

Global Non-convex Optimization with Discretized Diffusions

Murat A. Erdogdu

erdogdu@cs.toronto.edu

lmackey@microsoft.com

Lester Mackey

Ohad Shamir

ohad.shamir@weizmann.ac.il

From Optimization to Diffusions

Consider the unconstrained and possibly non-convex optimization problem

$$\begin{array}{l}
\text{minimize } f(x). \\
x \in \mathbb{R}^d
\end{array}$$

• An example algorithm: Langevin Gradient Descent

$$X_{t+\eta} = X_t - \eta \nabla f(X_t) + \sqrt{\frac{2\eta}{\gamma}} W_t$$

where $\eta, \gamma > 0$ and $W_t \sim \mathcal{N}(0, I)$ independent of X_τ for $\tau \leq t$.

• This algorithm is the Euler discretization of the Langevin diffusion.

$$\frac{X_{t+\eta} - X_t}{\eta} = -\nabla f(X_t) + \sqrt{\frac{2}{\gamma}} \frac{B_{t+\eta} - B_t}{\eta} \text{ (let } \eta \downarrow 0),$$

$$\frac{dX_t}{dt} = -\nabla f(X_t) + \sqrt{\frac{2}{\gamma}} \frac{dB_t}{dt}, \text{ (to obtain diffusion)}.$$

• This diffusion converges to Gibbs measure $X_{\infty} \sim p(x) \propto e^{-\gamma f(x)}$ concentrating around global minima. For small η , its discretization also concentrates around global minima, but current analysis requires f to have **quadratic growth**.

Our focus is on general Itô diffusions $\frac{dX_t^x}{dt} = b(X_t^x) + \sigma(X_t^x) \frac{dB_t}{dt}$ with $X_0^x = x$, and their Euler discretization

$$X_{m+1} = X_m + \eta b(X_m) + \sqrt{\eta} \sigma(X_m) W_m,$$

which can optimize a rich class of non-convex functions.

Conditions for Global Convergence

Condition 1 (Coefficient growth). The drift and the diffusion coefficients satisfy the following growth condition for $\forall x \in \mathbb{R}^d$

$$||b(x)||_2 \le \frac{\lambda_b}{4}(1 + ||x||_2), ||\sigma(x)||_F \le \frac{\lambda_\sigma}{4}(1 + ||x||_2), \text{ and } ||\sigma\sigma^\top(x)||_{\text{op}} \le \frac{\lambda_a}{4}(1 + ||x||_2)|$$

Condition 2 (Dissipativity). For $\alpha, \beta > 0$, the diffusion satisfies

$$|\mathcal{A}||x||_2^2 \le -\alpha ||x||_2^2 + \beta \quad \text{for} \quad \mathcal{A}g(x) \triangleq \langle b(x), \nabla g(x) \rangle + \frac{1}{2} \langle \sigma(x) \sigma(x)^\top, \nabla^2 g(x) \rangle.$$

A is the generator of the diffusion, e.g., $A||x||_2^2 = 2\langle b(x), x \rangle + ||\sigma(x)||_F^2$.

Condition 3 (Finite Stein factors). The function u_f solves the Stein equation

$$f - p(f) = Au_f$$
, with $p(f) = \mathbb{E}_{X \sim p}[f(X)]$

has i-th order derivative with polynomial growth for i = 1, 2, 3, 4, i.e.,

$$\|\nabla^i u_f(x)\|_{\text{op}} \le \zeta_i(1+\|x\|_2) \text{ for } i \in \{1,2,3,4\} \text{ and all } x \in \mathbb{R}^d.$$

with $\max_{i\in\{1,2,3,4\}}\zeta_i<\infty$.

Explicit Bounds on Integration Error

Theorem: Integration error of discretized diffusions

Let Conditions 1, 2, 3 hold. For a step size small enough

$$\left| \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}[f(X_m)] - p(f) \right| \le \left(c_1 \frac{1}{\eta M} + c_2 \eta + c_3 \eta^{1.5} \right) \left(\kappa + \mathbb{E}[\|X_0\|_2^6] \right)$$

where
$$c_1 = 6\zeta_1$$
, $c_3 = \frac{1}{48} \Big[\zeta_3 \lambda_b^3 + 2\zeta_4 \lambda_b^4 + 6\zeta_4 (\lambda_b^4 + 25\lambda_\sigma^4)(\lambda_b + \lambda_\sigma) \Big]$, $c_2 = \frac{1}{16} \Big[2\zeta_2 \lambda_b^2 + \zeta_3 \lambda_b \lambda_\sigma^2 + 2\zeta_4 \lambda_\sigma^4 \Big]$, $\kappa = 2 + \frac{2\beta}{\alpha} + \frac{3\lambda_a}{2\alpha} + \left(\frac{3\lambda_a + 3\beta}{\alpha} \right)^6$.

Remark 1: Convergence rate is $\mathcal{O}(\frac{1}{\epsilon^2})$ to the invariant measure.

Remark 2: Stein factors ζ_i depend on f and the chosen diffusion.

Condition 4 (Wasserstein decay). The diffusion has L_1 -Wasserstein decay ϱ

$$\inf_{\text{couplings }(X_t^x,X_t^y)} \mathbb{E}[\|X_t^x - X_t^y\|_2] \le \varrho(t) \|x - y\|_2 \quad \textit{for all } x,y \in \mathbb{R}^d \textit{ and } t \ge 0.$$

Theorem: Explicit bounds on the Stein factors

For an objective function f satisfying

$$|f(x) - f(y)| \le \pi_1(1 + ||x||_2 + ||y||_2)||x - y||_2$$
, for all $x, y \in \mathbb{R}^d$, $||\nabla^i f(x)||_{\text{op}} \le \pi_i(1 + ||x||_2)$ for $i = 2, 3, 4$ and for all $x, y \in \mathbb{R}^d$,

and a diffusion satisfying Conditions 1, 2, 4, the Stein factors are given as $\zeta_i = \tau_i + \xi_i \int_{-\infty}^{\infty} \varrho(t) dt$ where τ_i , and ξ_i have **explicit** forms.

(More generally, can support any polynomial growth in f and its derivatives.)

Explicit Bounds on Optimization Error

Proposition: Sampling yields near-optima

Fix C > 0, $\theta \in (0,1]$, and $x^* \in \operatorname{argmin}_x f(x)$. For a diffusion with invariant measure p and satisfying Condition 2, if $\log p(x^*) - \log p(x) \le C ||x - x^*||_2^{2\theta} \, \forall x$, then $-p(\log p) + \log p(x^*) \le \frac{d}{2\theta} \log(\frac{2C}{d}) + \frac{d}{2} \log(\frac{e\beta}{\alpha}).$

If p takes the generalized Gibbs form $p_{\gamma,\theta}(x) \propto \exp(-\gamma (f(x) - f(x^*))^{\theta})$, then $p_{\gamma,\theta}(f(x)) - f(x^*) \leq \sqrt[\theta]{\frac{d}{2\gamma}\{\frac{1}{\theta}\log(\frac{2\gamma}{d}) + \log(\frac{e\beta\mu_2(f)}{2\alpha})\}}.$

Corollary: Optimization error of discretized diffusions

If the diffusion has the generalized Gibbs stationary density $p_{\gamma,\theta}(x)$, then

$$\min_{m=1,...,M} \mathbb{E}[f(X_m)] - f(x^*) \le \left(c_1 \frac{1}{\eta M} + (c_2 + c_3)\eta\right) \left(\kappa + \mathbb{E}[\|X_0\|_2^6]\right) + \sqrt{\frac{d}{2\gamma} \left\{\frac{1}{\theta} \log(\frac{2\gamma}{d}) + \log(\frac{e\beta\pi_2}{2\alpha})\right\}}.$$

An Example with Sublinear Growth

minimize $f(x) \coloneqq c \log(1 + \frac{1}{2} ||x||_2^2)$ by sampling from $p(x) \propto e^{-\gamma f(x)}$.

- f(x) is non-convex with sublinear growth, so Langevin algorithm is not guaranteed to work!
- Choose $\sigma(x) = \frac{1}{\sqrt{\gamma}} \sqrt{1 + \frac{1}{2} ||x||_2^2} I$, and $b(x) = -\frac{1}{2} (c \frac{1}{\gamma}) x$.

of Science

- Diffusion has target invariant measure $p(x) \propto e^{-\gamma f(x)}$.
 - The diffusion is uniformly dissipative

$$2\langle b(x) - b(y), x - y \rangle + \|\sigma(x) - \sigma(y)\|_{F}^{2},$$

$$\leq -\alpha \|x - y\|_{2}^{2}, \text{ for } \alpha = c - \frac{d+3}{2\gamma};$$

hence it satisfies Conditions 1, 2, 4, and our theorems apply!

• In d=2 dimension, for c=5, step size $\eta=0.1$, inverse temperature $\gamma=1, X_0=(91,111)$.

- In fact, the **optimization error** can be made of order ϵ by choosing the inverse temperature $\gamma = \mathcal{O}(\epsilon^{-1})$, the step size $\eta = \mathcal{O}(\epsilon^{1.5})$, and the number of iterations $M = \mathcal{O}(\epsilon^{-2.5})$.
- See the paper for additional examples like learning with non-convex losses, e.g., $f(x) = \frac{1}{n} \sum_{i=1}^{n} \psi_i(\langle x, v_i \rangle) + \rho(\frac{1}{2}||x||_2^2)$.