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Deep Learning

Most current machine learning works
well because of human-designed
representations and input features

Machine learning becomes just optimizing
weights to best make a final prediction

Representation learning attempts to 
automatically learn good features or representations

Deep learning algorithms attempt to learn multiple levels of 
representation of increasing complexity/abstraction

NER WordNet

SRL Parser 
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A Deep Architecture

Mainly, work has explored deep belief networks (DBNs), Markov 
Random Fields with multiple layers, and various types of 
multiple-layer neural networks

Output layer

Here predicting a supervised target

Hidden layers

These learn more abstract 
representations as you head up

Input layer

Raw sensory inputs (roughly)3



Five Reasons to Explore

Deep and Representation Learning

Part 1.1: The Basics
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#1 Learning representations
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Handcrafting features is time-consuming

The features are often both over-specified and incomplete

The work has to be done again for each task/domain/…

We must move beyond handcrafted features and simple ML

Humans develop representations for learning and reasoning

Our computers should do the same

Deep learning provides a way of doing this



#2 The need for distributed representations

Current ML/NLP systems are incredibly fragile because of 
their atomic symbol representations, very sparse

Crazy sentential 
complement, such as for 
“likes [(being) crazy]”6



Learning features that are not mutually exclusive can be exponentially 
more efficient than nearest-neighbor-like or clustering-like models

#2 The need for distributed representations

Multi-
Clustering

Clustering

7

C1 C2 C3

input



Distributed representations deal with the curse 

of dimensionality

Generalizing locally (e.g., nearest 
neighbors) requires representative 
examples for all relevant variations!

Classic solutions:

• Manual feature design

• Assuming a smooth target 
function (e.g., linear models)

• Kernel methods (linear in terms 
of kernel based on data points)

Neural networks parameterize and 
learn a “similarity” kernel
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#3 Unsupervised feature and weight 

learning – Focus Today!

Today, most practical, good NLP& ML methods require 
labeled training data (i.e., supervised learning)

But almost all data is unlabeled

Most information must be acquired unsupervised

Fortunately, a good model of observed data can really help you 
learn classification decisions
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We need good intermediate representations that can be shared across tasks

Multiple levels of latent variables allow combinatorial sharing of statistical strength

#4 Learning multiple levels of representation

Biologically inspired 
generic learning algorithm.

Task 1 Output

Linguistic Input

Task 2 Output Task 3 Output
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Layer 1

Layer 2

Layer 3



#5 Why now?
Despite prior investigation and understanding of many of the 
algorithmic techniques …

Before 2006 training deep architectures was unsuccessful 

What has changed?

• Faster and multicore CPUs and GPUs and more data 

• New methods for unsupervised pre-training have been 
developed (Restricted Boltzmann Machines = RBMs, 
autoencoders, contrastive estimation, etc.)

• More efficient parameter estimation methods

• Better understanding of model regularization

 Great performance in speech, vision and language tasks



Outline

1. Motivation

2. Neural Networks: Feed-forward, Autoencoders

3. Probabilistic - Directed: PCA, Sparse Coding

4. Probabilistic – Undirected: MRFs and RBMs
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From logistic regression to neural nets

Part 2.2: Neural Nets Feed-forward Intro
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Demystifying neural networks

Neural networks come with 
their own terminological 
baggage 

… just like SVMs

But if you understand how 
maxent/logistic regression 
models work

Then you already understand the 
operation of a basic neural 
network neuron!

A single neuron
A computational unit with n (3) inputs

and 1 output
and parameters W, b

Activation 
function

Inputs

Bias unit corresponds to intercept term

Output
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This is exactly what a neuron computes

hw,b(x) = f (wTx+ b)

f (z) =
1

1+ e-z

w, b are the parameters of this neuron
i.e., this logistic regression model15

b: We can have an “always on” 
feature, which gives a class prior, 
or separate it out, as a bias term



A neural network = running several logistic 

regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression 
functions, then we get a vector of outputs

But we don’t have to decide 
ahead of time what variables 
these logistic regressions are 
trying to predict!
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A neural network = running several logistic 

regressions at the same time

… which we can feed into another logistic regression function

and it is the training 
criterion that will 
decide what those 
intermediate binary 
target variables should 
be, so as to do a good 
job of predicting the 
targets for the next 
layer, etc.
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A neural network = running several logistic 

regressions at the same time

Before we know it, we have a multilayer neural network….
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Matrix notation for a layer

We have 

In matrix notation

where f is applied element-wise:

a1

a2

a3

a1 = f (W11x1 +W12x2 +W13x3 +b1)

a2 = f (W21x1 +W22x2 +W23x3 +b2 )

etc.

z =Wx+ b

a = f (z)

f ([z1, z2, z3]) = [ f (z1), f (z2 ), f (z3)]
19

W12

b3



How do we train the weights W?

• For a supervised single layer neural net, we can train the model 
just like a maxent model – we calculate and use gradients

• Stochastic gradient descent (SGD)

• Conjugate gradient or L-BFGS

• Adagrad!
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Non-linearities: Why they’re needed

• For logistic regression: map to probabilities

• Here: function approximation, 
e.g., regression or classification
• Without non-linearities, deep neural networks 

can’t do anything more than a linear transform

• Extra layers could just be compiled down into 
a single linear transform

• Probabilistic interpretation unnecessary except in 
the Boltzmann machine/graphical models

• People often use other non-linearities, such as 
tanh, as we’ll discuss in part 3
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Learning Word Representations with a 

Simple “Unsupervised” Model

Part 2.2: Neural Nets Feed-forward Example Model
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Neural word embeddings - visualization
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Advantages of the neural word embedding 

approach

24

Compared to a method like LSA, neural word embeddings 
can become more meaningful through adding supervision 
from one or multiple tasks

For instance, sentiment is usually not captured in unsupervised 
word embeddings but can be in neural word vectors



A neural network for learning word vectors         
(Collobert et al. JMLR 2011)

Idea: A word and its context is a positive training 
sample; a random word in that same context gives 
a negative training sample:

cat chills on a mat cat chills Jeju a mat

Similar: Implicit negative evidence in Contrastive 
Estimation, (Smith and Eisner 2005)
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Summary: Feed-forward Computation
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Computing a window’s score with a 3-layer Neural 
Net: s = score(cat chills on a mat)

cat     chills      on         a       mat



Summary: Feed-forward Computation

• s = score(cat chills on a mat)

• sc = score(cat chills Jeju a mat)

• Idea for training objective: make score of true window 
larger and corrupt window’s score lower (until they’re 
good enough): minimize

• This is continuous, can perform SGD
27



Training with Backpropagation

Assuming cost J is > 0, it is simple to see that we 
can compute the derivatives of s and sc wrt all the 
involved variables: U, W, b, x
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Training with Backpropagation

• Let’s consider the derivative of a single weight Wij

• This only appears inside ai

• For example: W23 is only 
used to compute a2

x1 x2                 x3 +1

a1 a2

s  U2

W23
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Training with Backpropagation

Derivative of weight Wij:
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x1 x2                 x3 +1

a1 a2

s  U2

W23



Training with Backpropagation

Derivative of single weight Wij :

Local error 
signal

Local input 
signal
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x1 x2                 x3 +1

a1 a2

s  U2

W23



• We want all combinations of
i = 1, 2 and j = 1, 2, 3

• Solution: Outer product:
where                  is the 
“responsibility” coming from 
each activation a

Training with Backpropagation

• From single weight Wij to full W:
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x1 x2                 x3 +1

a1 a2

s  U2

W23



Training with Backpropagation

• For biases b, we get:
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x1 x2                 x3 +1

a1 a2

s  U2

W23



Training with Backpropagation
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That’s almost backpropagation

It’s simply taking derivatives and using the chain rule!

Remaining trick: we can re-use derivatives computed for 
higher layers in computing derivatives for lower layers

Example: last derivatives of model, the word vectors in x



Training with Backpropagation

• Take derivative of score with 
respect to single word vector 
(for simplicity a 1d vector, 
but same if it was longer)

• Now, we cannot just take 
into consideration one ai

because each xj is connected 
to all the neurons above and 
hence xj influences the 
overall score through all of 
these, hence:

Re-used part of previous derivative35



Training with Backpropagation: softmax
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What is the major benefit of learned word vectors?

Ability to also propagate labeled information into them, 
via softmax/maxent and hidden layer:

S

c1 c2 c3

x1 x2                x3 +1

a1 a2

P(c | d,l) =
elT f (c,d )

elT f ( ¢c ,d )

¢c
å



Autoencoder and their variants

Part 2.2: Autoencoders
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Sharing Statistical Strength

• Besides very fast prediction, the main advantage of 
deep learning is statistical

• Potential to learn from less labeled examples because 
of sharing of statistical strength:

• Unsupervised pre-training & Multi-task learning

• Semi-supervised learning 

38



Semi-Supervised Learning

• Hypothesis: P(c|x) can be more accurately computed using 
shared structure with P(x) 

purely 
supervised
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Semi-Supervised Learning

• Hypothesis: P(c|x) can be more accurately computed using 
shared structure with P(x) 

semi-
supervised
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Deep autoencoders

• Alternative to contrastive unsupervised word learning

• Another is RBMs (Hinton et al. 2006), next section

1. Definition, intuition and variants of autoencoders

2. Stacking for deep autoencoders
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Auto-Encoders

• Multilayer neural net with target output = input

• Reconstruction=decoder(encoder(input))

• Probable inputs have 
small reconstruction error

…

code= latent features

…

encoder

decoder

input

reconstruction
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PCA = Linear Manifold = Linear Auto-Encoder

reconstruction error vector

Linear manifold

reconstruction(x)

x

input x, 0-mean
features=code=h(x)=W x
reconstruction(x)=WT h(x) = WT W x
W = principal eigen-basis of Cov(X)

LSA example:
x = (normalized) distribution 
of co-occurrence frequencies
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The Manifold Learning Hypothesis

• Examples concentrate near a lower dimensional “manifold” 
(region of high density where small changes are only allowed in 
certain directions)

44
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Auto-Encoders Learn Salient Variations, like a 

non-linear PCA

Minimizing reconstruction error

forces latent representation of 

“similar inputs” to stay on 

manifold



Auto-Encoder Variants

• Discrete inputs: cross-entropy or log-likelihood reconstruction 
criterion (similar to used for discrete targets for MLPs)

• Preventing them to learn the identity everywhere:

• Undercomplete (eg PCA):  bottleneck code smaller than input

• Sparsity: penalize hidden unit activations so at 0 or near (0.05) 

[Goodfellow et al 2009]

• Contractive: force encoder to have small derivatives

[Rifai et al 2011]

• Denoising: see next slide

[Vincent et al 2008]
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Denoising Autoencoder
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Stacking Auto-Encoders

• Can be stacked successfully (Bengio et al NIPS’2006) to form highly 
non-linear representations
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Layer-wise Unsupervised Learning

…input
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Layer-wise Unsupervised Pre-training

…

…

input

features
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Layer-wise Unsupervised Pre-training

…

…

…

input

features

reconstruction

of input
=
?

… input
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Layer-wise Unsupervised Pre-training

…

…

input

features
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Layer-wise Unsupervised Pre-training

…

…

input

features

…More abstract

features
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…

…

input

features

…More abstract

features

reconstruction

of features
=
?

… ………

Layer-Wise Unsupervised Pre-training
Layer-wise Unsupervised Learning
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…

…

input

features

…More abstract

features

Layer-wise Unsupervised Pre-training
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…

…

input

features

…More abstract

features

…
Even more abstract 

features

Layer-wise Unsupervised Learning
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…

…

input

features

…More abstract

features

…
Even more abstract 

features

Output 

f(X) six
Target 

Y
two!=

?

Supervised Fine-Tuning
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Outline

1. Motivation

2. Neural Networks: Feed-forward*, Autoencoders

3. Probabilistic - Directed: PCA, Sparse Coding

4. Probabilistic – Undirected: MRFs and RBMs
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Probabilistic Models

• Learn a joint probability distribution over p(x,h)

• Maximize likelihood

• See posterior p(h|x) as the feature representation
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Directed Graphical Models: PCA

• Factorization of p(x,h) = p(x|h) p(h) = likelihood x prior

• Probabilistic interpretation of PCA:

• Get W via iterative maximization of likelihood (i.e. EM)
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Sparse Coding: Intuition for images

Natural Images

Learned bases:  “Edges”
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 0.8 *                   + 0.3 *                     + 0.5 *

[a1, …, a64] = [0, 0, …, 0, 0.8, 0, …, 0, 0.3, 0, …, 0, 0.5, 0] 
(feature representation) 

Test example
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Directed Graphical Models: Sparse Coding

• Sparse Coding (non-probabilistic)

• Training:

• Testing:
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Directed Graphical Models: Sparse Coding

• Sparse Coding (probabilistic)

• Similar to pPCA but with Laplace 
prior on hidden variables

• In practice Adam Coates 
showed that dictionary D 
can be learned with k-means
and encoding (test time) can use soft threshold:
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Undirected Graphical Models: 

MRFs and Boltzmann machines

• Generally p(x,h) defined via non-negative clique potentials

• Special case: Boltzmann machine, energy

• Gives sigmoid conditional for hidden:

• Totally intractable since single hidden unit requires 
marginalization over all others:
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Undirected Graphical Models: 

Restricted Boltzmann machines (RBMs)

• RBM energy only has
visible-hidden connections

• Bipartite graph

• Conditionals nicely
factorize
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Undirected Graphical Models: 

Restricted Boltzmann machines (RBMs)

• Detail: Factorization 
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Undirected Graphical Models: 

Restricted Boltzmann machines (RBMs)

• Detail: Training RBMs

• Maximize marginal 
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Undirected Graphical Models: 

Restricted Boltzmann machines (RBMs)

• Detail: Training RBMs

• Conditional of empirical distributions  is easy

• Expected value wrt joint distribution tricky!

• Use average over samples from MCMC approximation

• MAGIC: Contrastive Divergence, Hinton 2006:

• Instead of many samples, use only 1

• Instead of waiting for burn in, take just one step 
& start with data sample68


