STATS 306B METHODS FOR APPLIED STATISTICS: UNSUPERVISED LEARNING
Stanford University, Spring 2014

Problem Set 1

Due: Wednesday, April 16, 2014 (at the start of class)

Instructions:

Please submit any code written for this assignment along with your derivations and plots.

Practical advice:

Problem 2 may require a large amount of computation time. Please plan accordingly.

When running Lloyd’s algorithm for k-means, you may encounter a situation in which no
datapoints are assigned to a particular cluster. In this case, it is common to “reboot” the
cluster by selecting a new cluster mean uniformly at random from the datapoints. In fact, any
choice for the updated cluster mean is valid in the sense that it cannot upset the monotonic
decrease of the k-means objective. However, different reboot strategies will lead to different
k-means solutions.

Problem 1 (Choosing the k in k-means).

(a)

Generate a training dataset of n = 20 datapoints in R?® by sampling 10 datapoints with
independent N(2,1) coordinates and 10 with independent N(6,1) coordinates. For k =
1,2,...,15, run Lloyd’s algorithm for k-means clustering on the training dataset using ten
random restarts (for each random restart, initialize the cluster means to datapoints selected
uniformly without replacement from the training data, and for each k only retain the solution
that achieves the lowest k-means objective). You are free to use an existing implementation
of Lloyd’s algorithm or to implement your own version.

Plot the resulting k-means objective on the training dataset as a function of k. Comment on
what you see. What value of k would you select based on this plot alone?

Generate a validation dataset of the same size as the training set and in the same fashion.
For each k, assign each validation datapoint to the closest learned cluster mean from part (a)
and plot the resulting validation k-means objective as a function of k. Comment on what you
see. What value of k would be selected if you were to use the minimum validation objective
as a selection criterion?

For each k > 1, compute and plot the CH statistic of [2] on the training dataset
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where W (k) is the within-cluster sum of squares (also known as the k-means objective) on
the training data, and B(k) is the between-cluster sum of squares on the training data:
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Here, n; is the number of points assigned to cluster j, m; is the mean of cluster j, and m
is mean of the entire dataset. Plot C'H as a function of k, and comment. What value of k
maximizes this criterion?

(d) For each k, compute the gap statistic estimate of [3] on the training dataset. Plot the gap
statistic estimate g(k) as a function of k, along with the standard error bars based on the
estimate s advocated in [3]. Comment on the results. What is the smallest value of k for
which g(k) > g(k + 1) — sg41? (This is the selection criterion recommended in [3].)

Problem 2 (Initializing k-means). In this problem, you will compare three different initialization
schemes for k-means clustering:

1. The standard uniform scheme, in which the initial £ means are selected uniformly at random
(without replacement) from the datapoints in the dataset.

2. The k-means++ initialization scheme [I].

3. An initialization procedure of your own design (your procedure should not be more expensive
than a single round of k-means).

For each value of k € {2,4, 8,16,32} and each of the three schemes above, run Lloyd’s algorithm on
the color image Colorful-Flowers. jpg to obtain compressed representations; treat each pixel as a
3-dimensional datapoint. You are free to use an existing implementation of Lloyd’s algorithm or to
implement your own version. Run each initialization procedure 5 times with different random seeds
and, for each procedure, plot the minimum and median k-means objective achieved as a function
of k. For each procedure and each k, visualize the compressed image using the best random run
(please do not print these images, but do submit your code for displaying the images). What is the
smallest value of k for which you are satisfied with the output?

Note: If you use the R package ‘jpeg’ to load your image, the pixel color values will be repre-
sented as real numbers in [0, 1], not integers in {0,...,255}, so you will not need to round your
codewords to the nearest integer.

Problem 3 (EM for Gaussian Mixture Models).

(a) Derive an EM algorithm for the isotropic Gaussian mixture model in which the j-th compo-

nent distribution has the form N (p;, JJQ»I ) for unknown p; € R? and 032‘ € R.

(b) Implement the EM algorithm of part (a) (do not use a pre-existing implementation) and
use it to learn the parameters of a GMM with k = 2 and d = 2 using the observations in
faithful.csv. Compute the log likelihood of the training data after each iteration, and
plot the likelihood as a function of time. Based on your learned parameters, compute hard
assignments for each data point, and plot the data in a way that indicates to which cluster
each point belongs; for each cluster, overlay the learned cluster mean and a 95% confidence
ellipse for the learned Gaussian component (i.e., an ellipse centered on the cluster mean
containing 95% of the probability mass of the learned Gaussian distribution). You may find
the R package ‘ellipse’ helpful.

How would you expect your algorithm behavior and results to change if you instead used a
GMM with full unknown covariance matrices X7



Problem 4 (Admixture / Mixed Membership Modeling). Consider the following admixture model
that could be used to infer unobserved ancestral heritage from genetic markers:

e For each individual 7 in a sample, we observe L genetic markers g; € {0,1}.

e Associated with each individual ¢ is an unknown vector 6; in the simplex that parameterizes
a distribution over k possible ancestral populations.

e Associated with each ancestral population j and each marker location [/ is an unknown marker
frequency pj;.

e For each marker location [ and each individual ¢, there exists a latent ancestry indicator z;; ind
Mult(6;, 1) representing the ancestral population responsible for g;. All z; are generated
independently.

e Each observed marker has the conditional distribution g; | z; = j ind Ber(pj;). All gy are
conditionally independent given (z;);;.

Derive an EM algorithm for estimating the parameters (pj;);;, (6;); of this model.

Problem 5 (Feedback). (This “problem” is not graded.)
(a) How much time did you spend on this problem set?

(b) Which problems did you find valuable?

References

[1] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. In Proceedings of
the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1027-1035. Society
for Industrial and Applied Mathematics, 2007.

[2] T. Caliniski and J. Harabasz. A dendrite method for cluster analysis. Communications in
Statistics-theory and Methods, 3(1):1-27, 1974.

[3] R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in a data set via
the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
63(2):411-423, 2001.



