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Spectral clustering example: GMM

von Luxburg, 2007
Data generated from a mixture of 4 Gaussians in 1D
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Spectral clustering example: GMM

von Luxburg, 2007
Data generated from a mixture of 4 Gaussians in 1D
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Spectral clustering example: circles
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Spectral clustering example: noisy circles
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Spectral clustering, 2 clusters
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Spectral clustering image segmentation

Spectral clustering widely used in image segmentation

Shi and Malik 2001 7



How to construct graph weights W?

Goal: capture local neighborhood relationships between
points / focus on very similar points

Most common constructions

e-neighborhood graph: connect all points with similarity > €
Use same weight for all connected points

k-nearest neighbor graph: connecti and j if jis among the k-
most similar vertices to i or vice-versa

Weight retained edges according to similarity

mutual k-nearest neighbor graph: connectiand jif jis among
the k-most similar vertices to | and vice-versa

Weight retained edges according to similarity

fully connected graph: connect all nodes

Only useful when “local” similarity measure used like
s; = exp(-| |x;- x| |>/ (20?)), which decays rapidly



Spectral clustering graph examples

von Luxburg, 2007
Data points epsilon—graph, epsilon=0.3




Spectral clustering and optimality

Is spectral clustering optimal in any sense? If so, for what
objective?
One variant minimizes a relaxation of the normalized cut
graph partitioning criterion (Shi and Malik, 2000)
Same variant, based on L,,, approximately minimizes probability

that a random walk on the weighted graph transitions from one
cluster to another

Consistency studied under certain statistical models (e.g.,
Rohe/Chatterjee/Yu, 2010 - Spectral clustering and the high-
dimensional stochastic blockmodel)
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Dimensionality reduction

Goal: Find a low-dimensional representation that captures
the “essence” of higher-dimensional data points

Also known as latent feature modeling
Motivation

Compression for improved storage and computational complexity
Visualization for improved human understanding of data

Difficult to plot / interpret data in more than 3 dimensions
Noise reduction

Ameliorates noisy and infrequent measurements, missingness
Preprocessing for supervised learning task

Reduced / denoised representations may lead to better performance or
act as regularization for reduced overfitting

Anomaly detection

Characterize normal data and distinguish from outliers 1



Linear dimensionality reduction

= Given: High-dimensional datapoints x, € RP
e.g., images of faces in R36!
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= Goal: Assign useful
representations z. = UT x, € R¥, S,
where a UT € R**P is a linear / /f SR /
mapping into a low- R a
dimensional space

* How to choose a useful U?
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