
STATS 306B: Unsupervised Learning Spring 2014

Lecture 4 — April 9

Lecturer: Lester Mackey Scribe: Yishun Dong, Sam Paglia

4.1 Recap

In the last lecture, we developed general approach using EM to approximate the maximum
likelihood estimator (MLE) in latent variable models. The EM algorithm we studied in last
lecture was explained and given its name in the seminal work by Arthur Dempster, Nan
Laird, and Donald Rubin in 1977. They note that the method has been proposed many
times in various special cases in earlier works, with the earliest reference dating back to
1926.

In particular, the EM algorithm gives us a general purpose tool for probabilistic mixture
modeling, which in turn enables a great variety of applications. The following examples
demonstrate the diversity of domains and data types to which mixture modeling can be
applied.

Example 1. Email clustering for legal document review is one such example, which we
studied last lecture using the Multinomial Mixture Model (MMM).

Example 2. Modeling uncertain disease state (cured/uncured) in studies of cancer patient
survival (Yu/Tiwari 2007).

Example 3. Inferring community structure from network interactions (Newman 2007).

Example 4. Inferring test-taking behaviors from GRE responses (Schnipke/Scrams 1997).

4.2 Models with Temporal or Sequential Structure

While these generic mixture models are broadly applicable, they all assume that data points
are generated independently from a common density. Such an assumption is inappropriate
(or at least, wasteful) if our data has a known dependence structure. For instance, it is not
uncommon for data to have a known temporal or sequential structure, and we would like
to leverage this structure in performing unsupervised learning.

Let us consider a few examples of sequentially structured. Some instances arise in the
common setting in which we have a small amount of labeled data (e.g., transcribed recordings
of speech), which is expensive to obtain, and a large amount of cheap, unlabeled data.
Incorporating both labeled and unlabeled data into our learning procedure will generally
yield more accurate and actionable results than either set used individually. This setting is
called the semi-supervised learning setting, and all of our unsupervised methods naturally
extend to ths setting (e.g., we can incorporate this label information into our probabilistic
models, by treating the class indicator zi as observed for any labeled datapoint xi).

4-1

STATS 306B Lecture 4 — April 9 Spring 2014

Example 5 (Speech Recognition). We observe an audio signal, segment the signal, and
extract features. For instance, Figure 4.1 might be the audio wave generated by someone
who’s trying to pronounce an ”x”. The goal is to infer the latent words or phonemes for each
temporally indexed audio segment. In this setting, our inferences can benefit from modeling
the dependence between the current word or sound under consideration and adjacent words
or sounds.

Figure 4.1. Audio signal of someone pronouncing ”x”.

Example 6 (Handwriting Recognition). Figure 4.2 shows an example of an old/unreadable
text, and we would like to identify words or characters from the handwritten text. It often
helps to use surrounding context in determining the word/letter to identity. For example, the
letter immediately following a character ‘t’ is not uniformly distributed among the alphabet.
It might be much more likely to have an ‘i’ following a ‘t’ than a ‘z’ following a ‘t’.

Figure 4.2. Handwriting of “Lester M”

Example 7 (Copy Number Segmentation). In this setting, we observe noisy intensity mea-
surements at each genome locus, and the goal is to estimate the true DNA copy number
at each location from normal or tumor samples. The copies often occur in large contiguous
regions (see the picture from online slide for this lecture). Therefore, the information from
neighboring copy numbers is highly informative in this task.

Such sequential data examples call for methods that can both:

1. Uncover the clustered structure associated with our data

4-2

STATS 306B Lecture 4 — April 9 Spring 2014

2. Take advantage of the known sequential dependence

Today, we will take a probabilisIc modeling approach to clustering sequential data with
discrete hidden Markov models (HMMs); this approach has found great success in each of
the settings just described.

4.3 Discrete Hidden Markov Models (HMMs)

Discrete hidden Markov models are probabilistic models for clustered sequential data and
can be viewed sequential generalizations of independent mixture models. We view our se-
quence of observed data points x0, x1, ..., xT as a random draw from the following generative
process:

Step One: First, we sample the initial latent state (or cluster) z0 ∈ {1, 2, ..., k}, accord-
ing to

z0 ∼ Mult(π, 1),

where π is an unknown probability vector in Rk.
Step Two: For each t > 0, we sample the new state zt based on the prior state according

to the following transition probability

zt|zt−1 = j
ind∼ Mult(aj, 1)

where aj is an (unknown) transition probability vector in Rk.
The matrix of all transition probability vectors

A =


− a1 −
− a2 −

...
− ak −


is called the transition matrix.

Note: we could generalize to different transition matrices (At) at each time step t, but
the homogeneous case (At = A, ∀t) is the most common scenario.

Step Three: Finally, we independently generate the observed data from state specific
densities

xt|zt
ind∼ p(xt|zt; η)

where p(xt|zt; η) are called the emission probabilities and η is a vector of unknown pa-
rameters.

Figure 4.3 shows a graphical depiction of the Hidden Markov Model we described above.
Note that since the distribution of zt is determined fully by zt−1, the hidden sequence
(z0, z1, ..., zT) is a Markov Chain, hence the name Hidden Markov Model.

4-3

STATS 306B Lecture 4 — April 9 Spring 2014

x0 x1 xT

z0 z1 zTA A A

η η η

π

hidden

observed

Figure 4.3. Graphical depiction of the hidden markov model (HMM).

4.3.1 Conditional independence in the HMM

To ease our future calculations in carrying out probabilistic inference, let us record an im-
portant conditional independence relation that exists amongst the variables in this model.
Because past variables are connected to future variables only through the links between hid-
den states zt, knowledge of the future (hidden or observed) is independent of knowledge of
the past (hidden or observed) given knowledge of the current hidden state zt.

More formally, given the structure of our HMM, the following holds for all times t and
collections of preceding and succeeding states:

p(xt+1:T , zt+1:T |zt, z1:t−1, x1:t) = p(xt+1:T , zt+1:T |zt).

Readers further interested in probabilistic inference in graphical models could refer to Koller
and Friedman’s work, Probabilistic Graphical Models: Principals and Techniques, MIT Press,
2009

4.3.2 Joint density of X0:T

Let θ = (π,A, η) denote all the HMM parameters, x = (x0, x1, ..., xT), and z = (z0, z1, ..., zT).
Then the joint density for x takes the form

p(x; θ) =
∑
z

p(x, z; θ)

=
∑
z

p(z0; π)
T−1∏
t=0

p(zt+1|zt;A)
T∏
t=0

p(xt|zt; η)

=
∑
z

πz0

T−1∏
t=0

azt,zt+1

T∏
t=0

p(xt|zt; η).

4.3.3 Unsupervised learning goal

We want to infer the hidden structure z from the sequence x, which is more complicated
than in the i.i.d. setting. To simplify matters, let us first suppose all the parameters θ are

4-4

STATS 306B Lecture 4 — April 9 Spring 2014

known. How would we infer a single hidden state zt from the sequence x? Let us consider
the usual conditional distribution

p(zt|x) =
p(x|zt)p(zt)

p(x)

(a)
=
p(x0, ..., xt|zt)p(xt+1, ..., xT |zt)p(zt)

p(x)

=
p(x0:t, zt)p(xt+1:T |zt)

p(x)

=
α(zt)β(zt)

p(x)
.

where (a) follows from the conditional independence given zt between the data up to time t
and the future data. Note that we have defined two new quantitates in our last line:

α(zt) , p(x0:t, zt)

β(zt) , p(xt+1:T |zt).
We see that α(zt) , p(x0:t, zt) represents the probability of emitting all past and present
data (x0:t) and ending up in state zt, while β(zt) , p(xt+1:T |zt) represents the probability of
emitting all future data (xt+1:T) given the current state zt.

Since we know

1 =
∑
zt

p(zt|x) =
∑
zt

α(zt)β(zt)

p(x)

we have the following relation

p(x) =
∑
zt

α(zt)β(zt) .

Therefore, if we knew α(zt), β(zt) for all states zt, we could calculate the conditional
distribution p(zt|x). What is the cost of computing these quantities α(zt), β(zt)?

Bad news: Inference for zt at a single time-point t will take order k2T work to carry
out, so, seemingly, if we were to carry out inference for each time point individually, the
total computation cost of inference over all states zt will be O(k2T 2), which is problematic
for large T (long sequences).

However, all is not lost.
Good news: We can in fact leverage the structure of our model to compute α(zt), β(zt)

recursively in time, so that total time for computing p(zt|x) for all t is O(k2T).
Next, we will illustrate how this is recursive procedure is carried out

4.4 Recursions to calculate α(zt), β(zt)

We now show how to recursively calculate {α(zt)}Tt=0, {β(zt)}Tt=0 in O(k2T) time. We begin
with our computation of α(zt).

4-5

STATS 306B Lecture 4 — April 9 Spring 2014

4.4.1 Alpha recursion / forward pass

Our calculation of α(zt) can also be termed a “forward pass”, as we will first define α(z0)
and subsequently calculate α(zt+1) in terms of α(zt) for all t ∈ {1, ..., T}.

Given that our general definition of α was α(zt) = p(x0:t, zt), for t = 0 we have α(z0) =
p(x0, z0) = p(x0|z0)p(z0) = p(x0|z0)πz0 , which is easily computable given our known quanti-
ties. We now develop the recursive formula for α(zt+1):

α(zt+1) = p(x0:t+1, zt+1) (4.1)

=
∑
zt

p(x0:t+1, zt+1, zt) (4.2)

=
∑
zt

p(x0:t, zt)p(xt+1, zt+1|zt, x0:t) (4.3)

=
∑
zt

α(zt)p(xt+1, zt+1|zt) (4.4)

=
∑
zt

α(zt)p(xt+1|zt+1)p(zt+1|zt) (4.5)

=
∑
zt

α(zt)azt,zt+1p(xt+1|zt+1) (4.6)

Going through this derivation in more detail, we see that (4.2) is an application of the law
of total probability, while (4.3) is an application of the chain rule. In (4.4), we substitute
based on the equality α(zt) = p(x0:t, zt) and leverage the dependence structure of our HMM
to drop the x0:t from the p(xt+1, zt+1|zt, x0:t) term given that zt is known. Finally, we split
our p(xt+1, zt+1|zt) term according to the dependence structure of our HMM in (4.5) and
substitute terms in line (4.6).

Thus, we have the following forward recurrence relation for α(zt):

α(zt+1) =
∑
zt

α(zt)azt,zt+1p(xt+1|zt+1)

Let us turn to the computational cost of computing {α(zt)}Tt=0 using the above recurrence
relation. Since zt can take any value in {1, 2, ..., k}, it takes O(k) operations to compute the
sum in the boxed equation for one value of zt+1. As zt+1 can also take on value in {1, 2, ..., k},
updating from t to t+ 1 is an O(k2) operation. Finally, since it takes T such steps to finish
computing {α(zt)}Tt=0, the total computation cost is O(k2T) as mentioned earlier. We now
move on to our β terms.

4.4.2 Beta recursion / backward pass

In contrast to our calculation of α(zt), we compute β(zt) via a “backward pass”, as will first
define β(zT) and subsequently calculate β(zt) in terms of β(zt+1) for all t < T . We begin by
defining β(zT) = 1, and now develop a recursive formula for β(zt). Consider the calculations
below

4-6

STATS 306B Lecture 4 — April 9 Spring 2014

β(zt) = p(xt+1:T |zt) (4.7)

=
∑
zt+1

p(xt+1, xt+2:T , zt+1|zt) (4.8)

=
∑
zt+1

p(zt+1|zt)p(xt+1|zt+1, zt)p(xt+2:T |xt+1, zt+1, zt) (4.9)

=
∑
zt+1

azt,zt+1p(xt+1|zt+1)p(xt+2:T |zt+1) (4.10)

=
∑
zt+1

azt,zt+1p(xt+1|zt+1)β(zt+1) (4.11)

Note that (4.8) is due to the law of total probability, while (4.9) is an application of the
chain rule. In (4.10) we substitute terms and leverage the dependence structure of our model
to drop terms. Finally, in (4.11), we substitute our existing identity for β(zt+1).

Thus, we have the following backward recurrence relation for β(zt):

β(zt) =
∑
zt+1

azt,zt+1p(xt+1|zt+1)β(zt+1)

Since again, both zt+1 and zt can take on values in {1, 2, ..., k}, it costs O(k) to compute
the sum in the above boxed equation for one value of zt. There are k such β(zt)’s we need
compute at each step, so the cost per step is O(k2). Finally, since there are total T steps,
in much the same way as for the α(zt) case, we conclude computing {β(zt)}Tt=0 is an O(k2T)
operation.

Because we can compute {α(zt)}Tt=0, {β(zt)}Tt=0 in O(k2T) time, we can calculate p(zt|x)
for all t fairly efficiently.

We can now perform inference on zt in isolation via p(zt|x). However, this is not the same
as making inference surrounding groups of zt. This is the case because our hidden states z
are dependent given x, e.g., p(zt, zt+1|x) 6= p(zt|x)p(zt+1|x).

This leaves us with several open questions:

• How do we compute these conditional co-occurrence probabilities?

• How do we estimate θ?

We will find out in the next lecture.

4-7

