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One-minute Summary:

To improve the efficiency of Monte Carlo estimation, practitioners are
turning to biased Markov chain Monte Carlo procedures that trade off
asymptotic exactness for computational speed. The reasoning is sound:
a reduction in variance due to more rapid sampling can outweigh the
bias introduced. However, the inexactness creates new challenges for
sampler and parameter selection, since standard measures of sample
quality like effective sample size do not account for asymptotic bias.
To address these challenges, we introduce a new computable quality
measure that quantifies the maximum discrepancy between sample and
target expectations over a large class of test functions. We use our
tool to compare exact, biased, and deterministic sample sequences and
illustrate applications to hyperparameter selection, convergence rate as-
sessment, and quantifying bias-variance tradeoffs in posterior inference.

Motivation: Approximate MCMC

Example: Bayesian logistic regression
1. Parameter vector: 8 € R% 8 ~ N(0, 1)

2. Fixed covariate vector: v; e R4 1 =1,..., L
: ind 1
3. Binary class label: Y; | v, 8 ~ Ber(He_w,vﬁ)

e Generative model simple to express
e Posterior distribution over unknown parameters i1s complex

—Normalization constant unknown; exact integration intractable

Standard inferential approach: Use Markov chain Monte Carlo
(MCMC) to (eventually) draw samples from the posterior distribution

o MCMC Benefit: Approximates Intractable posterior expectations
pr r)dx with asymptotically exact sample estimates

E@[h(X )] =D i Q(wz)h(xz)
e Problem: Each sample point x; requires iterating over entire dataset!

Template solution: Approximate MCMC with subset posteriors [Welling
and Teh, 2011, Ahn, Korattikara, and Welling, 2012, Korattikara, Chen, and Welling, 2014]

e Approximate MCMC procedure in a manner that makes use of only a
small subset of datapoints per sample

e Introduces asymptotic bias but reduced computational overhead leads
to faster sampling and reduced Monte Carlo variance

Introduces new challenges

e How do we compare and evaluate approximate MCMC samples?

e How do we select samplers and their tuning parameters?

e How do we quantify the bias-variance trade-off explicitly?

Sample Quality Measures

e Target distribution P, support X = R? (can relax to any convex set),

density p (known up to normalization)
e Weighted sample (): sample points z1,...,x, € X, weights ¢(x;)
e Goal: Quantify how well Eg approximates Ep in @ manner that

. Detects when a sample sequence is converging to the target
ll. Detects when a sample sequence is not converging to the target

l1l. Is computationally feasible

Idea: Consider an integral probability metric (IPM)

dn(Q, P) = Sup Eqlh(X)] — Eplh(2)]]

Example: Wasserstein, dy,  (H =W, 2 {h: supx#y‘ <||)—y\(! Il < 1)

Problem: Typically cannot compute as integration under P intractable!
Idea: Only consider functions with Ep|h(Z)] known a priori to be 0

Stein’s Method

e Typically used as an analytical tool to prove distributional convergence
e Our goal: Develop into a practical quality measure (Requirement I11)

1. Identify operator 7 and set G of functions g : X — R? with

Ep[(Tg)(Z)]=0 forall geg.
7T and G define the Stein discrepancy

S(Q,T,G) = sup [Eg[(Tg)(X)]| = drg(Q, P)

geg

How to pick 77 The infinitesimal generator of a Markov process
with stationary distribution P yields suitable operator. Example:

e Overdamped Langevin diffusion: dZ; = sV log p(Z;)dt + dW;

e Stein Operator does not depend on normalizing constant:

(Trg)(z) = (g(z), Vlogp(x)) + (V, g(x))
e Ep[(Tpg)(Z)] =0 for all g : X — R® in classical Stein set

IVg(x) = Vg(y)lI

|z —y]

G =19 iigmaX(Hg(:v)H*, IVg(x)|, ) <1}

2. Lower bound S(Q,7,G) by reference IPM (Req. Il). New result:

Theorem 1 (Lower Bound for Strongly Log-concave Densities). If
X =R? and logp € C* is strongly concave with bounded 3rd and 4th
derivatives then S(Qm, Tp,G). ) — 0 = dWM(Qm,P) — 0.

e Sufficient, not necessary; covers Bayesian logistic regression example

3. Upper bound S(Q,7,G) to demonstrate convergence (Req. 1)

Proposition 2. [f X ~ Q) and Z ~ P with Vlogp(Z) integrable, then

S(Q,Tp,G)) < E[[|X — Z||] + E[||V1og p(X) — Vieg p(Z)]|] +
E[||Viegp(Z)(X — 2Z)'|].

Computing Stein Discrepancies

Classical Stein discrepancy optimization problem:

S(Q, 7},9\; 1) = SUPZCI i) ((g(z:), Viogp(z;)) + (V,g(z:)))

s.t. g( W' <1,Vzre X
Vg(z)||" <1,Vz e X
Vg(z) = Vg)|" < |l —yl|, Ve, y € X

Problem: Infinite-dimensional problem with infinitude of constraints!

Solution: Graph Stein Discrepancies
For any graph G = (V, E) with V C X, define the graph Stein set:

Giac ={g Ve eV, max(|lg(z)]", [Vg(z)]") <1
V(z,y) € E:x# y,max(ng(x)_g(y)”*, HVg(a;)—Vg(y)H*) <1,

|z—yl| |z—y||

max<g<x>g<y>v9<g><xy>*, g(m)g(ng(g)(xm*) <1y,

1 1
j”x—yH jHﬂf—iUH

Proposition 3 (Equivalence of Classical & Complete Graph Stein Dis-
crepancies). If X = R%, and G is the complete graph on {x1,...,x,},

S(Q? 7-P) gHH) < S(Q) 7-P7 gH'H»Q,Gl) < deS(Qa 7-P7 g||||)

for kg > 0 depending only on the dimension d and the norm ||-||.
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Problem: Complete graph introduces order n* constraints!

Solution: Spanner Stein Discrepancies

e For a dilation factor ¢ > 1, a t-spanner G = (V, /) has

—weight || — y|| on each edge (z,y) € F

—a path with total weight no larger than t||z — y||Vz,y € V
Proposition 4 (Equivalence of Spanner and Complete Graph Stein Dis-
crepancies). If X = RY, G, is the complete graph on {x1, ...
 Tnt, then

, Tnt, and
Gy is a t-spanner on {x1,. ..

S(Q,Tr, G 1.0c,) <SQ.Tr,G10¢) <2°S(Q,Tr, G11.0.61)-

e For t = 2, can compute spanner with O(xn) edges in O(kgnlog(n))
expected time [Har-Peled and Mendel, 2006];
e \We use efficient greedy spanner code of Bouts, ten Brink, and Buchin [2014]

Spanner Stein discrepancy algorithm (recommended)

e Choose ||-|| = ||||;; Compute 2-spanner G2 on V ={x1,...,2,}

e Solve d finite-dimensional linear programs in parallel
d

Z sup Z q(x;) %zv log p(x;) ‘|‘Fm)

7=1 7JER“ 1=1
I;eRIXT

Nwllee < LTl <1, and Vi # 12 (24, 2) € E,
max(%’ il [Diteien || ) <1,

sz_xl”l Hflfz—flfz\h

/‘\

[v5i=751—(T; 6@7372 r)| iy Uiepri—an] ) 1
1 2 .
Hlai—||3 ’ 5llwi—xl|1

—Here v;; = gij(x;) and I'ji; = Vigi(x;)

Experiments

1. A Sanity Check
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e P =N(0,1), Sample @ from P or scaled Student’s t (same variance)

2. Comparing Discrepancies
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e Draw samples from target (P = N(0,1) or P = Unif[0, 1])
e Compare classical / graph Stein discrepancies and Wasserstein metric

3. Selecting Sampler Hyperparameters
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e Target P is bimodal GMM
e Run Stochastic Gradient Langevin Dynamics for many step sizes ¢

e ESS chooses € = 5 x 107?, Stein discrepancy chooses € = 5 x 10~?

4. Quantifying a Bias-Variance Trade-off
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e Nodal dataset: 53 patients, 6 predictors of cancer spread

e Model=Bayesian Logistic Regression with Gaussian priors
e Random Walk MH (e = 0) vs. Approximate RWMH (e = 0.1)

5. Assessing Sampler Convergence Rates
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e For target P = Unif(0,1), compare Sobol (O(log(n)/n)) vs. iid

(O(1/4/n)) vs. kernel herding (best known bound O(1/4/n)) sequence



