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2.1 Recap

In the last lecture, we formulated our working definition of unsupervised learning: discov-
ering the latent structure underlying our data, without prior observations of that structure.
Our exploration of the field by began with the task of clustering, in which we aim to
group or segment data points based on some notion of similarity. In particular, we studied
the k-means approach to clustering and motivated it entirely in terms of minimizing an
objective

n∑
i=1

||xi −mzi ||22

that characterizes the similarity of data points to their cluster means. This is an example of a
model-free approach to clustering, as it makes no explicit attempt to model the process that
generated our observations. In this lecture, we will examine a popular alternative to k-means
clustering – Gaussian mixture modeling with Expectation-Maximization – that reposes upon
an explicit model of the data-generating process.

2.2 Gaussian Mixture Modeling

The Gaussian mixture model (GMM) is a probabilistic model for clustered data with
real-valued components. Although the aims and assumptions of Gaussian mixture modeling
appear to be quite different from those of k-means, we will see soon that they share some
key similarities.

2.2.1 Model formulation

We begin by positing a statistical model for our data. That is, we view our dataX1, X2, · · · , Xn

as random variables drawn i.i.d. from an unknown distribution with density p(x). A GMM
demands a specific form for this density,

p(x) =
k∑
j=1

πjφ(x;µj,Σj).

This is a mixture of k component multivariate Gaussian distributions where

• φ(x;µj,Σj) = 1
|2πΣj |1/2

exp
(
−1

2
(x− µj)TΣ−1

j (x− µj)
)

is a multivariate Gaussian den-

sity with unknown parameters (µj,Σj), and
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• πj is the unknown probability of selecting component j, satisfying
∑k

j=1 πj = 1.

A GMM has an equivalent representation as a generative model for our data:

zi
iid∼ Mult(π, 1)

xi|zi
ind∼ N (µzi ,Σzi).

Here, zi represents the latent component indicator or latent class / cluster for datapoint xi.

Remark. Throughout the course, we will be considering a number of probabilistic modeling
approaches to unsupervised learning. Typically, we will not view these models as literal
descriptions of reality but rather as convenient modeling frameworks that give rise to pro-
cedures for unsupervised learning.

2.2.2 Clustering with GMMs

Under the GMM, our clustering task amounts to inferring the latent component zi responsible
for each xi. For the moment, we will ignore the fact that we do not know the parameters
of the GMM and imagine how we would carry out the clustering task given (π, µ1:k,Σ1:k).
Since a GMM with known parameters defines a joint distribution over (xi, zi), it is natural
to consider the conditional distribution of each zi given xi:

p(zi = j|xi) =
p(zi = j)p(xi|zi = j)

p(xi)

=
πjφ(xi;µj,Σj)∑k
l=1 πlφ(xi;µl,Σl)

.

These conditionals reflect our updated beliefs concerning zi after xi is observed: before we
observe xi, we have the prior belief that it belongs to cluster j with probability πj; after
observing xi, we can update this belief in accordance with the likelihood of xi under each
Gaussian component.

Remark. The task of computing conditionals or marginals from a known joint distribution
is sometimes called probabilistic inference.

The conditional distribution provides us with what is called a soft clustering since
it assigns some probability to xi belonging to each cluster. To obtain a hard clustering
(an assignment of xi to a single cluster), one typically selects a mode of the conditional
distribution argmaxj p(zi = j|xi).

Remark. Those familiar with discriminant analysis will notice a relationship with the clas-
sification rule in quadratic and linear discriminant analysis. This is to be expected as dis-
criminant analysis also models datapoints as being drawn from class conditional multivariate
Gaussian distributions. However, LDA operates in a supervised setting, which greatly sim-
plifies the task of parameter estimation. Parameter estimation is a good deal more difficult
in our unsupervised GMM setting.
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2.2.3 Estimating GMM parameters with Expectation-Maximization

In the prior section, we carried out clustering assuming that the GMM parameters (π, µ1:k,Σ1:k)
were known. In this section, we will attempt to estimate these parameters, a task sometimes
termed statistical inference to distinguish it from probabilistic inference. We will begin
by trying to derive maximum likelihood estimates (MLEs) of the GMM parameters.

Consider the log likelihood of our data

n∑
i=1

log(p(xi)) =
n∑
i=1

log(
k∑
j=1

πjφ(xi;µj,Σj)). (2.1)

The maximum likelihood principle would choose estimates of (π, µ1:k,Σ1:k) that max-
imize this expression. When k = 1 (i.e., when there is no clustering structure), the log
likelihood simplifies to

n∑
i=1

log(φ(xi;µj,Σj)) =
n∑
i=1

[
−1

2
(xi − µ1)TΣ−1

1 (xi − µ1)− log |2πΣ1|1/2
]
,

which has closed-form maxima,

(µ∗1,Σ
∗
1) = (

1

n

n∑
i=1

xi,
1

n

n∑
1=1

(xi − µ∗1)(xi − µ∗1)T ).

Unfortunately, when k > 1 (the case of interest), the log likelihood no longer simplifies
and no longer yields closed-form solutions. To find (approximate) MLEs one often turns to
(I) off-the-shelf numerical optimizers or (II) the Expectation-Maximization (EM) algorithm,
which leverages the latent-variable problem structure to form parameter estimates. We will
develop and examine the EM approach in the remainder of this lecture.

The fundamental difficulty with the log likelihood in (2.1) is the sum inside of each log
(representing an expectation over an unknown cluster assignment zi), which couples all of
the parameters of all of the component Gaussian distributions of the mixture together. If
we knew the zi’s, then this problem would be solved, since we could instead maximize the
complete log likelihood,

n∑
i=1

log(p(xi, zi)) =
n∑
i=1

(log(p(xi|zi)) + log(p(zi)))

=
n∑
i=1

(log(φ(xi;µzi ,Σzi)) + log(πzi))

=
n∑
i=1

k∑
j=1

(I[zi = j] log φ(xi;µj,Σj) + I[zi = j] log πj).

Note that the sum over zi values is now outside of the log and that parameters of different
Gaussian components no only appear in separate summands.
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Moreover, the complete log likelihood, viewed as a function of (π, µ1:k,Σ1:k), has closed-
form maxima:

π∗j =
1

n

n∑
i=1

I[zi = j],

µ∗j =

∑n
i=1 I[zi = j]xi∑n
i=1 I[zi = j]

,

and

Σ∗j =

∑n
i=1 I[zi = j](xi − µ∗j)(xi − µ∗j)T∑n

i=1 I[zi = j]
.

That is, π∗j equals to the proportion of sample points assigned to cluster j, and µ∗j and
Σ∗j are the sample mean and covariance of points within cluster j. Hence, if we knew the
cluster assignments ahead of time, we could easily estimate the GMM parameters, and, as
mentioned previously, if we knew the parameters, we could easily estimate cluster assign-
ments using probabilistic inference. Unfortunately (as is often the case in unsupervised
learning), we know neither, so we will simply guess the values of the GMM and iteratively
refine our guess by alternating between probabilistic inference (updating our cluster assign-
ment inferences) and statistical inference (updating our parameter estimates). This is the
Expectation-Maximization algorithm for parameter estimation in a nutshell. More precisely,
the algorithm consists of the following steps.

Expectation-Maximization for GMMs:

0. Initialize π, (µ1:k,Σ1:k) arbitrarily

1. Alternate until convergence

(E-step) [Expectation step]: Compute soft class memberships, given the current
parameters:

τij = P (zi = j|xij, π, (µ`,Σ`)).

(M-step) [Maximization step]: Update parameters by plugging in τij (our guess) for
the unknown I[zi = j], which gives us:

πj =
1

n

n∑
i=1

τij, µj =

∑n
i=1 τijxi∑n
i=1 τij

,

Σj =

∑n
i=1 τij(xi − µj)(xi − µj)T∑n

i=1 τij
.

This is similar to the case in which all zi’s are known, but now each xi is partially
assigned to each cluster j through the conditional probability that zi = j.

Note the similarity to Lloyd’s algorithm for k-means discussed last time. If we ignore the
updates to π and Σ1:k, we see the same basic structure: assign data points to classes, and
update the means according to the assigned classes. There are also important distinctions
between the two algorithms:
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• Lloyd’s algorithm makes hard assignments on each iteration, with each point assigned
to one class, while the EM algorithm uses soft, probabilistic assignments, where con-
ditional probabilities are computed for each class given the parameter estimates.

• In the GMM setting, we model the mixture proportions and covariance structure in the
data. This is especially useful if we have correlated features, features of with varying
variances, or clusters of varying sizes. Meanwhile, k-means effectively assumes identity
covariance structure (spherical clusters) and equal cluster sizes.

Interestingly, we can actually recover the Lloyd’s algorithm from a variant of the GMM
EM algorithm above. If we assume the cluster proportions πj = 1

k
, and we also assume Σj =

σ2I for some known σ2, then the EM algorithm (with π and Σ1:k fixed and known) updates the
means µj and becomes Lloyd’s algorithm as σ2 → 0. The design of fast unsupervised learning
algorithms like k-means from probabilistic models using small variance asymptotics is
currently an active research area.

At this point, one should have a great many questions concerning this mysterious EM
algorithm. For example,

• Does it converge? If so, are rates of convergence known?

• Are its solutions optimal? If not, can we bound their suboptimality?

• What is its relationship to the likelihood and our goal of maximizing it?

To provide satisfying answers to these questions, we will, in the next lecture, turn to a more
general view of EM for estimation in any latent variable model. In the remainder of this
lecture, we will content ourselves with a teaser indicating a fundamental relationship between
EM and maximum likelihood.

2.2.4 Optimality conditions for maximum likelihood

To understand how EM might relate to MLE, let us consider the first-order optimality
conditions for maximum likelihood. We begin by computing the partial derivatives of the
log-likelihood with respect to µj,

∂

∂µj

{
n∑
i=1

log
[ k∑
i=1

πjφ(xi;µj,Σj)
]}

=
n∑
i=1

πjφ(xi;µj,Σj)∑
` π`φ(xi;µ`,Σ`)

· ∂

∂µj
log φ(xi;µj,Σj)

=
n∑
i=1

τijΣ
−1
j (xi − µj),

where the second line follows from the chain rule, and, in the third line, we have recognized
the expressions for our previously-computed conditional probabilities τij. The first-order
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condition for optimality requires that these derivatives equal zero. Hence, any maximum
likelihood solution (π∗, µ∗1:k,Σ

∗
1:k) satisfies

n∑
i=1

τijΣ
∗
j
−1(xi − µ∗j) = 0⇒ µ∗j =

∑n
i=1 τijxi∑n
i=1 τij

.

This derived requirement has the same form as the M-step update from EM! However, the τij
on the RHS of this expression depends implicitly on the optimal parameters (π∗, µ∗1:k,Σ

∗
1:k).

Hence, this is not a closed-form solution for µ∗j but rather a fixed-point equation. (Similar
fixed-point equations would result from considering the first-order optimality conditions for
π and Σ.) This derivation makes clear that EM performs fixed-point iteration on the
optimality equations for likelihood maximization; that is, EM iteratively plugs in estimates
of τij into the RHS of the fixed-point equations based on current parameter estimates and
uses the results as its updated parameter estimates. We will explore additional properties
of the EM algorithm next time.
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