Lecture 7: Spectral Clustering; Linear Dimensionality Reduction via Principal Component Analysis

Lester Mackey

April 21, 2014

Blackboard discussion

See lecture notes

Spectral clustering example: GMM

von Luxburg, 2007

Data generated from a mixture of 4 Gaussians in 1D

Histogram of the sample

- W from 10-nearest neighbors
- Top row: normalized L_{rw}
- Bottom row: unnormalized L_{un}

Spectral clustering example: GMM

von Luxburg, 2007

Data generated from a mixture of 4 Gaussians in 1D

Histogram of the sample

- W = S
- Top row: normalized L_{rw}
- Bottom row: unnormalized L_{un}

Spectral clustering example: circles

Eigenvalues of L

Eigenvectors of L

Spectral clustering example: noisy circles

Spectral clustering image segmentation

Spectral clustering widely used in image segmentation

Shi and Malik 2001

7

How to construct graph weights W?

- Goal: capture local neighborhood relationships between points / focus on very similar points
- Most common constructions
 - ϵ -neighborhood graph: connect all points with similarity > ϵ
 - Use same weight for all connected points
 - k-nearest neighbor graph: connect i and j if j is among the k-most similar vertices to i or vice-versa
 - Weight retained edges according to similarity
 - mutual k-nearest neighbor graph: connect i and j if j is among the k-most similar vertices to I and vice-versa
 - Weight retained edges according to similarity
 - fully connected graph: connect all nodes
 - Only useful when "local" similarity measure used like $s_{ij} = \exp(-||x_i x_j||^2 / (2\sigma^2))$, which decays rapidly

Spectral clustering graph examples

Spectral clustering and optimality

- Is spectral clustering optimal in any sense? If so, for what objective?
 - One variant minimizes a relaxation of the normalized cut graph partitioning criterion (Shi and Malik, 2000)
 - Same variant, based on L_{rw}, approximately minimizes probability that a random walk on the weighted graph transitions from one cluster to another
 - Consistency studied under certain statistical models (e.g., Rohe/Chatterjee/Yu, 2010 - Spectral clustering and the highdimensional stochastic blockmodel)

Dimensionality reduction

- Goal: Find a low-dimensional representation that captures the "essence" of higher-dimensional data points
 - Also known as latent feature modeling

Motivation

- Compression for improved storage and computational complexity
- Visualization for improved human understanding of data
 - Difficult to plot / interpret data in more than 3 dimensions
- Noise reduction
 - Ameliorates noisy and infrequent measurements, missingness
- Preprocessing for supervised learning task
 - Reduced / denoised representations may lead to better performance or act as regularization for reduced overfitting
- Anomaly detection
 - Characterize normal data and distinguish from outliers

Linear dimensionality reduction

- Given: High-dimensional datapoints $x_i \in R^p$
 - e.g., images of faces in R³⁶¹

■ Goal: Assign useful representations $z_i = U^T x_i \in R^k$, where a $U^T \in R^{k \times p}$ is a linear mapping into a low-dimensional space

How to choose a useful U?

Blackboard discussion

See lecture notes