
  construct	
  graph	
  weights	
  W?	
  
§  Goal:	
  capture	
  local	
  neighborhood	
  rela:onships	
  between	
  
points	
  /	
  focus	
  on	
  very	
  similar	
  points	
  

§  Most	
  common	
  construc:ons	
  
•  ²-­‐neighborhood	
  graph:	
  connect	
  all	
  points	
  with	
  similarity	
  >	
  ²	
  

§ Use	
  same	
  weight	
  for	
  all	
  connected	
  points	
  
•  k-­‐nearest	
  neighbor	
  graph:	
  connect	
  i	
  and	
  j	
  if	
  j	
  is	
  among	
  the	
  k-­‐
most	
  similar	
  ver:ces	
  to	
  i	
  or	
  vice-­‐versa	
  
§ Weight	
  retained	
  edges	
  according	
  to	
  similarity	
  

•  mutual	
  k-­‐nearest	
  neighbor	
  graph:	
  connect	
  i	
  and	
  j	
  if	
  j	
  is	
  among	
  
the	
  k-­‐most	
  similar	
  ver:ces	
  to	
  I	
  and	
  vice-­‐versa	
  
§ Weight	
  retained	
  edges	
  according	
  to	
  similarity	
  

•  fully	
  connected	
  graph:	
  connect	
  all	
  nodes	
  
§ Only	
  useful	
  when	
  “local”	
  similarity	
  measure	
  used	
  like	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
sij	
  =	
  exp(-­‐||xi	
  -­‐	
  xj||2	
  /	
  (2¾2)),	
  which	
  decays	
  rapidly	
  



Spectral	
  clustering	
  graph	
  examples	
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known to guide us in this task. In general, if the similarity
graph contains more connected components than the number
of clusters we ask the algorithm to detect, then spectral clus-
tering will trivially return connected components as clus-
ters. Unless one is perfectly sure that those connected com-
ponents are the correct clusters, one should make sure that
the similarity graph is connected, or only consists of “few”
connected components and very few or no isolated vertices.
There are many theoretical results on how connectivity of
random graphs can be achieved, but all those results only
hold in the limit for the sample size n → ∞. For example, it
is known that for n data points drawn i.i.d. from some under-
lying density with a connected support in Rd , the k-nearest
neighbor graph and the mutual k-nearest neighbor graph will
be connected if we choose k on the order of log(n) (e.g.,
Brito et al. 1997). Similar arguments show that the para-
meter ε in the ε-neighborhood graph has to be chosen as
(log(n)/n)d to guarantee connectivity in the limit (Penrose
1999). While being of theoretical interest, all those results
do not really help us for choosing k on a finite sample.

Now let us give some rules of thumb. When working with
the k-nearest neighbor graph, then the connectivity parame-
ter should be chosen such that the resulting graph is con-
nected, or at least has significantly fewer connected compo-
nents than clusters we want to detect. For small or medium-
sized graphs this can be tried out “by foot”. For very large
graphs, a first approximation could be to choose k in the or-

der of log(n), as suggested by the asymptotic connectivity
results.

For the mutual k-nearest neighbor graph, we have to ad-
mit that we are a bit lost for rules of thumb. The advantage of
the mutual k-nearest neighbor graph compared to the stan-
dard k-nearest neighbor graph is that it tends not to connect
areas of different density. While this can be good if there are
clear clusters induced by separate high-density areas, this
can hurt in less obvious situations as disconnected parts in
the graph will always be chosen to be clusters by spectral
clustering. Very generally, one can observe that the mutual
k-nearest neighbor graph has much fewer edges than the
standard k-nearest neighbor graph for the same parameter k.
This suggests to choose k significantly larger for the mutual
k-nearest neighbor graph than one would do for the standard
k-nearest neighbor graph. However, to take advantage of the
property that the mutual k-nearest neighbor graph does not
connect regions of different density, it would be necessary
to allow for several “meaningful” disconnected parts of the
graph. Unfortunately, we do not know of any general heuris-
tic to choose the parameter k such that this can be achieved.

For the ε-neighborhood graph, we suggest to choose ε

such that the resulting graph is safely connected. To deter-
mine the smallest value of ε where the graph is connected is
very simple: one has to choose ε as the length of the longest
edge in a minimal spanning tree of the fully connected graph
on the data points. The latter can be determined easily by any
minimal spanning tree algorithm. However, note that when

Fig. 3 Different similarity
graphs, see text for details

von	
  Luxburg,	
  2007	
  



Spectral	
  clustering	
  and	
  op:mality	
  
§  Is	
  spectral	
  clustering	
  op:mal	
  in	
  any	
  sense?	
  If	
  so,	
  for	
  what	
  
objec:ve?	
  
•  One	
  variant	
  minimizes	
  a	
  relaxa:on	
  of	
  the	
  normalized	
  cut	
  
graph	
  par::oning	
  criterion	
  (Shi	
  and	
  Malik,	
  2000)	
  
§  Same	
  variant,	
  based	
  on	
  Lrw,	
  approximately	
  minimizes	
  probability	
  
that	
  a	
  random	
  walk	
  on	
  the	
  weighted	
  graph	
  transi:ons	
  from	
  one	
  
cluster	
  to	
  another	
  

•  Consistency	
  studied	
  under	
  certain	
  sta:s:cal	
  models	
  (e.g.,	
  
Rohe/ChaSerjee/Yu,	
  2010	
  -­‐	
  Spectral	
  clustering	
  and	
  the	
  high-­‐
dimensional	
  stochas:c	
  blockmodel)	
  



Dimensionality	
  reduc:on	
  
§  Goal:	
  Find	
  a	
  low-­‐dimensional	
  representa:on	
  that	
  captures	
  
the	
  “essence”	
  of	
  higher-­‐dimensional	
  data	
  points	
  
•  Also	
  known	
  as	
  latent	
  feature	
  modeling	
  

§  Mo<va<on	
  
•  Compression	
  for	
  improved	
  storage	
  and	
  computa:onal	
  complexity	
  
•  Visualiza:on	
  for	
  improved	
  human	
  understanding	
  of	
  data	
  

§  Difficult	
  to	
  plot	
  /	
  interpret	
  data	
  in	
  more	
  than	
  3	
  dimensions	
  

•  Noise	
  reduc:on	
  
§  Ameliorates	
  noisy	
  and	
  infrequent	
  measurements,	
  missingness	
  

•  Preprocessing	
  for	
  supervised	
  learning	
  task	
  
§  Reduced	
  /	
  denoised	
  representa:ons	
  may	
  lead	
  to	
  beSer	
  performance	
  or	
  
act	
  as	
  regulariza:on	
  for	
  reduced	
  overfiing	
  

•  Anomaly	
  detec:on	
  	
  
§  Characterize	
  normal	
  data	
  and	
  dis:nguish	
  from	
  outliers	
  



Linear	
  dimensionality	
  reduc:on	
  

§  Goal:	
  Assign	
  useful	
  
representa:ons	
  zi	
  =	
  UT	
  xi	
  2	
  Rk,	
  
where	
  a	
  UT	
  2	
  Rk	
  x	
  p	
  is	
  a	
  linear	
  
mapping	
  into	
  a	
  low-­‐
dimensional	
  space	
  

§  How	
  to	
  choose	
  a	
  useful	
  U?	
  

Basic idea of linear dimensionality reduction

Represent each face as a high-dimensional vector x 2 R361

x 2 R361

z = U

>
x

z 2 R10

How do we choose U?

5

All of the methods we will present fall under this framework. A high-dimensional data point (for example, a face
image) is mapped via a linear projection into a lower-dimensional point. An important question to bear in mind
is whether a linear projection even makes sense. There are several ways to optimize U based on the nature of
the data.

Outline

• Principal component analysis (PCA)

– Basic principles

– Case studies

– Kernel PCA

– Probabilistic PCA

• Canonical correlation analysis (CCA)

• Fisher discriminant analysis (FDA)

• Summary

6

PCA objective 1: reconstruction error

U serves two functions:

• Encode: z = U

>
x, zj = u

>
j x

• Decode: x̃ = Uz =
Pk

j=1 zjuj

Want reconstruction error kx� x̃k to be small

Objective: minimize total squared reconstruction error

min
U2Rd⇥k

nX

i=1

kxi �UU

>
xik2

Principal component analysis (PCA) / Basic principles 9

There are two perspectives on PCA. The first one is based on encoding data in a low-dimensional representation
so that we can reconstruct the original as well as possible.

PCA objective 2: projected variance

Empirical distribution: uniform over x1, . . . ,xn

Expectation (think sum over data points):

ˆE[f(x)] =

1
n

Pn
i=1 f(xi)

Variance (think sum of squares if centered):

cvar[f(x)] + (

ˆE[f(x)])

2
=

ˆE[f(x)

2
] =

1
n

Pn
i=1 f(xi)

2

Assume data is centered: ˆE[x] = 0

(what’s ˆE[U

>
x]?)

Objective: maximize variance of projected data

max

U2Rd⇥k,U>U=I

ˆE[kU>
xk2]

Principal component analysis (PCA) / Basic principles 10

The second viewpoint is that we want to find projections that capture (explain) as much variance in data as
possible. Note that we require the column vectors in U to be orthonormal: U

>
U = Ik⇥k to avoid degenerate

solutions of 1. To talk about variance, we need to talk about a random variable. The random variable here
is a data point x, which we assume to be drawn from the uniform distribution over the n data points. Unless
otherwise specified, we will always assume the data is centered at zero (can be easily achieved by subtracting
out the mean).

§  	
  Given:	
  High-­‐dimensional	
  datapoints	
  xi	
  2	
  Rp	
  
•  e.g.,	
  images	
  of	
  faces	
  in	
  R361	
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