
Lecture	
 7:	

Spectral	
 Clustering;	

Linear	
 Dimensionality	
 Reduc:on	
 via	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Principal	
 Component	
 Analysis	

Stats	
 306B:	
 Unsupervised	
 Learning	

Lester	
 Mackey	

April	
 21,	
 2014	

	

Blackboard	
 discussion	

§  See	
 lecture	
 notes	

Spectral	
 clustering	
 example:	
 GMM	

§  Data	
 generated	
 from	
 a	
 mixture	
 of	
 4	
 Gaussians	
 in	
 1D	

§  W	
 from	
 10-­‐nearest	
 neighbors	

§  Top	
 row:	
 normalized	
 Lrw	

§  BoSom	
 row:	
 unnormalized	
 Lun	

400 Stat Comput (2007) 17: 395–416

Fig. 1 Toy example for spectral clustering where the data points have
been drawn from a mixture of four Gaussians on R. Left upper corner:
histogram of the data. First and second row: eigenvalues and eigenvec-
tors of Lrw and L based on the k-nearest neighbor graph. Third and

fourth row: eigenvalues and eigenvectors of Lrw and L based on the
fully connected graph. For all plots, we used the Gaussian kernel with
σ = 1 as similarity function. See text for more details

dashed line and the different shapes of the eigenvalues in
the plots for the unnormalized case; their meaning will be
discussed in Sect. 8.5). In the eigenvector plots of an eigen-
vector u = (u1, . . . , u200)

′ we plot xi vs. ui (note that in the
example chosen xi is simply a real number, hence we can
depict it on the x-axis). The first two rows of Fig. 1 show
the results based on the 10-nearest neighbor graph. We can
see that the first four eigenvalues are 0, and the correspond-
ing eigenvectors are cluster indicator vectors. The reason is
that the clusters form disconnected parts in the 10-nearest
neighbor graph, in which case the eigenvectors are given as
in Propositions 2 and 4. The next two rows show the re-
sults for the fully connected graph. As the Gaussian simi-
larity function is always positive, this graph only consists
of one connected component. Thus, eigenvalue 0 has multi-

plicity 1, and the first eigenvector is the constant vector. The

following eigenvectors carry the information about the clus-

ters. For example in the unnormalized case (last row), if we

threshold the second eigenvector at 0, then the part below 0

corresponds to clusters 1 and 2, and the part above 0 to clus-

ters 3 and 4. Similarly, thresholding the third eigenvector

separates clusters 1 and 4 from clusters 2 and 3, and thresh-

olding the fourth eigenvector separates clusters 1 and 3 from

clusters 2 and 4. Altogether, the first four eigenvectors carry

all the information about the four clusters. In all the cases

illustrated in this figure, spectral clustering using k-means

on the first four eigenvectors easily detects the correct four

clusters.

400 Stat Comput (2007) 17: 395–416

Fig. 1 Toy example for spectral clustering where the data points have
been drawn from a mixture of four Gaussians on R. Left upper corner:
histogram of the data. First and second row: eigenvalues and eigenvec-
tors of Lrw and L based on the k-nearest neighbor graph. Third and

fourth row: eigenvalues and eigenvectors of Lrw and L based on the
fully connected graph. For all plots, we used the Gaussian kernel with
σ = 1 as similarity function. See text for more details

dashed line and the different shapes of the eigenvalues in
the plots for the unnormalized case; their meaning will be
discussed in Sect. 8.5). In the eigenvector plots of an eigen-
vector u = (u1, . . . , u200)

′ we plot xi vs. ui (note that in the
example chosen xi is simply a real number, hence we can
depict it on the x-axis). The first two rows of Fig. 1 show
the results based on the 10-nearest neighbor graph. We can
see that the first four eigenvalues are 0, and the correspond-
ing eigenvectors are cluster indicator vectors. The reason is
that the clusters form disconnected parts in the 10-nearest
neighbor graph, in which case the eigenvectors are given as
in Propositions 2 and 4. The next two rows show the re-
sults for the fully connected graph. As the Gaussian simi-
larity function is always positive, this graph only consists
of one connected component. Thus, eigenvalue 0 has multi-

plicity 1, and the first eigenvector is the constant vector. The

following eigenvectors carry the information about the clus-

ters. For example in the unnormalized case (last row), if we

threshold the second eigenvector at 0, then the part below 0

corresponds to clusters 1 and 2, and the part above 0 to clus-

ters 3 and 4. Similarly, thresholding the third eigenvector

separates clusters 1 and 4 from clusters 2 and 3, and thresh-

olding the fourth eigenvector separates clusters 1 and 3 from

clusters 2 and 4. Altogether, the first four eigenvectors carry

all the information about the four clusters. In all the cases

illustrated in this figure, spectral clustering using k-means

on the first four eigenvectors easily detects the correct four

clusters.

von	
 Luxburg,	
 2007	

Spectral	
 clustering	
 example:	
 GMM	

§  Data	
 generated	
 from	
 a	
 mixture	
 of	
 4	
 Gaussians	
 in	
 1D	

§  W	
 =	
 S	
 	

§  Top	
 row:	
 normalized	
 Lrw	

§  BoSom	
 row:	
 unnormalized	
 Lun	

400 Stat Comput (2007) 17: 395–416

Fig. 1 Toy example for spectral clustering where the data points have
been drawn from a mixture of four Gaussians on R. Left upper corner:
histogram of the data. First and second row: eigenvalues and eigenvec-
tors of Lrw and L based on the k-nearest neighbor graph. Third and

fourth row: eigenvalues and eigenvectors of Lrw and L based on the
fully connected graph. For all plots, we used the Gaussian kernel with
σ = 1 as similarity function. See text for more details

dashed line and the different shapes of the eigenvalues in
the plots for the unnormalized case; their meaning will be
discussed in Sect. 8.5). In the eigenvector plots of an eigen-
vector u = (u1, . . . , u200)

′ we plot xi vs. ui (note that in the
example chosen xi is simply a real number, hence we can
depict it on the x-axis). The first two rows of Fig. 1 show
the results based on the 10-nearest neighbor graph. We can
see that the first four eigenvalues are 0, and the correspond-
ing eigenvectors are cluster indicator vectors. The reason is
that the clusters form disconnected parts in the 10-nearest
neighbor graph, in which case the eigenvectors are given as
in Propositions 2 and 4. The next two rows show the re-
sults for the fully connected graph. As the Gaussian simi-
larity function is always positive, this graph only consists
of one connected component. Thus, eigenvalue 0 has multi-

plicity 1, and the first eigenvector is the constant vector. The

following eigenvectors carry the information about the clus-

ters. For example in the unnormalized case (last row), if we

threshold the second eigenvector at 0, then the part below 0

corresponds to clusters 1 and 2, and the part above 0 to clus-

ters 3 and 4. Similarly, thresholding the third eigenvector

separates clusters 1 and 4 from clusters 2 and 3, and thresh-

olding the fourth eigenvector separates clusters 1 and 3 from

clusters 2 and 4. Altogether, the first four eigenvectors carry

all the information about the four clusters. In all the cases

illustrated in this figure, spectral clustering using k-means

on the first four eigenvectors easily detects the correct four

clusters.

von	
 Luxburg,	
 2007	

400 Stat Comput (2007) 17: 395–416

Fig. 1 Toy example for spectral clustering where the data points have
been drawn from a mixture of four Gaussians on R. Left upper corner:
histogram of the data. First and second row: eigenvalues and eigenvec-
tors of Lrw and L based on the k-nearest neighbor graph. Third and

fourth row: eigenvalues and eigenvectors of Lrw and L based on the
fully connected graph. For all plots, we used the Gaussian kernel with
σ = 1 as similarity function. See text for more details

dashed line and the different shapes of the eigenvalues in
the plots for the unnormalized case; their meaning will be
discussed in Sect. 8.5). In the eigenvector plots of an eigen-
vector u = (u1, . . . , u200)

′ we plot xi vs. ui (note that in the
example chosen xi is simply a real number, hence we can
depict it on the x-axis). The first two rows of Fig. 1 show
the results based on the 10-nearest neighbor graph. We can
see that the first four eigenvalues are 0, and the correspond-
ing eigenvectors are cluster indicator vectors. The reason is
that the clusters form disconnected parts in the 10-nearest
neighbor graph, in which case the eigenvectors are given as
in Propositions 2 and 4. The next two rows show the re-
sults for the fully connected graph. As the Gaussian simi-
larity function is always positive, this graph only consists
of one connected component. Thus, eigenvalue 0 has multi-

plicity 1, and the first eigenvector is the constant vector. The

following eigenvectors carry the information about the clus-

ters. For example in the unnormalized case (last row), if we

threshold the second eigenvector at 0, then the part below 0

corresponds to clusters 1 and 2, and the part above 0 to clus-

ters 3 and 4. Similarly, thresholding the third eigenvector

separates clusters 1 and 4 from clusters 2 and 3, and thresh-

olding the fourth eigenvector separates clusters 1 and 3 from

clusters 2 and 4. Altogether, the first four eigenvectors carry

all the information about the four clusters. In all the cases

illustrated in this figure, spectral clustering using k-means

on the first four eigenvectors easily detects the correct four

clusters.

Spectral Clustering

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Eigenvalues of L

0 500 1000 1500
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0 500 1000 1500
−0.0258

−0.0258

−0.0258

−0.0258

−0.0258

−0.0258

Eigenvectors of L
Sriram Sankararaman Clustering

Spectral Clustering

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

K-means, K=2

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Spectral clustering
Sriram Sankararaman Clustering

Spectral Clustering

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

K-means, K=2

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Spectral clustering
Sriram Sankararaman Clustering

k-­‐means,	
 2	
 clusters	
 Spectral	
 clustering,	
 2	
 clusters	

Spectral	
 clustering	
 example:	
 circles	

§  	
 	

Eigenvalues	
 of	
 L	
 Eigenvectors	
 of	
 L	

Courtesy:	
 Sriram	
 Sankararaman	
 	

Spectral	
 clustering	
 example:	
 noisy	
 circles	

§  	
 	

Spectral Clustering

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

Eigenvalues of L

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.0224

−0.0224

−0.0224

−0.0224

−0.0224

−0.0224

−0.0224

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.02

−0.01

0

0.01

0.02

0.03

0.04

Eigenvectors of L
Sriram Sankararaman Clustering

Spectral Clustering

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

K-means, K=2

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Spectral clustering
Sriram Sankararaman Clustering

k-­‐means,	
 2	
 clusters	
 Spectral	
 clustering,	
 2	
 clusters	

Eigenvectors	
 of	
 L	
 Eigenvalues	
 of	
 L	

Courtesy:	
 Sriram	
 Sankararaman	
 	

Spectral	
 clustering	
 image	
 segmenta:on	

§  Spectral	
 clustering	
 widely	
 used	
 in	
 image	
 segmenta:on	
 	

Image segmentation using Spectral
Clustering

Shi and Malik, 2000

Sriram Sankararaman Clustering

Shi	
 and	
 Malik	
 2001	

How	
 to	
 construct	
 graph	
 weights	
 W?	

§  Goal:	
 capture	
 local	
 neighborhood	
 rela:onships	
 between	

points	
 /	
 focus	
 on	
 very	
 similar	
 points	

§  Most	
 common	
 construc:ons	

•  ²-­‐neighborhood	
 graph:	
 connect	
 all	
 points	
 with	
 similarity	
 >	
 ²	

§ Use	
 same	
 weight	
 for	
 all	
 connected	
 points	

•  k-­‐nearest	
 neighbor	
 graph:	
 connect	
 i	
 and	
 j	
 if	
 j	
 is	
 among	
 the	
 k-­‐
most	
 similar	
 ver:ces	
 to	
 i	
 or	
 vice-­‐versa	

§ Weight	
 retained	
 edges	
 according	
 to	
 similarity	

•  mutual	
 k-­‐nearest	
 neighbor	
 graph:	
 connect	
 i	
 and	
 j	
 if	
 j	
 is	
 among	

the	
 k-­‐most	
 similar	
 ver:ces	
 to	
 I	
 and	
 vice-­‐versa	

§ Weight	
 retained	
 edges	
 according	
 to	
 similarity	

•  fully	
 connected	
 graph:	
 connect	
 all	
 nodes	

§ Only	
 useful	
 when	
 “local”	
 similarity	
 measure	
 used	
 like	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

sij	
 =	
 exp(-­‐||xi	
 -­‐	
 xj||2	
 /	
 (2¾2)),	
 which	
 decays	
 rapidly	

Spectral	
 clustering	
 graph	
 examples	

Stat Comput (2007) 17: 395–416 409

known to guide us in this task. In general, if the similarity
graph contains more connected components than the number
of clusters we ask the algorithm to detect, then spectral clus-
tering will trivially return connected components as clus-
ters. Unless one is perfectly sure that those connected com-
ponents are the correct clusters, one should make sure that
the similarity graph is connected, or only consists of “few”
connected components and very few or no isolated vertices.
There are many theoretical results on how connectivity of
random graphs can be achieved, but all those results only
hold in the limit for the sample size n → ∞. For example, it
is known that for n data points drawn i.i.d. from some under-
lying density with a connected support in Rd , the k-nearest
neighbor graph and the mutual k-nearest neighbor graph will
be connected if we choose k on the order of log(n) (e.g.,
Brito et al. 1997). Similar arguments show that the para-
meter ε in the ε-neighborhood graph has to be chosen as
(log(n)/n)d to guarantee connectivity in the limit (Penrose
1999). While being of theoretical interest, all those results
do not really help us for choosing k on a finite sample.

Now let us give some rules of thumb. When working with
the k-nearest neighbor graph, then the connectivity parame-
ter should be chosen such that the resulting graph is con-
nected, or at least has significantly fewer connected compo-
nents than clusters we want to detect. For small or medium-
sized graphs this can be tried out “by foot”. For very large
graphs, a first approximation could be to choose k in the or-

der of log(n), as suggested by the asymptotic connectivity
results.

For the mutual k-nearest neighbor graph, we have to ad-
mit that we are a bit lost for rules of thumb. The advantage of
the mutual k-nearest neighbor graph compared to the stan-
dard k-nearest neighbor graph is that it tends not to connect
areas of different density. While this can be good if there are
clear clusters induced by separate high-density areas, this
can hurt in less obvious situations as disconnected parts in
the graph will always be chosen to be clusters by spectral
clustering. Very generally, one can observe that the mutual
k-nearest neighbor graph has much fewer edges than the
standard k-nearest neighbor graph for the same parameter k.
This suggests to choose k significantly larger for the mutual
k-nearest neighbor graph than one would do for the standard
k-nearest neighbor graph. However, to take advantage of the
property that the mutual k-nearest neighbor graph does not
connect regions of different density, it would be necessary
to allow for several “meaningful” disconnected parts of the
graph. Unfortunately, we do not know of any general heuris-
tic to choose the parameter k such that this can be achieved.

For the ε-neighborhood graph, we suggest to choose ε

such that the resulting graph is safely connected. To deter-
mine the smallest value of ε where the graph is connected is
very simple: one has to choose ε as the length of the longest
edge in a minimal spanning tree of the fully connected graph
on the data points. The latter can be determined easily by any
minimal spanning tree algorithm. However, note that when

Fig. 3 Different similarity
graphs, see text for details

von	
 Luxburg,	
 2007	

Spectral	
 clustering	
 and	
 op:mality	

§  Is	
 spectral	
 clustering	
 op:mal	
 in	
 any	
 sense?	
 If	
 so,	
 for	
 what	

objec:ve?	

•  One	
 variant	
 minimizes	
 a	
 relaxa:on	
 of	
 the	
 normalized	
 cut	

graph	
 par::oning	
 criterion	
 (Shi	
 and	
 Malik,	
 2000)	

§  Same	
 variant,	
 based	
 on	
 Lrw,	
 approximately	
 minimizes	
 probability	

that	
 a	
 random	
 walk	
 on	
 the	
 weighted	
 graph	
 transi:ons	
 from	
 one	

cluster	
 to	
 another	

•  Consistency	
 studied	
 under	
 certain	
 sta:s:cal	
 models	
 (e.g.,	

Rohe/ChaSerjee/Yu,	
 2010	
 -­‐	
 Spectral	
 clustering	
 and	
 the	
 high-­‐
dimensional	
 stochas:c	
 blockmodel)	

Dimensionality	
 reduc:on	

§  Goal:	
 Find	
 a	
 low-­‐dimensional	
 representa:on	
 that	
 captures	

the	
 “essence”	
 of	
 higher-­‐dimensional	
 data	
 points	

•  Also	
 known	
 as	
 latent	
 feature	
 modeling	

§  Mo<va<on	

•  Compression	
 for	
 improved	
 storage	
 and	
 computa:onal	
 complexity	

•  Visualiza:on	
 for	
 improved	
 human	
 understanding	
 of	
 data	

§  Difficult	
 to	
 plot	
 /	
 interpret	
 data	
 in	
 more	
 than	
 3	
 dimensions	

•  Noise	
 reduc:on	

§  Ameliorates	
 noisy	
 and	
 infrequent	
 measurements,	
 missingness	

•  Preprocessing	
 for	
 supervised	
 learning	
 task	

§  Reduced	
 /	
 denoised	
 representa:ons	
 may	
 lead	
 to	
 beSer	
 performance	
 or	

act	
 as	
 regulariza:on	
 for	
 reduced	
 overfiing	

•  Anomaly	
 detec:on	
 	

§  Characterize	
 normal	
 data	
 and	
 dis:nguish	
 from	
 outliers	

Linear	
 dimensionality	
 reduc:on	

§  Goal:	
 Assign	
 useful	

representa:ons	
 zi	
 =	
 UT	
 xi	
 2	
 Rk,	

where	
 a	
 UT	
 2	
 Rk	
 x	
 p	
 is	
 a	
 linear	

mapping	
 into	
 a	
 low-­‐
dimensional	
 space	

§  How	
 to	
 choose	
 a	
 useful	
 U?	

Basic idea of linear dimensionality reduction

Represent each face as a high-dimensional vector x 2 R361

x 2 R361

z = U

>
x

z 2 R10

How do we choose U?

5

All of the methods we will present fall under this framework. A high-dimensional data point (for example, a face
image) is mapped via a linear projection into a lower-dimensional point. An important question to bear in mind
is whether a linear projection even makes sense. There are several ways to optimize U based on the nature of
the data.

Outline

• Principal component analysis (PCA)

– Basic principles

– Case studies

– Kernel PCA

– Probabilistic PCA

• Canonical correlation analysis (CCA)

• Fisher discriminant analysis (FDA)

• Summary

6

PCA objective 1: reconstruction error

U serves two functions:

• Encode: z = U

>
x, zj = u

>
j x

• Decode: x̃ = Uz =
Pk

j=1 zjuj

Want reconstruction error kx� x̃k to be small

Objective: minimize total squared reconstruction error

min
U2Rd⇥k

nX

i=1

kxi �UU

>
xik2

Principal component analysis (PCA) / Basic principles 9

There are two perspectives on PCA. The first one is based on encoding data in a low-dimensional representation
so that we can reconstruct the original as well as possible.

PCA objective 2: projected variance

Empirical distribution: uniform over x1, . . . ,xn

Expectation (think sum over data points):

ˆE[f(x)] =

1
n

Pn
i=1 f(xi)

Variance (think sum of squares if centered):

cvar[f(x)] + (

ˆE[f(x)])

2
=

ˆE[f(x)

2
] =

1
n

Pn
i=1 f(xi)

2

Assume data is centered: ˆE[x] = 0

(what’s ˆE[U

>
x]?)

Objective: maximize variance of projected data

max

U2Rd⇥k,U>U=I

ˆE[kU>
xk2]

Principal component analysis (PCA) / Basic principles 10

The second viewpoint is that we want to find projections that capture (explain) as much variance in data as
possible. Note that we require the column vectors in U to be orthonormal: U

>
U = Ik⇥k to avoid degenerate

solutions of 1. To talk about variance, we need to talk about a random variable. The random variable here
is a data point x, which we assume to be drawn from the uniform distribution over the n data points. Unless
otherwise specified, we will always assume the data is centered at zero (can be easily achieved by subtracting
out the mean).

§  	
 Given:	
 High-­‐dimensional	
 datapoints	
 xi	
 2	
 Rp	

•  e.g.,	
 images	
 of	
 faces	
 in	
 R361	

	

Blackboard	
 discussion	

§  See	
 lecture	
 notes	

