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16.1 Learning with Missing Data

Suppose that we observe a dataset where some of the features z;; are missing. Such data
may arise from non-response in surveys, censorship or early dropout in longitudinal trials,
corrupted results or measurements, different features collected from different studies, or
recommender systems, where each user only explicitly expresses his or her preferences for
a subset of available items. In this lecture and the next, we will learn how to carry out
unsupervised learning in the presence of missing data.

16.1.1 Types of missingness

Since not all missing data is the same, we begin by considering several important classes of
missingness. We say that a feature is missing completely at random (MCAR) if the
probability that the feature is missing is independent of the value of the feature and the
values of any other features. This is often the best-case missingness scenario. This would
occur, for example, if only a uniformly random subset of the respondents to our survey
answer question 3.

We say that a feature is missing at random (MAR) if the probability that a feature
is missing is independent of the value of the feature. In this case, the probability of being
missing can depend on the value of the other features. For example, this would occur if a
survey respondent who answers “yes” to “Are you forgetful?” is more likely to forget to
answer question 3.

Finally, we say that a feature is not missing at random if the probability that a feature
is missing can depend on the value of the feature. This would arise if a respondent did not
answer question 3 because the answer was embarassing. This scenario is typically the most
difficult to deal with.

16.1.2 Testing for MCAR: Supervised Learning

Supervised learning methods can be used to test the assumption of MCAR in categorical
covariates in the following way:

1. Code ‘missing’ as a new category.

2. Run a supervised analysis (to predict a separate target variable) and check if ‘missing’
has an effect on the prediction of the response in the learned model.

3. If the category ‘missing’ has an effect, this is evidence that data is not MCAR.
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Note that this test could be ported to the unsupervised learning setting by treating one of
the features as the target variable and predicting it using the remaining variables.

16.2 Dealing with missing data

We next consider various strategies for learning with missing data.

16.2.1 Datapoint or feature deletion

An especially convenient option is to delete datapoints with missing features or to delete
features with missing values and then apply standard learning algorithms to resulting dataset.
However, this can be problematic if missing data is common, the dataset is small, or all
features are valuable for our analysis. In these cases, we typically resort to other methods.

16.2.2 Imputing missing features (single imputation)

Imputing missing features has the benefit of enabling us to apply standard learning algo-
rithms after the imputation. However, the resulting inferences may be strongly influenced
or biased by the imputation choice, particularly when the fraction of missing data in our
dataset increases. Let us consider a few standard approaches to imputing missing features.

A common, simple, and inexpensive strategy is to impute the mean or median ob-
served value of the feature. A downside is that this strategy completely ignores the
correlation among the features which could be used to find better estimates for the missing
feature. Imputation by regression on the other features attempts to capture the re-
lationships between various features. However, it also has several drawbacks: it is difficult
to apply unless (a) we observe the same features for many datapoints or (b) the regression
method used can handle missing data. Also, (c¢) this imputation scheme only accounts for
the part of the feature that can be predicted from other features.

To deal with (a), we can perform iterated regression where we first impute all the
missing values using some baseline technique (like imputing the means) and then iteratively
refine imputations by regressing each feature with missing values on the remaining features
(making use of the imputations from the prior round for the regression covariates).

With regard to (b), we several supervised learning procedures can cope with missing data
out of the box. For tree based methods like CART treat ‘missing’ as a special value. We
can also modify methods to deal with missing values. For example, in k-nearest neighbors
and other methods based on pairwise dissimilarity, we can modify a pairwise dissimilarity
measure (like mean squared distance) to be computed only over those features which are
observed for both datapoints.

To address point (c), we could perform multiple imputation which better accounts for
the uncertainty inherent in imputation by forming a posterior distribution over unobserved
values and sampling many possible imputations from this distribution. Each imputed dataset
can then be used for follow-up analysis.

Yet another imputation strategy that arises in the context of time series or other se-
quential data, where a strong relationship exists among neighboring values, is to impute by
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interpolating between neighboring values.

16.2.3 Adapting unsupervised learning procedures

A different approach to coping with missing data is to modify our unsupervised learning
techniques to deal with missing data directly. We will adopt the following general strategy
for performing this adaptation:

1. Frame the unsupervised learning problem as a data reconstruction problem.
2. Modify the objective to reconstruct only the observed features.

Notably, once our unsupervised representations are learned in this fashion, they can also be
used to perfom imputation (as a added bonus).

16.3 PCA with Missing Data

As an example, we will apply this adaptation strategy to PCA. Recall the PCA reconstruction
objective,

m&rel]%\)rglxikze S e — UU 2|2

subject to UTU = 1.

This problem is equivalent to
Uglélprilgllze%k i=1 Hxl Zi ” 2
subject to  UTU =1,
since, for any U, the optimal value of z; is U x;. This problem is also equivalent to
minimize || X — M||%

MeRnxP
subject to rank(M) <k

where X € R™? is the data matrix with the i-th row equal to z7. This follows from the
fact that an optimal solution is given by the rank-k truncated SVD of X, M* = VX, U”.
Therefore, PCA recovers the best rank-k reconstruction of the data matrix X.
Now let €2 be the set of all observed features, so that z;; is observed iff (i, 5) € Q. Then
our missing data objective for the PCA problem is
e 2
minimize 3 [z — myll;
subject to rank(()M) < k,

where m;; represents an entry of M. Unfortunately, this problem is non-convex (like the

original PCA problem) and has no closed form solution in general (unlike the original PCA
problem). Hence, a variety of strategies are available for finding approximate solutions.
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16.3.1 Iterated SVD

A popular solution for relatively small data matrices is sometimes termed the iterated
SVD. To develop this optimization scheme, we first note that an equivalent formulation for
our missing data PCA problem is

minimize X — M2
MERn*p, X RnXp

subject to rank(M) < k
Tij = 245, V(i,7) € Q

Now we can perform block coordinate descent (alternating minimization) on the two opti-
mization variables X and M. That is, we repeat the following two steps until convergence
is achieved.

1. Imputation: Update X given M using &;; = my; ¥(i, j) € Q.

2. Truncated SVD: Update M for fixed X using M = rank-k truncation of the SVD
of X.

One can also view this approach as an alternating projection algorithm for finding a point
M in the intersection of two sets, the set of rank-k matrices and the set of matrices {N :
ni; = x5, Y(i,7) € Q, N € R"P}. While this is a viable approach for smaller matrices, it is
prohibitively expensive for large matrices with large amounts of missingness. For example,
most recommender systems take advantage of the substantial sparsity in their observation
matrices (in the Netflix Prize dataset only 1% of all possible preferences were observed),
so simply imputing and storing all np possible entries may be prohibitive. Moreover, since
our objective is non-convex, this method is subject to suboptimal stationary points. Next
time, we will explore more practical and scalable strategies to solving the missing data PCA
problem that avoid explicit imputation.

16-4



