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A Conversation with Vasilis

Vasilis: Lester, I love Double Machine Learning!

Me: What?

Vasilis: It’s a tool for accurately estimating treatment effects in
the presence of many potential confounders.

Me: I have no idea what you’re talking about.

Vasilis: Let me give you an example...
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Example: Estimating Price Elasticity of Demand

Goal: Estimate elasticity, the effect a change in price has on demand

Set prices of goods and services [Chernozhukov, Goldman, Semenova, and Taddy, 2017b]

Predict impact of tobacco tax on smoking [Wilkins, Yurekli, and Hu, 2004]

Y︸︷︷︸
log demand

= θ0︸︷︷︸
elasticity

T︸︷︷︸
log price

+ ε︸︷︷︸
noise
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Example: Estimating Price Elasticity of Demand

Goal: Estimate elasticity, the effect a change in price has on demand

Set prices of goods and services [Chernozhukov, Goldman, Semenova, and Taddy, 2017b]

Predict impact of tobacco tax on smoking [Wilkins, Yurekli, and Hu, 2004]

Y︸︷︷︸
log demand

= θ0︸︷︷︸
elasticity

T︸︷︷︸
log price

+ ε︸︷︷︸
noise

Conclusion: Increasing price increases demand!
Problem: Demand increases in winter & price anticipates demand
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Example: Estimating Price Elasticity of Demand

Goal: Estimate elasticity, the effect a change in price has on demand

Set prices of goods and services [Chernozhukov, Goldman, Semenova, and Taddy, 2017b]

Predict impact of tobacco tax on smoking [Wilkins, Yurekli, and Hu, 2004]

Y︸︷︷︸
log demand

= θ0︸︷︷︸
elasticity

T︸︷︷︸
log price

+ β0 X︸︷︷︸
season indicator

+ ε︸︷︷︸
noise

Problem: What if there are 100s or 1000s of potential confounders?
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Example: Estimating Price Elasticity of Demand

Goal: Estimate elasticity, the effect a change in price has on demand

Problem: What if there are 100s or 1000s of potential confounders?

Time of day, day of week, month, purchase and browsing history,
other product prices, demographics, the weather, ...

One option: Estimate effect of all potential confounders really well

Y︸︷︷︸
log demand

= θ0︸︷︷︸
elasticity

T︸︷︷︸
log price

+ f0(X)︸ ︷︷ ︸
effect of potential confounders

+ ε︸︷︷︸
noise

If nuisance function f0 estimable at O(n−1/2) rate then so is θ0

Problem: Accurate nuisance estimates often unachievable when f0
nonparametric or linear and high-dimensional
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Example: Estimating Price Elasticity of Demand

Problem: What if there are 100s or 1000s of potential confounders?

Double Machine Learning [Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, and Newey, 2017a]

Y︸︷︷︸
log demand

= θ0︸︷︷︸
elasticity

T︸︷︷︸
log price

+ f0(X)︸ ︷︷ ︸
effect of potential confounders

+ ε︸︷︷︸
noise

Estimate nuisance f0 somewhat poorly: o(n−1/4) suffices
Employ Neyman orthogonal estimator of θ0 robust to first-order
errors in nuisance estimates; yields

√
n-consistent estimate of θ0

Questions: Why o(n−1/4)? Can we relax this? When? How?

This talk:
Framework for k-th order orthogonal estimation with
o(n−1/(2k+2)) nuisance consistency ⇒

√
n-consistency for θ0

Existence characterization and explicit construction of 2nd-order
orthogonality in a popular causal inference model
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Estimation with Nuisance

Goal: Estimate target parameters θ0 ∈ Θ ⊆ Rd (e.g., elasticities) in
the presence of unknown nuisance functions h0 ∈ H

Given

Independent replicates (Zt)
2n
t=1 of a data vector Z = (T, Y,X)

Example (Partially Linear Regression (PLR))

T ∈ R represents a treatment or policy applied (e.g., log price)

Y ∈ R represents an outcome of interest (e.g., log demand)

X ∈ Rp is a vector of associated covariates (e.g., seasonality)

These observations satisfy

Y = θ0T + f0(X) + ε, E[ε | X,T ] = 0 a.s.

T = g0(X) + η, E[η | X] = 0 a.s., Var(η) > 0

for noise η and ε, target parameter θ0, and nuisance h0 = (f0, g0).
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Two-stage Z-estimation with Sample Splitting

Goal: Estimate target parameters θ0 ∈ Θ ⊆ Rd (e.g., elasticities) in
the presence of unknown nuisance functions h0 ∈ H

Given

Independent replicates (Zt)
2n
t=1 of a data vector Z = (T, Y,X)

Moment functions m that identify the target parameters θ0:

E[m(Z, θ0, h0(X))|X] = 0 a.s. and E[m(Z, θ, h0(X))] 6= 0 if θ 6= θ0

PLR model example: m(Z, θ, h0(X)) = (Y − θT − f0(X))T

Two-stage Z-estimation with sample splitting

1 Fit estimate ĥ ∈ H of h0 using (Zt)
2n
t=n+1 (e.g., via

nonparametric or high-dimensional regression)

2 θ̂SS solves 1
n

∑n
t=1m(Zt, θ, ĥ(Xt)) = 0

Con: Splitting statistically inefficient, possible detriment in first stage
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Two-stage Z-estimation with Cross Fitting

Goal: Estimate target parameters θ0 ∈ Θ ⊆ Rd (e.g., elasticities) in
the presence of unknown nuisance functions h0 ∈ H
Given

Independent replicates (Zt)
2n
t=1 of a data vector Z = (T, Y,X)

Moment functions m that identify the target parameters θ0:

E[m(Z, θ0, h0(X))|X] = 0 a.s. and E[m(Z, θ, h0(X))] 6= 0 if θ 6= θ0

PLR model example: m(Z, θ, h0(X)) = (Y − θT − f0(X))T

Two-stage Z-estimation with cross fitting
[Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, and Newey, 2017a]

0 Split data indices into K batches I1, . . . , IK
1 For k ∈ {1, . . . , K}, fit estimate ĥk ∈ H of h0 excluding Ik
2 θ̂CF solves 1

n

∑K
k=1

∑
t∈Ik m(Zt, θ, ĥk(Xt)) = 0

Pro: Repairs sample splitting deficiencies
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Goal:
√
n-Asymptotic Normality

Two-stage Z-estimators

θ̂SS solves 1
n

∑n
t=1m(Zt, θ, ĥ(Xt)) = 0

θ̂CF solves 1
n

∑K
k=1

∑
t∈Ik m(Zt, θ, ĥk(Xt)) = 0

Goal: Establish conditions under which θ̂SS and θ̂CF enjoy√
n-asymptotic normality (

√
n-a.n.), that is

√
n(θ̂SS − θ0)

d→ N(0,Σ) and
√

2n(θ̂CF − θ0)
d→ N(0,Σ)

Asymptotically valid confidence intervals for θ0 based on
Gaussian or Student’s t quantiles

Asymptotically valid association tests, like the Wald test
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First-order Orthogonality

Definition (First-order Orthogonal Moments
[Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, and Newey, 2017a])

Moments m are first-order orthogonal w.r.t. the nuisance h0(X) if

E
[
∇γm(Z, θ0, γ)|γ=h0(X) |X

]
= 0.

Principle dates back to early work of [Neyman, 1979]

Grants first-order insensitivity to errors in nuisance estimates

Annihilates first-order term in Taylor expansion around nuisance
Recall: m is 0-th order orthogonal, E[m(Z, θ0, h0(X)) |X] = 0

Not satisfied by m(Z, θ, h(X)) = (Y − θT − f(X))T

Satisfied by m(Z, θ, h(X)) = (Y − θT − f(X))(T − g(X))

Main result of Chernozhukov et al. [2017a]: under 1st-order
orthogonality, θ̂SS, θ̂CF

√
n-a.n. when ‖ĥi − h0,i‖ = op(n

−1/4),∀i
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Higher-order Orthogonality

Definition (k-Orthogonal Moments)

Moments m are k-orthogonal, if for all α ∈ N` with ‖α‖1 ≤ k:

E
[
Dαm(Z, θ0, γ)|γ=h0(X)

∣∣X] = 0.

where
Dαm(Z, θ, γ) = ∇α1

γ1
∇α2
γ2
. . .∇α`

γ`
m(Z, θ, γ)

and the γi’s are the coordinates of the ` nuisance functions

Grants k-th-order insensitivity to errors in nuisance estimates

Annihilates terms with order ≤ k in Taylor expansion around
nuisance
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Asymptotic Normality from k-Orthogonality

Theorem ([Mackey, Syrgkanis, and Zadik, 2018])

Under k-orthogonality and standard identifiability and regularity
assumptions, ‖ĥi − h0,i‖ = op(n

−1/(2k+2)) for all i suffices for√
n-a.n. of θ̂SS and θ̂CF with Σ = J−1V J−1 for

J = E[∇θm(Z, θ0, h0(X))] and V = Cov(m(Z, θ0, h0(X))).

Actually suffices to have product of nuisance function errors

decay (n1/2 ·
√

E[
∏`

i=1 |ĥi(X)− h0,i(X)|2αi | ĥ]
p→ 0 for

‖α‖1 = k + 1): if one is more accurately estimated, another can
be estimated more crudely

We prove similar results for non-uniform orthogonality

op(n
−1/(2k+2)) rate holds the promise of coping with more

complex or higher-dimensional nuisance functions

Question: How do we construct k-orthogonal moments in practice?
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Second-order Orthogonality for PLR: Limitations

Question: Can we construct k-orthogonal moments in practice?

Y = θ0T + f0(X) + ε, E[ε | X,T ] = 0 a.s.

T = g0(X) + η, E[η | X] = 0 a.s., Var(η) > 0

Theorem ([Mackey, Syrgkanis, and Zadik, 2018])

Suppose the conditional distribution of η given X is a.s. Gaussian.
Then no 2-orthogonal twice differentiable m yields

√
n-consistency.

We use Stein’s lemma (E[q′(Z)] = E[Zq(Z)] for Z ∼ N(0, 1))
to show 2-orthogonality implies E[∇θm(Z, θ0, h0(X))] = 0 and
hence infinite asymptotic variance for the Z-estimator

Sad, but non-Gaussian residuals are common in pricing where T
= log price, and η is a random log percentage discount (25% off
now through Sunday!) over the log baseline price g0(X)
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Second-order Orthogonality for PLR: Power

Question: How do we construct k-orthogonal moments in practice?
Y = θ0T + f0(X) + ε, E[ε | X,T ] = 0 a.s.

T = g0(X) + η, E[η | X] = 0 a.s., Var(η) > 0

Exploit non-Gaussianity: η conditionally Gaussian given X ⇔
E[ηr+1|X] = rE[η2|X]E[ηr−1|X] for all r ∈ N

Theorem ([Mackey, Syrgkanis, and Zadik, 2018])

Suppose that, for some r ∈ N, E[ηr+1] 6= rE[E[η2|X]E[ηr−1|X]]. If
we know E[ηr|X], then the 2-orthogonal moments

m(Z, θ, q(X), g(X), µr−1(X))

,(Y − q(X)− θ(T − g(X)))

× ((T − g(X))r − E[ηr|X]− r(T − g(X))µr−1(X))

satisfy our standard identifiability and regularity conditions.

o(n−1/6) nuisance estimation error suffices for
√
n-a.n.
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Second-order Orthogonality for PLR: Power

Question: How do we construct k-orthogonal moments in practice?
Y = θ0T + f0(X) + ε, E[ε | X,T ] = 0 a.s.

T = g0(X) + η, E[η | X] = 0 a.s., Var(η) > 0

Exploit non-Gaussianity: η conditionally Gaussian given X ⇔
E[ηr+1|X] = rE[η2|X]E[ηr−1|X] for all r ∈ N

Theorem ([Mackey, Syrgkanis, and Zadik, 2018])

Suppose that, for some r ∈ N, E[ηr+1] 6= rE[E[η2|X]E[ηr−1|X]].
Then, except for the (q(X), µr(X)) and (g(X), µr(X)) pairings,

m(Z, θ, q(X), g(X), µr−1(X), µr(X))

,(Y − q(X)− θ(T − g(X)))

× ((T − g(X))r − µr(X)− r(T − g(X))µr−1(X))

is 2-orthogonal and satisifes our standard conditions.

o(n−1/3) error for µr(X) and o(n−1/6) for rest suffice for
√
n-a.n.
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PLR with High-dimensional Linear Nuisance

High-dimensional Linear Nuisance Setting

Y = θ0T + 〈X, β0〉+ ε, E[ε | X,T ] = 0 a.s.

T = 〈X, γ0〉+ η, E[η | X] = 0 a.s., Var(η) > 0

β0, γ0 ∈ Rp are s-sparse, (η, ε,X) independent, q0 = θ0β0 + γ0

How many relevant confounders (non-zeros) can we tolerate?

Lasso can estimate β0, γ0 with O(
√
s log p/n) error

Zeroth-order orthogonality rate O(n−1/2): s = O(1/log p)

m = (Y − θT − 〈X,β〉)T
First-order orthogonality rate o(n−1/4): s = o(n1/2/log p)
[Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, and Newey, 2017a]

m = (Y − θT − 〈X,β〉)(T − 〈X, γ〉)
m = (Y − 〈X, q〉 − θ(T − 〈X, γ〉))(T − 〈X, γ〉)
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PLR with High-dimensional Linear Nuisance

High-dimensional Linear Nuisance Setting
Y = θ0T + 〈X, β0〉+ ε, E[ε | X,T ] = 0 a.s.

T = 〈X, γ0〉+ η, E[η | X] = 0 a.s., Var(η) > 0

β0, γ0 ∈ Rp are s-sparse, (η, ε,X) independent, q0 = θ0β0 + γ0

Theorem ([Mackey, Syrgkanis, and Zadik, 2018])

Suppose E[η4] 6= 3E[η2]2, X has i.i.d. N(0, 1) entries, ε and η are
bounded by C, and θ0 ∈ [−M,M ]. If s = o(n2/3/log p), and we

(a) estimate q0, γ0 via Lasso with λn = 2CM
√

3 log(p)/n and

(b) estimate E[η2] and E[η3] using η̂t , T ′t − 〈X ′t, γ̂〉,
µ̂2 = 1

n

∑n
t=1 η̂

2
t , and µ̂3 = 1

n

∑n
t=1(η̂

3
t − 3µ̂2η̂t),

for (T ′t , X
′
t)
n
t=1 an i.i.d. sample independent of γ̂,

then the moments m = (Y − 〈X, q〉 − θ(T − 〈X, γ〉))×(
(T − 〈X, γ〉)3 − µ3 − 3(T − 〈X, γ〉)µ2

)
yield

√
n-a.n.
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High-dimensional PLR Experiments

High-dimensional Linear Nuisance Setting

Y = θ0T + 〈X, β0〉+ ε, E[ε | X,T ] = 0 a.s.

T = 〈X, γ0〉+ η, E[η | X] = 0 a.s., Var(η) > 0

β0, γ0 ∈ Rp are s-sparse, (η, ε,X) independent, q0 = θ0β0 + γ0

Mimic price elasticity of demand setting: T represents log price
and η drawn from discrete distribution representing random
(log) discounts over baseline price
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High-dimensional PLR: Fixed Sparsity

1st (top) vs. 2nd order, s = 100, n = 5000, p = 1000, θ0 = 3.
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High-dimensional PLR: Varying Sparsity

1st vs. 2nd order, n = 5000, p = 1000, θ0 = 3.
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High-dimensional PLR: Varying Sparsity

1st vs. 2nd order, n = 5000, p = 1000, θ0 = 3.
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High-dimensional PLR: MSE for Varying n, p, s

n = 10000, p = 1000 and n = 5000, p = 2000
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High-dimensional PLR: Varying Noise Level

n = 5000, p = 1000
σε = 10 σε = 20
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Recap

What have we accomplished?

1 Introduced a notion of k-orthogonality for two-stage
Z-estimation with nuisance, generalizing Neyman orthogonality

2 Showed that o(n−
1

2k+2 ) nuisance estimate error suffices for√
n-asymptotic normality of target parameters

3 Established that non-normality of η|X necessary for the
existence of useful 2-orthogonal moments in PLR model

4 Derived explicit 2-orthogonal moments for PLR given knowledge
of non-normality

5 Used 2-orthogonal moments to tolerate o( n
2
3

log p
) sparsity in

high-dimensional PLR

6 Showed benefits over standard o( n
1
2

log p
) first-order orthogonal

moments in synthetic demand estimation experiments
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Future Directions

Many opportunities for future development
1 Second-order orthogonality

How to select optimal / improved double orthogonal moments
How to construct moments for other causal inference models

2 k-th order orthogonality for k > 2

When are k-th order orthogonal moments available and useful?
How do we construct them explicitly?

3 Lower bounds: (non-Gaussian) examples where first-order
orthogonality provably worse than second-order orthogonality

4 Implications for Lasso debiasing [Zhang and Zhang, van de Geer, Buhlmann,

Ritov, and Dezeure, 2014, Javanmard and Montanari, 2015]?

5 Applications to problems with non-Gaussian treatment residuals

Mackey (MSR) Orthogonal Machine Learning October 30, 2018 27 / 28



References I

V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, and W. Newey. Double/debiased/neyman machine
learning of treatment effects. American Economic Review, 107(5):261–65, May 2017a.

V. Chernozhukov, M. Goldman, V. Semenova, and M. Taddy. Orthogonal machine learning for demand estimation: High
dimensional causal inference in dynamic panels. arXiv preprint arXiv:1712.09988, 2017b.

A. Javanmard and A. Montanari. De-biasing the Lasso: Optimal Sample Size for Gaussian Designs. ArXiv e-prints, Aug. 2015.

L. Mackey, V. Syrgkanis, and I. Zadik. Orthogonal machine learning: Power and limitations. In J. Dy and A. Krause, editors,
Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 3375–3383, Stockholmsmssan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

J. Neyman. C() tests and their use. Sankhy: The Indian Journal of Statistics, Series A (1961-2002), 41(1/2):1–21, 1979. ISSN
0581572X.

S. van de Geer, P. Buhlmann, Y. Ritov, and R. Dezeure. On asymptotically optimal confidence regions and tests for
high-dimensional models. Ann. Statist., 42(3):1166–1202, 06 2014. doi: 10.1214/14-AOS1221.

N. Wilkins, A. Yurekli, and T.-w. Hu. Economic analysis of tobacco demand. Economics of Tobacco Toolkit, 80576, 2004.

C. H. Zhang and S. Zhang. Confidence intervals for low dimensional parameters in high dimensional linear models. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 76(1):217–242. doi: 10.1111/rssb.12026.

Mackey (MSR) Orthogonal Machine Learning October 30, 2018 28 / 28



Experiment Specification

η is drawn from a discrete distribution with values
{0.5, 0,−1.5,−3.5} taken with probabilities (.65, .2, .1, .05).
ε is drawn independently from a uniform U(−σε, σε) distribution.
Importantly, the coordinates of the s non-zero entries of the
coefficient β0 are the same as the coordinates of the s non-zero
entries of γ0.
Each non-zero coefficient was generated independently from a
uniform U(0, 5) distribution.
The regularization parameter λn of each Lasso was

√
log(p)/n.

For each instance of the problem, i.e., each random realization
of the coefficients, we generated 2000 independent datasets to
estimate the bias and standard deviation of each estimator. We
repeated this process over 100 randomly generated problem
instances, each time with a different draw of the coefficients γ0
and β0, to evaluate variability across different realizations of the
nuisance functions.
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