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12.1 Beyond Linear State Space Modeling

Last lecture we completed our discussion of linear Gaussian state space models. While
these techniques are broadly applicable, they are not appropriate in all settings. Indeed,
in many settings, non-linear / non-Gaussian transition and emission models are much more
appropriate. For example, in weather forecasting we are interested in modeling specific
weather outcomes at future timepoints, but our model of dynamics is decidedly nonlinear,
being determined by complex geophysical simulations. In pose estimation we are interested
in tracking the precise pose of different body parts over time, but our observations (images or
frames of a video) are complex function of the 3D poses, nearby objects, lightning conditions,
and camera calibration.

Unfortunately, in non-linear setting our filtering, prediction, and other inferential con-
ditional distributions are typically quite complex and cannot be computed in closed form.
To tackle this issue a various approximate nonlinear filters for approximate inference in
these models have been developed, including histogram filters, extended and unscented
Kalman filters, and particle filters. We will not have the time to discuss any of these
approximate filters in detail, but a brief summary of their properties is found in the slides.

12.2 Independent Component Analysis

We now turn our attention to a new latent feature modeling approach, Independent Com-
ponent Analysis, that, as usual, seeks to find the latent components and loadings that
underlie our data but that employs a very different objective in selecting the loadings and
components. In the terminology of the source community, ICA describes a class of related
methods designed to separate a linearly mixed multivariate signal into additive non-Gaussian
source signals (i.e., components), where the source signals are encouraged to be independent
of one other.

12.2.1 Example ICA applications

Please see the accompanying slides.

The cocktail party problem In the cocktail party problem, p microphones are positioned
in different locations in a room; each microphone records a different mixture of the audio

signals emanating from the mouths of the party guests (i.e., the different conversations).
Our goal is to recover the individual conversations from those mixtures (which often sound
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like incomprehensible hums). ICA allows you to retrieve p independent sources of sound (p
voices) from recordings from p microphones placed around the room.

Natural images representation In this example, each square patch of an image is con-
sidered to be a datapoint (with pixels as the vector coordinates). The collection of these
vectors for an image forms an image database. Our goal is to find a more natural basis for
these images than the input pixel basis. ICA provides such a basis in the columns of the
mixing matrix A. The slide shows the learned basis vectors; they capture visual structures
like edges and contrast that are known stimuli of the primary visual cortex in humans.

12.2.2 Model formulation

In ICA the datapoints x1, za, . .., x, € R? (e.g., z; may be a the audio signal recorded by each
of p microphones at time i) are viewed as independent realizations of the simple probabilistic

model
= As

which satisfies the following assumptions:

1. s is a latent random vector in R? which has zero mean, E[s] = 0, independent compo-
nents, and identity covariance, Cov(s) = I.

2. The parameter A is an unknown mixing matrix € RP*P,

Hence, 7 is a random vector in R? with Cov(z) = AAT.
In our usual generative model notation, we could equivalently write

S P (for P an unknown distribution on R” with independent components)

x; = As; (for unknown A).

Note that s; is analogous to the latent features z; discussed in prior models, while A is
analagous to the loading matrix U discussed in prior models.
See the slides for a discussion of the differences between modeling assumptions in ICA

and Gaussian models like FA or PPCA.

12.2.3 Preprocessing

Before applying ICA, one typically mean-centers and whitens the data matrix. Whitening
is a transformation that decorrelates a set of random variables. Suppose we have a set of
data y with a known covariance matrix, Cov[y] = 3, and mean E[y] = 0. Then the whitened
form of y is § = ©~/2y with covariance Cov[j] = I.

Since we do not have access to the true distribution of X, only to the sample x4, ..., z, of
this distribution, we replace all expectations over X in ICA with empirical expectations over
the dataset. In this context, this means that we mean-center and pre-whiten each datapoint
using the empirical mean, Z, = £ 3"  z;, and empirical covariance, Q = —5 > | (z; —
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Tp)(x; — Z,)T. Once we do this scaling, we can restrict our search of the mixing matrix A
to the set of orthogonal matrices, since for pre-whitened x, we have

I = Cov[z] = AAT.

Hence our final ICA goal is to find W = A~! such that for s = Wz, the coordinates of
s are minimally dependent.

12.2.4 Entropy and Mutual Information

Our notion of minimal dependence will rely on the concepts of entropy and mutual in-
formation. Below we suppose that y € RP is a random vector probability density function

f.
The entropy H(y) of y is given by

- / f(v)log f(v)du

This can be viewed as a measure of the randomness in a distribution or as a measure of
closeness of the distribution to uniformity. An important fact is that a M (u, X) distribution
has the maximum entropy amongst all distributions with the mean p and covariance .

The mutual information /(y) of y is a measure of departure from independence that
can defined in terms of entropies

= ZH(yj) — H(y),

where H(y;) is a marginal entropy of component y; with density f;. I(y) can be also
expressed as the Kullback-Leibler divergence between f(v) and the independent version
of the density, [[%_; f;(v;).!

12.2.5 An Objective for ICA

We are now prepared to define a target objective for ICA on mean-centered, prewhitened z.
A useful fact is that whenever W is orthogonal, we have

I(s) = I(Wz) = Z H(w!z)-H(Wz) = Z H(wlz)—H(z)—log |W| = ZH w? (z)

where

IThis is the distribution with independent coordinates closest to the distribution of Y in KL divergence.
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is orthogonal.

Hence, our goal of minimizing dependence amongst coordinates can be phrased as

min  I(Wx)|.

orthogonal W

This problem is equivalent to

minimizing dependence amongst components wfx =

which is again equivalent to

minimizing sums of of the entropies of ijx =5,

which finally reduces to

maximizing summed departures of w]-T:c = s; distributions from Gaussianity.

Unfortunately, it is difficult to optimize this objective directly, but many methods are avail-
able to either approximately optimize this objective or to optimize approximate objectives.

12.2.6 Negentropy and FastICA

FastICA is one popular approach that optimizes an approximation to our target mutual
information objective. More precisely, the FastICA paper defines an equivalent target objec-
tive called negentropy. For a single random variable Y}, negentropy is an explicit measure
of departure from Gaussianity defined as

J(Y;) = H(Y;) = H(Z;)

where Z; ~ N(0, Var(Y;)). Note that minimizing /(W) over orthogonal W is equivalent
to minimizing )7, J (w; x) over orthogonal W. Moreover, since, Cov(z) = I and W is
orthogonal, so Var(s;) = Var(w, x) = 1 for all j.

FastICA extracts an initial loadings vector w; by approximately minimizing an approxi-
mation to J(w{z)

J(wy z) = (E[G(w; 7)] — E[G(Z1)])?

where G(y) = ilog cosh(ay) for some a € [1,2], and where the population expectation over
x is replaced by an empirical expectation over our data:

1 n
Empirical objective: (ﬁ Z G(wiz;) — E[G(Z1)]).
i=1

The details of the Newton-type algorithm proposed to optimize this objective are given in
today’s ICA reading. This technique yields the first loadings vector w;. Additional loadings
vectors w; can be obtained in succession by minimizing the equivalent approximation to
J(w]z) under the constraint that w; w; for all [ < j.
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12.3 Canonical Correlation Analysis (CCA)

We will now consider a slightly different setting for linear dimensionality reduction in which
we are given two paired mean-centered datasets, X and Y, where

— I — Y1 —
—_— $ —_— —_— PR
X = ‘2 and Y = y,2 ,

for z; € RP, y; € RY. Each pair (z;,y;) represents two views of the same entity. For example,
in image retrieval x; might be a pixel-based or visual representation of an image, and y; may
be a keyword or textual description of the same image. Another relevant setting is that of
time series analysis where x; might be the signal at time ¢ and y; might be the often highly
related signal at time ¢ + 1.

Canonical correlation analysis (CCA) is a linear dimensionality reduction technique
dating back to Hotelling in 1936 that attempts to reduce dimensionality of the two data
views jointly. This is fruitful when the relationship between the two views reflects useful
latent structure underlying each views.

Let us introduce a bit of new notation to make our future calculations more apparent.
Hereafter we will let = represent a random vector distributed uniformly over the datapoints
{z1,...,2,}, so that it takes on value x; with probability 1/n. The same holds for y.

The CCA objective is to find projection directions called canonical directions u and
v such that the correlation between u”z and v”y is maximized. That is, in CCA, we focus
on how the canonical variables v’z and vTy are related and not on how much they vary
individually (which is the primary concern of PCA). Note that

Var( u x) Zu :L'x u— TXTXu

Cov(u”z,v"y) Zu Tyl v = TXTYU

Cov(ulz,vTy) B uI XTYw
VVarwlz)Var(wTy)  Vul XTXu vTYTY v

This expression makes clear that the canonical variables are invariant to rotations or scalings
of either data set.

Corr(u’z,v"y) =
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12.3.1 Solving CCA

The CCA optimization problem is the following maximization

TXTy

max U : (12.1)
wo AUl XT XuwTYTY v

max u' XY (12.2)
v st | Xully=1,[Yol,~1

0 XTY\ (u
T T
Xmag( (" o7) (YTX 0 ) (U>, (12.3)

-

2

u,v S.t.

e

where the second formulation takes the form of a standard generalized singular value
problem, and the third takes the form of a generalized eigenvalue problem.

The equivalence of (12.2) and (12.3) may not be apparent, as we constrained both || Xu|[,
and ||Yv||, in (12.2) and constrained only the square root of their sum in (12.3). However,
we will see that the solution to (12.3) must satisfy || Xwul||, = ||[Yv||,, which implies that the
two formulations are in fact equivalent. Indeed, the solution to the generalized eigenvalue

*

problem (12.3) is given by the generalized eigenvector (Z*) which satisfies

0  XTY\ [u*) _ \; XTX 0 u*

YTX 0 v ) 0 YTY ) \v*
for the largest value of \* (the associated generalized eigenvalue). If this A* = 0, this expres-
sion implies that v*7 X7 Xu* = 0 = v*TYTYv*. Otherwise, v*7 X7 Xu* = u*TXTYv*/\% =

v*TYTYv*. In either case, we have the advertised equality || Xu*||, = ||[Yv*|,.
Note moreover that if X7 X and Y7V are invertible, the above problem reduces to a

*

standard eigenvalue problem finding (z*) satisfying

(07 ) Gt 507) )= ()

for the largest \*.
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