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From Optimization to Diffusions Explicit Bounds on Integration Error An Example with Sublinear Growth

Consider the unconstrained and possibly non-convex optimization problem Theorem: Integration error of discretized diffusions

[ ) [ ] [ ] . 2 [ ] —
mmnndlze f(x). Let Cond?wtions 1, 2, 3 hold. For a step size small enough mlnlgnlze f (:1:) = C log(l—l—%HxH 2) by samphng from p(a:) X e v (zz:).
reR

L 1.5 6
e An example algorithm: Langevin Gradient Descent szl E[f(Xm)] —p(f)| < <Cl77 a7 T e TG ) (1 + E[[[Xoll2]) 0o — — e f(x)

1S non-convex with sublinear
growth, so Langevin algorithm 1s not
guaranteed to work!

Xy =Xy — V(X)) ﬂ Wi where ¢ =06(, 3= [C3>\§’ + 204y 4 6C4(A, + 250,) (A + Aa)} 7

3)\a |
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where 17,y > 0 and W; ~ N (0, I) independent of X for 7 < ¢. Co = 1—16 [2{2)\2 + AL+ 2@)@} . R=2+°

e This algorithm 1s the Euler discretization of the Langevin diffusion. 1 \/—\/ I+ 3 Haj ‘ ‘ o1,

_ e W __c__
X X B, — B - - - . . 5
tn ; (X)) \ﬂ tn ' (let 010 Remark 1: Convergence rate is C’)( ;) to the invariant measure. ) ) '

i N e Diffusion has target invariant measure

X _
dXs =—Vf(Xy) + \/ g (to obtain diffusion). p(ﬂf ) x e @)

dt ( Condition 4 (Wasserstein decay). The diffusion has L,-Wasserstein decay o - o The diffusion is uniformly dissipative
e This diffusion converges to Gibbs measure X, ~ p(x) oce™ 7/ () concentrating

: 7 Y d
around global minima. For small 7, its discretization also concentrates around _inf E[l| X} — Xill2] < o(®)||z —yll2 forallz,y € R"and t > 0.

couplings (X7, X/) 2<b($) o b(y)7 ZU_y> + ‘|O-($) ( ) ||%7
global minima, but current analysis requires f to have quadratic growth. - 00
B < —allz — |}, fora = c—4

Remark 2: Stein factors (; depend on f and the chosen diffusion.

, o I L Theorem: Explicit bounds on the Stein factors
Our focus is on general Itd diffusions =+ = b(X}) + o(X})=t with X = z,

and their Euler discretization For an objective function f satisfying hence 1t satisfies Conditions 1, 2, 4, and our theorems apply!

f(z) = fy)l < mL+||z|la+ yll)llz =yl forallz,y € RY, . . . .
Xint1 = Xm + 1 0(Xon) + /10 (Xon) W, IV F(@)]lon < i1+ [[z]l) for i = 2,3, 4 and for all z, y € R, e In d = 2 dimension, for ¢ = 5, step size 7 = 0.1, inverse tempera-

which can optimize a rich class of non-convex functions. o o o . . ture v = 1, Xy = (917 111)-
and a diffusion satistying Conditions 1, 2, 4, the Stein factors are given as
00 150 -~ | . Gradient Descent (first 7000 iters)
G =T +¢& / o(t)dt where 7;, and &; have explicit forms. Gradient Descent (next 3000 Iters)
0

o 0 Langevin Algorithm (300 iters)
Conditions for Global C()nvergence (More generally, can support any polynomial growth in f and its derivatives.) —e— Designed Diffusion (15 iters)

/Condition 1 (Coefficient growth). The drift and the diffusion coefficients satisfy A

the following growth condition for Vx € R? Explicit B()unds on Optimizati()n EI‘I‘OI‘

b(z)|ls <2(1 + ||z ,lo(x <2e(] 4+ ||z , and O'O'TZEO§&1—|—ZE2
ﬂ()Hz (1 + lzll2), llo(@)|lr <31+ ||lz|l2) loo " (z)]lop <Z(1+ | ||2l Proposition: Sampling yields near-optima

\

/Condition 2 (Dissipativity). For o, 3 > 0, the diffusion satisfies Fix C'> 0,60 € (0,1, and z* € argmin, f(x). For a diffusion with invariant

measure p and satisfying Condition 2, if log p(z*) —log p(x) < O||x —a*||3 Va
Aol < —allal+ 8 for Aglx) 2 (b(z), Vo(x)) + Ho()o(@)T, V(). o TP e

2 2 —p(logp) +logp(z”) < Z5log(<F) + 5 log(F).
\A is the generator of the diffusion, e.g., Al|x||3 = 2(b(z), z) + ||o(z) || y If p takes the generalized Gibbs form p., g(x) o< exp(—y(f(z) — f(z*))?), then
/ prolf(x)) — fa®) < /& {Alog(2) + log(Pell)}.

- ™
~ Condition 3 (Finite Stein factors). The function uy solves the Stein equation

[ —o(f)=Aur, with p(f) =Ex,[f(X)

has 1-th order derivative with polynomial growth for 1 = 1,2, 3,4, i.e.,

e In fact, the optimization error can be made of order ¢ by choosing
Corollary: Optimization error of discretized diffusions the 1inverse temperature v = O(E _1), the step size 1 = O(E 1'5), and

: : _ —2.5
If the diffusion has the generalized Gibbs stationary density p, ¢(z), then the number of iterations M = O(e™=").
IV (z)|lop < G+ ||2||2) fori € {1,2,3,4} and all z € R”. HllmME[f(Xm)] — f(z) < (leM 1 (02+c3)77) (k+E[]| X0[5]) e See the paper for addition?l examples like learrlling with non-
m=1,.., n 2
convex losses, e.g., f(z) = = > . ¥i({z,v;)) + p(5]|z[3).

\ with Zgﬁ{g%{,zl} C’L < OX. / 1+ \/i{(g 10g _l_ 1Og(eﬁﬁ2)}
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