
Unsupervised Deep Learning

Stats 306B

Richard Socher

Some slides from ACL 2012 Tutorial by Richard
Socher, Yoshua Bengio and Chris Manning

Deep Learning

Most current machine learning works
well because of human-designed
representations and input features

Machine learning becomes just optimizing
weights to best make a final prediction

Representation learning attempts to
automatically learn good features or representations

Deep learning algorithms attempt to learn multiple levels of
representation of increasing complexity/abstraction

NER WordNet

SRL Parser

2

A Deep Architecture

Mainly, work has explored deep belief networks (DBNs), Markov
Random Fields with multiple layers, and various types of
multiple-layer neural networks

Output layer

Here predicting a supervised target

Hidden layers

These learn more abstract
representations as you head up

Input layer

Raw sensory inputs (roughly)3

Five Reasons to Explore

Deep and Representation Learning

Part 1.1: The Basics

4

#1 Learning representations

5

Handcrafting features is time-consuming

The features are often both over-specified and incomplete

The work has to be done again for each task/domain/…

We must move beyond handcrafted features and simple ML

Humans develop representations for learning and reasoning

Our computers should do the same

Deep learning provides a way of doing this

#2 The need for distributed representations

Current ML/NLP systems are incredibly fragile because of
their atomic symbol representations, very sparse

Crazy sentential
complement, such as for
“likes [(being) crazy]”6

Learning features that are not mutually exclusive can be exponentially
more efficient than nearest-neighbor-like or clustering-like models

#2 The need for distributed representations

Multi-
Clustering

Clustering

7

C1 C2 C3

input

Distributed representations deal with the curse

of dimensionality

Generalizing locally (e.g., nearest
neighbors) requires representative
examples for all relevant variations!

Classic solutions:

• Manual feature design

• Assuming a smooth target
function (e.g., linear models)

• Kernel methods (linear in terms
of kernel based on data points)

Neural networks parameterize and
learn a “similarity” kernel

8

#3 Unsupervised feature and weight

learning – Focus Today!

Today, most practical, good NLP& ML methods require
labeled training data (i.e., supervised learning)

But almost all data is unlabeled

Most information must be acquired unsupervised

Fortunately, a good model of observed data can really help you
learn classification decisions

9

We need good intermediate representations that can be shared across tasks

Multiple levels of latent variables allow combinatorial sharing of statistical strength

#4 Learning multiple levels of representation

Biologically inspired
generic learning algorithm.

Task 1 Output

Linguistic Input

Task 2 Output Task 3 Output

10

Layer 1

Layer 2

Layer 3

#5 Why now?
Despite prior investigation and understanding of many of the
algorithmic techniques …

Before 2006 training deep architectures was unsuccessful 

What has changed?

• Faster and multicore CPUs and GPUs and more data

• New methods for unsupervised pre-training have been
developed (Restricted Boltzmann Machines = RBMs,
autoencoders, contrastive estimation, etc.)

• More efficient parameter estimation methods

• Better understanding of model regularization

 Great performance in speech, vision and language tasks

Outline

1. Motivation

2. Neural Networks: Feed-forward, Autoencoders

3. Probabilistic - Directed: PCA, Sparse Coding

4. Probabilistic – Undirected: MRFs and RBMs

12

From logistic regression to neural nets

Part 2.2: Neural Nets Feed-forward Intro

13

Demystifying neural networks

Neural networks come with
their own terminological
baggage

… just like SVMs

But if you understand how
maxent/logistic regression
models work

Then you already understand the
operation of a basic neural
network neuron!

A single neuron
A computational unit with n (3) inputs

and 1 output
and parameters W, b

Activation
function

Inputs

Bias unit corresponds to intercept term

Output

14

This is exactly what a neuron computes

hw,b(x) = f (wTx+ b)

f (z) =
1

1+ e-z

w, b are the parameters of this neuron
i.e., this logistic regression model15

b: We can have an “always on”
feature, which gives a class prior,
or separate it out, as a bias term

A neural network = running several logistic

regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs

But we don’t have to decide
ahead of time what variables
these logistic regressions are
trying to predict!

16

A neural network = running several logistic

regressions at the same time

… which we can feed into another logistic regression function

and it is the training
criterion that will
decide what those
intermediate binary
target variables should
be, so as to do a good
job of predicting the
targets for the next
layer, etc.

17

A neural network = running several logistic

regressions at the same time

Before we know it, we have a multilayer neural network….

18

Matrix notation for a layer

We have

In matrix notation

where f is applied element-wise:

a1

a2

a3

a1 = f (W11x1 +W12x2 +W13x3 +b1)

a2 = f (W21x1 +W22x2 +W23x3 +b2)

etc.

z =Wx+ b

a = f (z)

f ([z1, z2, z3]) = [f (z1), f (z2), f (z3)]
19

W12

b3

How do we train the weights W?

• For a supervised single layer neural net, we can train the model
just like a maxent model – we calculate and use gradients

• Stochastic gradient descent (SGD)

• Conjugate gradient or L-BFGS

• Adagrad!

20

Non-linearities: Why they’re needed

• For logistic regression: map to probabilities

• Here: function approximation,
e.g., regression or classification
• Without non-linearities, deep neural networks

can’t do anything more than a linear transform

• Extra layers could just be compiled down into
a single linear transform

• Probabilistic interpretation unnecessary except in
the Boltzmann machine/graphical models

• People often use other non-linearities, such as
tanh, as we’ll discuss in part 3

21

Learning Word Representations with a

Simple “Unsupervised” Model

Part 2.2: Neural Nets Feed-forward Example Model

22

Neural word embeddings - visualization

23

Advantages of the neural word embedding

approach

24

Compared to a method like LSA, neural word embeddings
can become more meaningful through adding supervision
from one or multiple tasks

For instance, sentiment is usually not captured in unsupervised
word embeddings but can be in neural word vectors

A neural network for learning word vectors
(Collobert et al. JMLR 2011)

Idea: A word and its context is a positive training
sample; a random word in that same context gives
a negative training sample:

cat chills on a mat cat chills Jeju a mat

Similar: Implicit negative evidence in Contrastive
Estimation, (Smith and Eisner 2005)

25

Summary: Feed-forward Computation

26

Computing a window’s score with a 3-layer Neural
Net: s = score(cat chills on a mat)

cat chills on a mat

Summary: Feed-forward Computation

• s = score(cat chills on a mat)

• sc = score(cat chills Jeju a mat)

• Idea for training objective: make score of true window
larger and corrupt window’s score lower (until they’re
good enough): minimize

• This is continuous, can perform SGD
27

Training with Backpropagation

Assuming cost J is > 0, it is simple to see that we
can compute the derivatives of s and sc wrt all the
involved variables: U, W, b, x

28

Training with Backpropagation

• Let’s consider the derivative of a single weight Wij

• This only appears inside ai

• For example: W23 is only
used to compute a2

x1 x2 x3 +1

a1 a2

s U2

W23

29

Training with Backpropagation

Derivative of weight Wij:

30

x1 x2 x3 +1

a1 a2

s U2

W23

Training with Backpropagation

Derivative of single weight Wij :

Local error
signal

Local input
signal

31

x1 x2 x3 +1

a1 a2

s U2

W23

• We want all combinations of
i = 1, 2 and j = 1, 2, 3

• Solution: Outer product:
where is the
“responsibility” coming from
each activation a

Training with Backpropagation

• From single weight Wij to full W:

32

x1 x2 x3 +1

a1 a2

s U2

W23

Training with Backpropagation

• For biases b, we get:

33

x1 x2 x3 +1

a1 a2

s U2

W23

Training with Backpropagation

34

That’s almost backpropagation

It’s simply taking derivatives and using the chain rule!

Remaining trick: we can re-use derivatives computed for
higher layers in computing derivatives for lower layers

Example: last derivatives of model, the word vectors in x

Training with Backpropagation

• Take derivative of score with
respect to single word vector
(for simplicity a 1d vector,
but same if it was longer)

• Now, we cannot just take
into consideration one ai

because each xj is connected
to all the neurons above and
hence xj influences the
overall score through all of
these, hence:

Re-used part of previous derivative35

Training with Backpropagation: softmax

36

What is the major benefit of learned word vectors?

Ability to also propagate labeled information into them,
via softmax/maxent and hidden layer:

S

c1 c2 c3

x1 x2 x3 +1

a1 a2

P(c | d,l) =
elT f (c,d)

elT f (¢c ,d)

¢c
å

Autoencoder and their variants

Part 2.2: Autoencoders

37

Sharing Statistical Strength

• Besides very fast prediction, the main advantage of
deep learning is statistical

• Potential to learn from less labeled examples because
of sharing of statistical strength:

• Unsupervised pre-training & Multi-task learning

• Semi-supervised learning 

38

Semi-Supervised Learning

• Hypothesis: P(c|x) can be more accurately computed using
shared structure with P(x)

purely
supervised

39

Semi-Supervised Learning

• Hypothesis: P(c|x) can be more accurately computed using
shared structure with P(x)

semi-
supervised

40

Deep autoencoders

• Alternative to contrastive unsupervised word learning

• Another is RBMs (Hinton et al. 2006), next section

1. Definition, intuition and variants of autoencoders

2. Stacking for deep autoencoders

41

Auto-Encoders

• Multilayer neural net with target output = input

• Reconstruction=decoder(encoder(input))

• Probable inputs have
small reconstruction error

…

code= latent features

…

encoder

decoder

input

reconstruction

42

PCA = Linear Manifold = Linear Auto-Encoder

reconstruction error vector

Linear manifold

reconstruction(x)

x

input x, 0-mean
features=code=h(x)=W x
reconstruction(x)=WT h(x) = WT W x
W = principal eigen-basis of Cov(X)

LSA example:
x = (normalized) distribution
of co-occurrence frequencies

43

The Manifold Learning Hypothesis

• Examples concentrate near a lower dimensional “manifold”
(region of high density where small changes are only allowed in
certain directions)

44

//localhost/Volumes/grieg.iro.umontreal.ca/Desktop/images/manifold.png

45

Auto-Encoders Learn Salient Variations, like a

non-linear PCA

Minimizing reconstruction error

forces latent representation of

“similar inputs” to stay on

manifold

Auto-Encoder Variants

• Discrete inputs: cross-entropy or log-likelihood reconstruction
criterion (similar to used for discrete targets for MLPs)

• Preventing them to learn the identity everywhere:

• Undercomplete (eg PCA): bottleneck code smaller than input

• Sparsity: penalize hidden unit activations so at 0 or near (0.05)

[Goodfellow et al 2009]

• Contractive: force encoder to have small derivatives

[Rifai et al 2011]

• Denoising: see next slide

[Vincent et al 2008]

46

Denoising Autoencoder

47

Stacking Auto-Encoders

• Can be stacked successfully (Bengio et al NIPS’2006) to form highly
non-linear representations

48

Layer-wise Unsupervised Learning

…input

49

Layer-wise Unsupervised Pre-training

…

…

input

features

50

Layer-wise Unsupervised Pre-training

…

…

…

input

features

reconstruction

of input
=
?

… input

51

Layer-wise Unsupervised Pre-training

…

…

input

features

52

Layer-wise Unsupervised Pre-training

…

…

input

features

…More abstract

features

53

…

…

input

features

…More abstract

features

reconstruction

of features
=
?

… ………

Layer-Wise Unsupervised Pre-training
Layer-wise Unsupervised Learning

54

…

…

input

features

…More abstract

features

Layer-wise Unsupervised Pre-training

55

…

…

input

features

…More abstract

features

…
Even more abstract

features

Layer-wise Unsupervised Learning

56

…

…

input

features

…More abstract

features

…
Even more abstract

features

Output

f(X) six
Target

Y
two!=

?

Supervised Fine-Tuning

57

Outline

1. Motivation

2. Neural Networks: Feed-forward*, Autoencoders

3. Probabilistic - Directed: PCA, Sparse Coding

4. Probabilistic – Undirected: MRFs and RBMs

58

Probabilistic Models

• Learn a joint probability distribution over p(x,h)

• Maximize likelihood

• See posterior p(h|x) as the feature representation

59

Directed Graphical Models: PCA

• Factorization of p(x,h) = p(x|h) p(h) = likelihood x prior

• Probabilistic interpretation of PCA:

• Get W via iterative maximization of likelihood (i.e. EM)

60

Sparse Coding: Intuition for images

Natural Images

Learned bases: “Edges”

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

 0.8 * + 0.3 * + 0.5 *

[a1, …, a64] = [0, 0, …, 0, 0.8, 0, …, 0, 0.3, 0, …, 0, 0.5, 0]
(feature representation)

Test example

61

Directed Graphical Models: Sparse Coding

• Sparse Coding (non-probabilistic)

• Training:

• Testing:

62

Directed Graphical Models: Sparse Coding

• Sparse Coding (probabilistic)

• Similar to pPCA but with Laplace
prior on hidden variables

• In practice Adam Coates
showed that dictionary D
can be learned with k-means
and encoding (test time) can use soft threshold:

63

Undirected Graphical Models:

MRFs and Boltzmann machines

• Generally p(x,h) defined via non-negative clique potentials

• Special case: Boltzmann machine, energy

• Gives sigmoid conditional for hidden:

• Totally intractable since single hidden unit requires
marginalization over all others:

64

Undirected Graphical Models:

Restricted Boltzmann machines (RBMs)

• RBM energy only has
visible-hidden connections

• Bipartite graph

• Conditionals nicely
factorize

65

Undirected Graphical Models:

Restricted Boltzmann machines (RBMs)

• Detail: Factorization

66

Undirected Graphical Models:

Restricted Boltzmann machines (RBMs)

• Detail: Training RBMs

• Maximize marginal

67

Undirected Graphical Models:

Restricted Boltzmann machines (RBMs)

• Detail: Training RBMs

• Conditional of empirical distributions is easy

• Expected value wrt joint distribution tricky!

• Use average over samples from MCMC approximation

• MAGIC: Contrastive Divergence, Hinton 2006:

• Instead of many samples, use only 1

• Instead of waiting for burn in, take just one step
& start with data sample68

