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Consider the unconstrained and possibly non-convex optimization problem

minimize
x∈Rd

f (x).

•An example algorithm: Langevin Gradient Descent

Xt+η = Xt − η∇f (Xt)+
√

2η
γ Wt

where η, γ > 0 and Wt ∼ N (0, I) independent of Xτ for τ ≤ t.

•This algorithm is the Euler discretization of the Langevin diffusion.

Xt+η −Xt

η
=−∇f (Xt) +

√
2
γ

Bt+η −Bt

η
(let η ↓ 0),

dXt

dt
=−∇f (Xt) +

√
2
γ

dBt

dt
, (to obtain diffusion).

•This diffusion converges to Gibbs measure X∞∼ p(x)∝ e−γf (x) concentrating
around global minima. For small η, its discretization also concentrates around
global minima, but current analysis requires f to have quadratic growth.

Our focus is on general Itô diffusions dXx
t

dt = b(Xx
t ) + σ(Xx

t )
dBt

dt with Xx
0 = x,

and their Euler discretization

Xm+1 = Xm + η b(Xm) +
√
ησ(Xm)Wm,

which can optimize a rich class of non-convex functions.

From Optimization to Diffusions

Condition 1 (Coefficient growth). The drift and the diffusion coefficients satisfy
the following growth condition for ∀x ∈ Rd

‖b(x)‖2≤ λb
4 (1 + ‖x‖2), ‖σ(x)‖F ≤

λσ
4 (1 + ‖x‖2), and ‖σσ>(x)‖op ≤ λa

4 (1 + ‖x‖
2
2)

Condition 2 (Dissipativity). For α, β > 0, the diffusion satisfies

A‖x‖22 ≤ −α‖x‖22 + β for Ag(x) , 〈b(x),∇g(x)〉 + 1
2〈σ(x)σ(x)

>,∇2g(x)〉.

A is the generator of the diffusion, e.g., A‖x‖22 = 2〈b(x), x〉 + ‖σ(x)‖2F.

Condition 3 (Finite Stein factors). The function uf solves the Stein equation

f − p(f ) = Auf , with p(f ) = EX∼p[f (X)]

has i-th order derivative with polynomial growth for i = 1, 2, 3, 4, i.e.,

‖∇iuf(x)‖op ≤ ζi(1 + ‖x‖2) for i ∈ {1, 2, 3, 4} and all x ∈ Rd.

with max
i∈{1,2,3,4}

ζi <∞.

Conditions for Global Convergence

Let Conditions 1, 2, 3 hold. For a step size small enough∣∣∣∣∣ 1M
M∑
m=1

E[f (Xm)]− p(f )

∣∣∣∣∣≤
(
c1

1

ηM
+ c2η + c3η

1.5

)(
κ + E

[
‖X0‖62

])
where c1 = 6ζ1, c3 =

1
48

[
ζ3λ

3
b + 2ζ4λ

4
b + 6ζ4(λ

4
b + 25λ4σ)(λb + λσ)

]
,

c2 =
1
16

[
2ζ2λ

2
b + ζ3λbλ

2
σ + 2ζ4λ

4
σ

]
, κ = 2 + 2β

α + 3λa
2α +

(
3λa+3β

α

)6
.

Theorem: Integration error of discretized diffusions

Remark 1: Convergence rate is O( 1ε2) to the invariant measure.

Remark 2: Stein factors ζi depend on f and the chosen diffusion.

Condition 4 (Wasserstein decay). The diffusion has L1-Wasserstein decay %

inf
couplings (Xx

t ,X
y
t )
E[‖Xx

t −X
y
t ‖2] ≤ %(t)‖x− y‖2 for all x, y ∈ Rd and t ≥ 0.

For an objective function f satisfying
|f (x)− f (y)| ≤ π1(1 + ‖x‖2 + ‖y‖2)‖x− y‖2, for all x, y ∈ Rd,

‖∇if (x)‖op ≤ πi(1 + ‖x‖2) for i = 2, 3, 4 and for all x, y ∈ Rd,

and a diffusion satisfying Conditions 1, 2, 4, the Stein factors are given as

ζi = τi + ξi

∫ ∞
0

%(t)dt where τi, and ξi have explicit forms.

(More generally, can support any polynomial growth in f and its derivatives.)

Theorem: Explicit bounds on the Stein factors

Explicit Bounds on Integration Error

Fix C > 0, θ ∈ (0, 1], and x∗ ∈ argminxf (x). For a diffusion with invariant
measure p and satisfying Condition 2, if log p(x∗)−log p(x)≤C‖x−x∗‖2θ2 ∀x,
then −p(log p) + log p(x∗) ≤ d

2θ log(
2C
d ) +

d
2 log(

eβ
α ).

If p takes the generalized Gibbs form pγ,θ(x) ∝ exp(−γ(f (x)− f (x∗))θ), then

pγ,θ(f (x))− f (x∗) ≤ θ

√
d
2γ{

1
θ log(

2γ
d ) + log(eβµ2(f )2α )}.

Proposition: Sampling yields near-optima

If the diffusion has the generalized Gibbs stationary density pγ,θ(x), then

min
m=1,..,M

E[f (Xm)]− f (x∗) ≤
(
c1

1
ηM + (c2+c3)η

)(
κ + E

[
‖X0‖62

])
+ θ

√
d
2γ{

1
θ log(

2γ
d ) + log(eβπ22α )}.

Corollary: Optimization error of discretized diffusions

Explicit Bounds on Optimization Error

minimize
x

f (x) := c log(1+1
2‖x‖

2
2) by sampling from p(x) ∝ e−γf (x).
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•f (x) is non-convex with sublinear
growth, so Langevin algorithm is not
guaranteed to work!

•Choose σ(x) = 1√
γ

√
1 + 1

2‖x‖
2
2I ,

and b(x) = −1
2(c−

1
γ)x.

•Diffusion has target invariant measure
p(x) ∝ e−γf (x).

•The diffusion is uniformly dissipative

2〈b(x)−b(y), x−y〉 + ‖σ(x)−σ(y)‖2F,
≤ −α‖x− y‖22, for α = c−d+3

2γ ;

hence it satisfies Conditions 1, 2, 4, and our theorems apply!

• In d = 2 dimension, for c = 5, step size η = 0.1, inverse tempera-
ture γ = 1, X0 = (91, 111).

• In fact, the optimization error can be made of order ε by choosing
the inverse temperature γ = O(ε−1), the step size η = O(ε1.5), and
the number of iterations M = O(ε−2.5).
•See the paper for additional examples like learning with non-

convex losses, e.g., f (x) = 1
n

∑n
i=1ψi(〈x, vi〉) + ρ(12‖x‖

2
2).

An Example with Sublinear Growth


