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This paper derives exponential concentration inequalities and polynomial
moment inequalities for the spectral norm of a random matrix. The analysis
requires a matrix extension of the scalar concentration theory developed by
Sourav Chatterjee using Stein’s method of exchangeable pairs. When applied
to a sum of independent random matrices, this approach yields matrix gen-
eralizations of the classical inequalities due to Hoeffding, Bernstein, Khint-
chine and Rosenthal. The same technique delivers bounds for sums of depen-
dent random matrices and more general matrix-valued functions of dependent
random variables.

1. Introduction. Matrix concentration inequalities control the fluctuations of
a random matrix about its mean. At present, these results provide an effective
method for studying sums of independent random matrices and matrix martin-
gales [32, 35, 48, 49]. They have been used to streamline the analysis of structured
random matrices in a range of applications, including statistical estimation [24],
randomized linear algebra [10, 14], stability of least-squares approximation [12],
combinatorial and robust optimization [9, 46], matrix completion [16, 30, 34, 42]
and random graph theory [35]. These works compose only a small sample of the
papers that rely on matrix concentration inequalities. Nevertheless, it remains com-
mon to encounter new classes of random matrices that we cannot treat with the
available techniques.

The purpose of this paper is to lay the foundations of a new approach for an-
alyzing structured random matrices. Our work is based on Chatterjee’s technique
for developing scalar concentration inequalities [6, 7] via Stein’s method of ex-
changeable pairs [47]. We extend this argument to the matrix setting, where we
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use it to establish exponential concentration bounds (Theorems 4.1 and 5.1) and
polynomial moment inequalities (Theorem 7.1) for the spectral norm of a random
matrix.

To illustrate the power of this idea, we show that our general results imply sev-
eral important concentration bounds for a sum of independent, random, Hermitian
matrices [21, 29, 49]. In particular, we obtain a matrix Hoeffding inequality with
optimal constants (Corollary 4.2) and a version of the matrix Bernstein inequality
(Corollary 5.2). Our techniques also yield concise proofs of the matrix Khintchine
inequality (Corollary 7.3) and the matrix Rosenthal inequality (Corollary 7.4).

The method of exchangeable pairs also applies to matrices constructed from de-
pendent random variables. We offer a hint of the prospects by establishing concen-
tration results for several other classes of random matrices. In Section 9, we con-
sider sums of dependent matrices that satisfy a conditional zero-mean property. In
Section 10, we treat a broad class of combinatorial matrix statistics. Finally, in Sec-
tion 11, we analyze general matrix-valued functions that have a self-reproducing
property.

1.1. Notation and preliminaries. The symbol ‖·‖ is reserved for the spectral
norm, which returns the largest singular value of a general complex matrix.

We write M
d for the algebra of all d × d complex matrices. The trace and

normalized trace of a square matrix are defined as

tr B :=
d∑

j=1

bjj and t̄r B := 1

d

d∑
j=1

bjj for B ∈ M
d .

We define the linear space H
d of Hermitian d × d matrices. All matrices in this

paper are Hermitian unless explicitly stated otherwise. The symbols λmax(A) and
λmin(A) refer to the algebraic maximum and minimum eigenvalues of a matrix
A ∈ H

d . For each interval I ⊂ R, we define the set of Hermitian matrices whose
eigenvalues fall in that interval,

H
d(I ) := {

A ∈ H
d :

[
λmin(A), λmax(A)

] ⊂ I
}
.

The set Hd+ consists of all positive-semidefinite (psd) d × d matrices. Curly in-
equalities refer to the semidefinite partial order on Hermitian matrices. For exam-
ple, we write A � B to signify that the matrix B − A is psd.

We require operator convexity properties of the matrix square so often that we
state them now: (

A + B
2

)2

� A2 + B2

2
for all A,B ∈ H

d .(1.1)

More generally, we have the operator Jensen inequality

(EX)2 � EX2,(1.2)

valid for any random Hermitian matrix, provided that E‖X‖2 < ∞. To verify this
result, simply expand the inequality E(X − EX)2 � 0. The operator Jensen in-
equality also holds for conditional expectation, again provided that E‖X‖2 < ∞.
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2. Exchangeable pairs of random matrices. Our approach to studying ran-
dom matrices is based on the method of exchangeable pairs, which originates in
the work of Charles Stein [47] on normal approximation for a sum of dependent
random variables. In this section, we explain how some central ideas from this
theory extend to matrices.

2.1. Matrix Stein pairs. First, we define an exchangeable pair.

DEFINITION 2.1 (Exchangeable pair). Let Z and Z′ be random variables tak-
ing values in a Polish space Z . We say that (Z,Z′) is an exchangeable pair if it
has the same distribution as (Z′,Z). In particular, Z and Z′ must share the same
distribution.

We can obtain a lot of information about the fluctuations of a random matrix X if
we can construct a good exchangeable pair (X,X′). With this motivation in mind,
let us introduce a special class of exchangeable pairs.

DEFINITION 2.2 (Matrix Stein pair). Let (Z,Z′) be an exchangeable pair of
random variables taking values in a Polish space Z , and let � :Z → H

d be a
measurable function. Define the random Hermitian matrices

X := �(Z) and X′ := �
(
Z′).

We say that (X,X′) is a matrix Stein pair if there is a constant α ∈ (0,1] for which

E
[
X − X′ | Z] = αX almost surely.(2.1)

The constant α is called the scale factor of the pair. When discussing a matrix
Stein pair (X,X′), we always assume that E‖X‖2 < ∞.

A matrix Stein pair (X,X′) has several useful properties. First, (X,X′) always
forms an exchangeable pair. Second, it must be the case that EX = 0. Indeed,

EX = 1

α
E

[
E

[
X − X′ | Z]] = 1

α
E

[
X − X′] = 0

because of identity (2.1), the tower property of conditional expectation and the
exchangeability of (X,X′). In Section 2.4, we construct a matrix Stein pair for
a sum of centered, independent random matrices. More sophisticated examples
appear in Sections 9, 10 and 11.

REMARK 2.3 (Approximate matrix Stein pairs). In the scalar setting, it is
common to consider exchangeable pairs that satisfy an approximate Stein con-
dition. For matrices, this condition reads E[X − X′ | Z] = αX + R, where R is an
error term. The methods in this paper extend easily to this case.
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2.2. The method of exchangeable pairs. A well-chosen matrix Stein pair
(X,X′) provides a surprisingly powerful tool for studying the random matrix X.
The technique depends on a fundamental technical lemma.

LEMMA 2.4 (Method of exchangeable pairs). Suppose that (X,X′) ∈ H
d ×

H
d is a matrix Stein pair with scale factor α. Let F :Hd → H

d be a measurable
function that satisfies the regularity condition

E
∥∥(

X − X′) · F(X)
∥∥ < ∞.(2.2)

Then

E
[
X · F(X)

] = 1

2α
E

[(
X − X′)(F(X) − F

(
X′))].(2.3)

In short, the randomness in the Stein pair furnishes an alternative expression for
the expected product of X and the function F. Identity (2.3) is valuable because it
allows us to estimate this integral using the smoothness properties of the function F
and the discrepancy between X and X′.

PROOF OF LEMMA 2.4. Suppose (X,X′) is a matrix Stein pair constructed
from an auxiliary exchangeable pair (Z,Z′). The defining property (2.1) implies

α ·E[
X · F(X)

] = E
[
E

[
X − X′ | Z] · F(X)

] = E
[(

X − X′)F(X)
]
.

We have used regularity condition (2.2) to invoke the pull-through property of
conditional expectation. Since (X,X′) is an exchangeable pair,

E
[(

X − X′)F(X)
] = E

[(
X′ − X

)
F

(
X′)] = −E

[(
X − X′)F(

X′)].
Identity (2.3) follows when we average the two preceding displays. �

2.3. The conditional variance. To each matrix Stein pair (X,X′), we may as-
sociate a random matrix called the conditional variance of X. The ultimate purpose
of this paper is to argue that the spectral norm of X is unlikely to be large when
the conditional variance is small.

DEFINITION 2.5 (Conditional variance). Suppose that (X,X′) is a matrix
Stein pair, constructed from an auxiliary exchangeable pair (Z,Z′). The condi-
tional variance is the random matrix

�X := �X(Z) := 1

2α
E

[(
X − X′)2 | Z]

,(2.4)

where α is the scale factor of the pair. We may take any version of the conditional
expectation in this definition.

The conditional variance �X should be regarded as a stochastic estimate for the
variance of the random matrix X. Indeed,

E[�X] = EX2.(2.5)

This identity follows from Lemma 2.4 with the choice F(X) = X.
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2.4. Example: A sum of independent random matrices. To make the defini-
tions in this section more vivid, we describe a simple but important example of a
matrix Stein pair. Consider an independent sequence Z := (Y1, . . . ,Yn) of random
Hermitian matrices that satisfies EYk = 0 and E‖Yk‖2 < ∞ for each k. Introduce
the random series

X := Y1 + · · · + Yn.

Let us explain how to build a good matrix Stein pair (X,X′). We need the ex-
changeable counterpart X′ to have the same distribution as X, but it should also be
close to X so that we can control the conditional variance. To achieve these goals,
we construct X′ by picking a summand from X at random and replacing it with a
fresh copy.

Formally, let Y′
k be an independent copy of Yk for each index k, and draw a

random index K uniformly from {1, . . . , n} and independently from everything
else. Define the random sequence

Z′ := (
Y1, . . . ,YK−1,Y′

K,YK+1, . . . ,Yn

)
.

One can check that (Z,Z′) forms an exchangeable pair. The random matrix

X′ := Y1 + · · · + YK−1 + Y′
K + YK+1 + · · · + Yn

is thus an exchangeable counterpart for X. To verify that (X,X′) is a Stein pair,
calculate that

E
[
X − X′ | Z] = E

[
YK − Y′

K | Z]
= 1

n

n∑
k=1

E
[
Yk − Y′

k | Z] = 1

n

n∑
k=1

Yk = 1

n
X.

The third identity holds because Y′
k is a centered random matrix that is independent

from Z. Therefore, (X,X′) is a matrix Stein pair with scale factor α = n−1.
Next, we compute the conditional variance:

�X = n

2
·E[(

X − X′)2 | Z]

= n

2
· 1

n

n∑
k=1

E
[(

Yk − Y′
k

)2 | Z]
(2.6)

= 1

2

n∑
k=1

[
Y2

k − Yk

(
EY′

k

) − (
EY′

k

)
Yk +E

(
Y′

k

)2]

= 1

2

n∑
k=1

(
Y2

k +EY2
k

)
.

For the third relation, expand the square and invoke the pull-through property of
conditional expectation. We may drop the conditioning because Y′

k is independent
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from Z. In the last line, we apply the property that Y′
k has the same distribution

as Yk .
Expression (2.6) shows that we can control the size of the conditional expecta-

tion uniformly if we can control the size of the individual summands. This example
also teaches us that we may use the symmetries of the distribution of the random
matrix to construct a matrix Stein pair.

3. Exponential moments and eigenvalues of a random matrix. Our main
goal in this paper is to study the behavior of the extreme eigenvalues of a random
Hermitian matrix. In Section 3.2, we describe an approach to this problem that
parallels the classical Laplace transform method for scalar random variables. The
adaptation to the matrix setting leads us to consider the trace of the moment gen-
erating function (m.g.f.) of a random matrix. After presenting this background, we
explain how the method of exchangeable pairs can be used to control the growth
of the trace m.g.f. This result, which appears in Section 3.5, is the key to our ex-
ponential concentration bounds for random matrices.

3.1. Standard matrix functions. Before entering the discussion, recall that a
standard matrix function is obtained by applying a real function to the eigenval-
ues of a Hermitian matrix. Higham [17] provides an excellent treatment of this
concept.

DEFINITION 3.1 (Standard matrix function). Let f : I → R be a function on
an interval I of the real line. Suppose that A ∈ H

d(I ) has the eigenvalue decompo-
sition A = Q · diag(λ1, . . . , λd) · Q∗ where Q is a unitary matrix. Then the matrix
extension f (A) := Q · diag(f (λ1), . . . , f (λd)) · Q∗.

The spectral mapping theorem states that, if λ is an eigenvalue of A, then f (λ)

is an eigenvalue of f (A). This fact follows from Definition 3.1.
When we apply a familiar scalar function to a Hermitian matrix, we are always

referring to a standard matrix function. For instance, |A| is the matrix absolute
value, exp(A) is the matrix exponential, and log(A) is the matrix logarithm. The
latter is defined only for positive-definite matrices.

3.2. The matrix Laplace transform method. Let us introduce a matrix vari-
ant of the classical moment generating function. We learned this definition from
Ahlswede–Winter [1], Appendix.

DEFINITION 3.2 (Trace m.g.f.). Let X be a random Hermitian matrix. The
(normalized) trace moment generating function of X is defined as

m(θ) := mX(θ) := E t̄r eθX for θ ∈ R.

We admit the possibility that the expectation may not exist for all θ .
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Ahlswede and Winter [1], Appendix, had the insight that the classical Laplace
transform method could be extended to the matrix setting by replacing the classi-
cal m.g.f. with the trace m.g.f. This adaptation allows us to obtain concentration
inequalities for the extreme eigenvalues of a random Hermitian matrix using meth-
ods from matrix analysis. The following proposition distills results from the papers
[1, 8, 36, 49].

PROPOSITION 3.3 (Matrix Laplace transform method). Let X ∈ H
d be a ran-

dom matrix with trace m.g.f. m(θ) := E t̄r eθX. For each t ∈ R,

P
{
λmax(X) ≥ t

} ≤ d · inf
θ>0

exp
{−θt + logm(θ)

}
,(3.1)

P
{
λmin(X) ≤ t

} ≤ d · inf
θ<0

exp
{−θt + logm(θ)

}
.(3.2)

Furthermore,

Eλmax(X) ≤ inf
θ>0

1

θ

[
logd + logm(θ)

]
,(3.3)

Eλmin(X) ≥ sup
θ<0

1

θ

[
logd + logm(θ)

]
.(3.4)

Estimates (3.3) and (3.4) for the expectations are usually sharp up to the log-
arithm of the dimension. In many situations, tail bounds (3.1) and (3.2) are rea-
sonable for moderate t , but they tend to overestimate the probability of a large
deviation. Note that, in general, we cannot dispense with the dimensional factor d .
See [49], Section 4, for a detailed discussion of these issues. Additional inequal-
ities for the interior eigenvalues can be established using the minimax Laplace
transform method [15].

PROOF OF PROPOSITION 3.3. To establish (3.1), fix θ > 0. Owing to
Markov’s inequality,

P
{
λmax(X) ≥ t

} = P
{
eλmax(θX) ≥ eθt} ≤ e−θt ·E eλmax(θX)

= e−θt ·Eλmax
(
eθX) ≤ e−θt ·E tr eθX.

The third relation depends on the spectral mapping theorem and the monotonicity
of the exponential. The last inequality holds because the trace of a positive-definite
matrix exceeds its maximum eigenvalue. Identify the normalized trace m.g.f., and
take the infimum over θ to complete the argument.

The proof of (3.2) parallels the proof of (3.1). For θ < 0,

P
{
λmin(X) ≤ t

} = P
{
θλmin(X) ≥ θt

} = P
{
λmax(θX) ≥ θt

}
.

We used the property that −λmin(A) = λmax(−A) for each Hermitian matrix A.
The rest of the argument is the same as in the preceding paragraph.
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For the expectation bound (3.3), fix θ > 0. Jensen’s inequality yields

Eλmax(X) = θ−1
Eλmax(θX) ≤ θ−1 logE eλmax(θX) ≤ θ−1 logE tr eθX.

The justification is the same as above. Identify the normalized trace m.g.f., and
take the infimum over θ > 0. Similar considerations yield (3.4). �

3.3. Studying the trace m.g.f. with exchangeable pairs. The technical diffi-
culty in the matrix Laplace transform method arises because we need to estimate
the trace m.g.f. Previous authors have applied deep results from matrix analysis to
accomplish this bound: the Golden–Thompson inequality is central to [1, 35, 36],
while Lieb’s result [26], Theorem 6, animates [20, 48, 49].

In this paper, we develop a fundamentally different technique for studying the
trace m.g.f. The main idea is to control the growth of the trace m.g.f. by bounding
its derivative. To see why we have adopted this strategy, consider a random Her-
mitian matrix X, and observe that the derivative of its trace m.g.f. can be written
as

m′(θ) = E t̄r
[
XeθX]

under appropriate regularity conditions. This expression has just the form that we
need to invoke the method of exchangeable pairs, Lemma 2.4, with F(X) = eθX.
We obtain

m′(θ) = 1

2α
E t̄r

[(
X − X′)(eθX − eθX′)]

.(3.5)

This formula strongly suggests that we should apply a mean value theorem to
control the derivative; we establish the result that we need in Section 3.4 below.
Ultimately, this argument leads to a differential inequality for m′(θ), which we can
integrate to obtain an estimate for m(θ).

The technique of bounding the derivative of an m.g.f. lies at the heart of the log-
Sobolev method for studying concentration phenomena [25], Chapter 5. Recently,
Chatterjee [6, 7] demonstrated that the method of exchangeable pairs provides
another way to control the derivative of an m.g.f. Our arguments closely follow
the pattern set by Chatterjee; the novelty inheres in the extension of these ideas to
the matrix setting and the striking applications that this extension permits.

3.4. The mean value trace inequality. To bound expression (3.5) for the
derivative of the trace m.g.f., we need a matrix generalization of the mean value
theorem for a function with a convex derivative. We state the result in full gener-
ality because it plays a role later.

LEMMA 3.4 (Mean value trace inequality). Let I be an interval of the real
line. Suppose that g : I → R is a weakly increasing function and that h : I → R is



914 L. MACKEY ET AL.

a function whose derivative h′ is convex. For all matrices A,B ∈ H
d(I ), it holds

that

t̄r
[(

g(A) − g(B)
) · (

h(A) − h(B)
)]

≤ 1
2 t̄r

[(
g(A) − g(B)

) · (A − B) · (
h′(A) + h′(B)

)]
.

When h′ is concave, the inequality is reversed. The same results hold for the stan-
dard trace.

To prove Lemma 3.4, we require a trace inequality [38], Proposition 3, that
follows from the definition of a matrix function and the spectral theorem for Her-
mitian matrices.

PROPOSITION 3.5 (Generalized Klein inequality). Let u1, . . . , un and v1, . . . ,

vn be real-valued functions on an interval I of the real line. Suppose∑
k

uk(a)vk(b) ≥ 0 for all a, b ∈ I .(3.6)

Then

t̄r
[∑

k

uk(A)vk(B)

]
≥ 0 for all A,B ∈ H

d(I ).

With the generalized Klein inequality, we can establish Lemma 3.4 by develop-
ing the appropriate scalar inequality.

PROOF OF LEMMA 3.4. Fix a, b ∈ I . Since g is weakly increasing, (g(a) −
g(b)) · (a − b) ≥ 0. The fundamental theorem of calculus and the convexity of h′
yield the estimate(

g(a) − g(b)
) · (

h(a) − h(b)
)

= (
g(a) − g(b)

) · (a − b)

∫ 1

0
h′(τa + (1 − τ)b

)
dτ

(3.7)

≤ (
g(a) − g(b)

) · (a − b)

∫ 1

0

[
τ · h′(a) + (1 − τ) · h′(b)

]
dτ

= 1

2

[(
g(a) − g(b)

) · (a − b) · (
h′(a) + h′(b)

)]
.

The inequality is reversed when h′ is concave.
Bound (3.7) can be written in the form (3.6) by expanding the products and

collecting terms depending on a into functions uk(a) and terms depending on b

into functions vk(b). Proposition 3.5 then delivers a trace inequality, which can
be massaged into the desired form using the cyclicity of the trace and the fact that
standard functions of the same matrix commute. We omit the algebraic details. �
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REMARK 3.6. We must warn the reader that the proof of Lemma 3.4 succeeds
because the trace contains a product of three terms involving two matrices. The
obstacle to proving more general results is that we cannot reorganize expressions
like tr(ABAB) and tr(ABC) at will.

3.5. Bounding the derivative of the trace m.g.f. The central result in this sec-
tion applies the method of exchangeable pairs and the mean value trace inequality
to bound the derivative of the trace m.g.f. in terms of the conditional variance.
This is the most important step in our theory on the exponential concentration of
random matrices.

LEMMA 3.7 (The derivative of the trace m.g.f.). Suppose that (X,X′) ∈H
d ×

H
d is a matrix Stein pair, and assume that X is almost surely bounded in norm.

Define the trace m.g.f. m(θ) := E t̄r eθX. Then

m′(θ) ≤ θ ·E t̄r
[
�XeθX]

when θ ≥ 0;(3.8)

m′(θ) ≥ θ ·E t̄r
[
�XeθX]

when θ ≤ 0.(3.9)

The conditional variance �X is defined in (2.4).

PROOF. We begin with the expression for the derivative of the trace m.g.f.,

m′(θ) = E t̄r
[

d

dθ
eθX

]
= E t̄r

[
XeθX]

.(3.10)

We can move the derivative inside the expectation because of the dominated con-
vergence theorem and the boundedness of X.

Apply the method of exchangeable pairs, Lemma 2.4, with the function F(X) =
eθX to reach an alternative representation of the derivative (3.10),

m′(θ) = 1

2α
E t̄r

[(
X − X′)(eθX − eθX′)]

.(3.11)

We have used the boundedness of X to verify the regularity condition (2.2).
Expression (3.11) is perfectly suited for an application of the mean value trace

inequality, Lemma 3.4. First, assume that θ ≥ 0, and consider the function h : s �→
eθs . The derivative h′ : s �→ θeθs is convex, so Lemma 3.4 implies that

m′(θ) ≤ θ

4α
E t̄r

[(
X − X′)2 · (

eθX + eθX′)]

= θ

2α
E t̄r

[(
X − X′)2 · eθX]

= θ ·E t̄r
[

1

2α
E

[(
X − X′)2 | Z] · eθX

]
.

The second line follows from the fact that (X,X′) is an exchangeable pair. In the
last line, we have used the boundedness of X and X′ to invoke the pull-through
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property of conditional expectation. Identify the conditional variance �X, defined
in (2.4), to complete the argument.

The result for θ ≤ 0 follows from an analogous argument. In this case, we sim-
ply observe that the derivative of the function h : s �→ eθs is now concave, so the
mean value trace inequality, Lemma 3.4, produces a lower bound. The remaining
steps are identical. �

REMARK 3.8 (Regularity conditions). To simplify the presentation, we have
instated a boundedness assumption in Lemma 3.7. All the examples we discuss
satisfy this requirement. When X is unbounded, Lemma 3.7 still holds provided
that X meets an integrability condition.

4. Exponential concentration for bounded random matrices. We are now
prepared to establish exponential concentration inequalities. Our first major result
demonstrates that an almost-sure bound for the conditional variance yields expo-
nential tail bounds for the extreme eigenvalues of a random Hermitian matrix. We
can also obtain estimates for the expectation of the extreme eigenvalues.

THEOREM 4.1 (Concentration for bounded random matrices). Consider a ma-
trix Stein pair (X,X′) ∈ H

d × H
d . Suppose there exist nonnegative constants c, v

for which the conditional variance (2.4) of the pair satisfies

�X � cX + vI almost surely.(4.1)

Then, for all t ≥ 0,

P
{
λmin(X) ≤ −t

} ≤ d · exp
{−t2

2v

}
,

P
{
λmax(X) ≥ t

} ≤ d · exp
{
− t

c
+ v

c2 log
(

1 + ct

v

)}

≤ d · exp
{ −t2

2v + 2ct

}
.

Furthermore,

Eλmin(X) ≥ −
√

2v logd,

Eλmax(X) ≤
√

2v logd + c logd.

This result may be viewed as a matrix analogue of Chatterjee’s concentration
inequality for scalar random variables [6], Theorem 1.5(ii). The proof of The-
orem 4.1 appears below in Section 4.2. Before we present the argument, let us
explain how the result provides a short proof of a Hoeffding-type inequality for
matrices.
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4.1. Application: Matrix Hoeffding inequality. Theorem 4.1 yields an exten-
sion of Hoeffding’s inequality [19] that holds for an independent sum of bounded
random matrices.

COROLLARY 4.2 (Matrix Hoeffding). Consider a finite sequence (Yk)k≥1 of
independent random matrices in H

d and a finite sequence (Ak)k≥1 of deterministic
matrices in H

d . Assume that

EYk = 0 and Y2
k � A2

k almost surely for each index k.

Then, for all t ≥ 0,

P

{
λmax

(∑
k

Yk

)
≥ t

}
≤ d · e−t2/2σ 2

for σ 2 := 1

2

∥∥∥∥∑
k

(
A2

k +EY2
k

)∥∥∥∥.
Furthermore,

Eλmax

(∑
k

Yk

)
≤ σ

√
2 logd.

PROOF. Let X = ∑
k Yk . Since X is a sum of centered, independent random

matrices, we can use the matrix Stein pair constructed in Section 2.4. According
to (2.6), the conditional variance satisfies

�X = 1

2

∑
k

(
Y2

k +EY2
k

)
� σ 2I

because Y2
k � A2

k . Invoke Theorem 4.1 with c = 0 and v = σ 2 to complete the
bound. �

In the scalar setting d = 1, Corollary 4.2 reproduces an inequality of Chatter-
jee [6], Section 1.5, which itself is an improvement over the classical scalar Ho-
effding bound. In turn, Corollary 4.2 improves upon the matrix Hoeffding inequal-
ity of [49], Theorem 1.3, in two ways. First, we have improved the constant in the
exponent to its optimal value 1/2. Second, we have decreased the size of the vari-
ance measure because σ 2 ≤ ‖∑

k A2
k‖. Finally, let us remark that a similar result

holds under the weaker assumption that
∑

k Y2
k � A2 almost surely.

Corollary 4.2 admits a plethora of applications. For example, in theoretical
computer science, Widgerson and Xiao employ a suboptimal matrix Hoeffding
inequality [50], Theorem 2.6, to derive efficient, derandomized algorithms for ho-
momorphism testing and semidefinite covering problems. Under the improvements
of Corollary 4.2, their results improve accordingly.
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4.2. Proof of Theorem 4.1: Exponential concentration. Suppose that (X,X′)
is a matrix Stein pair constructed from an auxiliary exchangeable pair (Z,Z′). Our
aim is to bound the normalized trace m.g.f.

m(θ) := E t̄r eθX for θ ∈ R.(4.2)

The basic strategy is to develop a differential inequality, which we integrate to
control m(θ) itself. Once these estimates are in place, the matrix Laplace trans-
form method, Proposition 3.3, furnishes probability inequalities for the extreme
eigenvalues of X.

The following result summarizes our bounds for the trace m.g.f. m(θ).

LEMMA 4.3 (Trace m.g.f. estimates for bounded random matrices). Let
(X,X′) be a matrix Stein pair, and suppose there exist nonnegative constants c, v

for which

�X � cX + vI almost surely.(4.3)

Then the normalized trace m.g.f. m(θ) := E t̄r eθX satisfies the bounds

logm(θ) ≤ vθ2

2
when θ ≤ 0,(4.4)

logm(θ) ≤ v

c2

[
log

(
1

1 − cθ

)
− cθ

]
(4.5)

≤ vθ2

2(1 − cθ)
when 0 ≤ θ < 1/c.(4.6)

We establish Lemma 4.3 in Section 4.2.1 et seq. In Section 4.2.4, we finish
the proof of Theorem 4.1 by combining these bounds with the matrix Laplace
transform method.

4.2.1. Boundedness of the random matrix. First, we confirm that the random
matrix X is almost surely bounded under hypothesis (4.3) on the conditional vari-
ance �X. Recall definition (2.4) of the conditional variance, and compute that

�X = 1

2α
E

[(
X − X′)2 | Z]

� 1

2α

(
E

[
X − X′ | Z])2 = 1

2α
(αX)2 = α

2
X2.

The semidefinite bound is the operator Jensen inequality (1.2), applied condition-
ally. The third relation follows from definition (2.1) of a matrix Stein pair. Owing
to assumption (4.3), we reach the quadratic inequality 1

2αX2 � cX + vI. The scale
factor α is positive, so we may conclude that the eigenvalues of X are almost surely
restricted to a bounded interval.
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4.2.2. Differential inequalities for the trace m.g.f. Since the matrix X is almost
surely bounded, the derivative of the trace m.g.f. has the form

m′(θ) = E t̄r
[
XeθX]

for θ ∈ R.(4.7)

To control the derivative, we combine Lemma 3.7 with the assumed inequal-
ity (4.3) for the conditional variance. For θ ≥ 0, we obtain

m′(θ) ≤ θ ·E t̄r
[
�XeθX]

≤ θ ·E t̄r
[
(cX + vI)eθX]

= cθ ·E t̄r
[
XeθX] + vθ ·E t̄r eθX

= cθ · m′(θ) + vθ · m(θ).

In the last line, we have identified the trace m.g.f. (4.2) and its derivative (4.7). The
second relation holds because the matrix eθX is positive definite. Indeed, when P
is psd, A � B implies that tr(AP) ≤ tr(BP).

For θ ≤ 0, the same argument yields a lower bound

m′(θ) ≥ cθ · m′(θ) + vθ · m(θ).

Rearrange these inequalities to isolate the log-derivative m′(θ)/m(θ) of the trace
m.g.f. We reach

d

dθ
logm(θ) ≤ vθ

1 − cθ
for 0 ≤ θ < 1/c and(4.8)

d

dθ
logm(θ) ≥ vθ

1 − cθ
for θ ≤ 0.(4.9)

4.2.3. Solving the differential inequalities. Observe that

logm(0) = log t̄r e0 = log t̄r I = log 1 = 0.(4.10)

Therefore, we may integrate the differential inequalities (4.8) and (4.9), starting at
zero, to obtain bounds on logm(θ) elsewhere.

First, assume that 0 ≤ θ < 1/c. In view of (4.10), the fundamental theorem of
calculus and the differential inequality (4.8) imply that

logm(θ) =
∫ θ

0

d

ds
logm(s)ds ≤

∫ θ

0

vs

1 − cs
ds = − v

c2

(
cθ + log(1 − cθ)

)
.

We can develop a weaker inequality by making a further approximation within the
integral,

logm(θ) ≤
∫ θ

0

vs

1 − cs
ds ≤

∫ θ

0

vs

1 − cθ
ds = vθ2

2(1 − cθ)
.

These inequalities are the trace m.g.f. estimates (4.5) and (4.6) appearing in
Lemma 4.3.



920 L. MACKEY ET AL.

Next, assume that θ ≤ 0. In this case, the differential inequality (4.9) yields

− logm(θ) =
∫ 0

θ

d

ds
logm(s)ds ≥

∫ 0

θ

vs

1 − cs
ds ≥

∫ 0

θ
vs ds = −vθ2

2
.

This calculation delivers the trace m.g.f. bound (4.4). The proof of Lemma 4.3 is
complete.

4.2.4. The matrix Laplace transform argument. With Lemma 4.3 at hand, we
quickly finish the proof of Theorem 4.1. First, let us establish probability inequali-
ties for the maximum eigenvalue. The Laplace transform bound (3.1) and the trace
m.g.f. estimate (4.5) together yield

P
{
λmax(X) ≥ t

} ≤ inf
0<θ<1/c

d · exp
{
−θt − v

c2

(
cθ + log(1 − cθ)

)}

≤ d · exp
{
− t

c
+ v

c2 log
(

1 + ct

v

)}
.

The second relation follows when we choose θ = t/(v + ct). Similarly, the trace
m.g.f. bound (4.6) delivers

P
{
λmax(X) ≥ t

} ≤ inf
0<θ<1/c

d · exp
{
−θt + vθ2

2(1 − cθ)

}

= d · exp
{
− v

2c2 (1 −
√

1 + 2ct/v)2
}

≤ d · exp
{
− t2

2v + 2ct

}
,

because the infimum occurs at θ = (1 − 1/
√

1 + 2ct/v)/c. The final inequality
depends on the numerical fact

(1 − √
1 + 2x)2 ≥ x2

1 + x
for all x ≥ 0.

To control the expectation of the maximum eigenvalue, we combine the Laplace
transform bound (3.3) and the trace m.g.f. bound (4.6) to see that

Eλmax(X) ≤ inf
0<θ<1/c

1

θ

[
logd + vθ2

2(1 − cθ)

]
=

√
2v logd + c logd.

The second relation can be verified using a computer algebra system.
Next, we turn to results for the minimum eigenvalue. Combine the matrix

Laplace transform bound (3.2) with the trace m.g.f. bound (4.4) to reach

P
{
λmin(X) ≤ −t

} ≤ d · inf
θ<0

exp
{
θt + vθ2

2

}
= d · e−t2/2v.
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The infimum is attained at θ = −t/v. To compute the expectation of the mini-
mum eigenvalue, we apply the Laplace transform bound (3.4) and the trace m.g.f.
bound (4.4), whence

Eλmin(X) ≥ sup
θ<0

1

θ

[
logd + vθ2

2

]
= −

√
2v logd.

The supremum is attained at θ = −
√

2v−1 logd .

5. Refined exponential concentration for random matrices. Although The-
orem 4.1 is a strong result, the hypothesis �X � cX + vI on the conditional vari-
ance is too stringent for many situations of interest. Our second major result shows
that we can use the typical behavior of the conditional variance to obtain tail
bounds for the maximum eigenvalue of a random Hermitian matrix.

THEOREM 5.1 (Refined concentration for random matrices). Suppose that
(X,X′) ∈ H

d × H
d is a matrix Stein pair, and assume that X is almost surely

bounded in norm. Define the function

r(ψ) := 1

ψ
logE t̄r eψ�X for each ψ > 0,(5.1)

where �X is the conditional variance (2.4). Then, for all t ≥ 0 and all ψ > 0,

P
{
λmax(X) ≥ t

} ≤ d · exp
{ −t2

2r(ψ) + 2t/
√

ψ

}
.(5.2)

Furthermore, for all ψ > 0,

Eλmax(X) ≤
√

2r(ψ) logd + logd√
ψ

.(5.3)

This theorem is essentially a matrix version of a result from Chatterjee’s the-
sis [7], Theorem 3.13. The proof of Theorem 5.1 is similar in spirit to the proof of
Theorem 4.1, so we postpone the demonstration until Appendix A.

Let us offer some remarks to clarify the meaning of this result. Recall that �X
is a stochastic approximation for the variance of the random matrix X. We can
interpret the function r(ψ) as a measure of the typical magnitude of the conditional
variance. Indeed, the matrix Laplace transform result, Proposition 3.3, ensures that

Eλmax(�X) ≤ inf
ψ>0

[
r(ψ) + logd

ψ

]
.

The import of this inequality is that we can often identify a value of ψ to make
r(ψ) ≈ Eλmax(�X). Ideally, we also want to choose r(ψ) � ψ−1/2 so that the
term r(ψ) drives the tail bound (5.2) when the parameter t is small. In the next
subsection, we show that these heuristics yield a matrix Bernstein inequality.



922 L. MACKEY ET AL.

5.1. Application: The matrix Bernstein inequality. As an illustration of The-
orem 5.1, we establish a tail bound for a sum of centered, independent random
matrices that are subject to a uniform norm bound.

COROLLARY 5.2 (Matrix Bernstein). Consider an independent sequence
(Yk)k≥1 of random matrices in H

d that satisfy

EYk = 0 and ‖Yk‖ ≤ R for each index k.

Then, for all t ≥ 0,

P

{
λmax

(∑
k

Yk

)
≥ t

}
≤ d · exp

{ −t2

3σ 2 + 2Rt

}
for σ 2 :=

∥∥∥∥∑
k

EY2
k

∥∥∥∥.
Furthermore,

Eλmax

(∑
k

Yk

)
≤ σ

√
3 logd + R logd.

Corollary 5.2 is directly comparable with other matrix Bernstein inequalities in
the literature. The constants are slightly worse than [49], Theorem 1.4 and slightly
better than [35], Theorem 1.2. The hypotheses in the current result are somewhat
stricter than those in the prior works. Nevertheless, the proof provides a template
for studying more complicated random matrices that involve dependent random
variables.

PROOF OF COROLLARY 5.2. Consider the matrix Stein pair (X,X′) described
in Section 2.4. Calculation (2.6) shows that the conditional variance of X satisfies

�X = 1

2

∑
k

(
Y2

k +EY2
k

)
.

The function r(ψ) measures the typical size of �X. To control r(ψ), we center the
conditional variance and reduce the expression as follows:

r(ψ) := 1

ψ
logE t̄r eψ�X ≤ 1

ψ
logE t̄r exp

{
ψ(�X −E�X) + ψ‖E�X‖ · I

}

= 1

ψ
logE t̄r

[
eψσ 2 · exp

{
ψ(�X −E�X)

}]
(5.4)

= σ 2 + 1

ψ
logE t̄r eψ(�X−E�X).

The inequality depends on the monotonicity of the trace exponential [38], Sec-
tion 2. Afterward, we have applied the identity ‖E�X‖ = ‖EX2‖ = σ 2, which
follows from (2.5) and the independence of the sequence (Yk)k≥1.
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Introduce the centered random matrix

W := �X −E�X = 1

2

∑
k

(
Y2

k −EY2
k

)
.(5.5)

Observe that W consists of a sum of centered, independent random matrices, so
we can study it using the matrix Stein pair discussed in Section 2.4. Adapt the
conditional variance calculation (2.6) to obtain

�W = 1

2
· 1

4

∑
k

[(
Y2

k −EY2
k

)2 +E
(
Y2

k −EY2
k

)2]

� 1

8

∑
k

[
2Y4

k + 2
(
EY2

k

)2 +EY4
k − (

EY2
k

)2]

� 1

4

∑
k

(
Y4

k +EY4
k

)
.

To reach the second line, we apply the operator convexity (1.1) of the matrix square
to the first parenthesis, and we compute the second expectation explicitly. The
third line follows from the operator Jensen inequality (1.2). To continue, make the
estimate Y4

k � R2Y2
k in both terms. Thus,

�W � R2

4

n∑
k=1

(
Y2

k +EY2
k

)
� R2

2
· W + R2σ 2

2
· I.

The trace m.g.f. bound, Lemma 4.3, delivers

logmW(ψ) = logE t̄r eψW ≤ R2σ 2ψ2

4 − 2R2ψ
.(5.6)

To complete the proof, combine the bounds (5.4) and (5.6) to reach

r(ψ) ≤ σ 2 + R2σ 2ψ

4 − 2R2ψ
.

In particular, it holds that r(R−2) ≤ 1.5σ 2. The result now follows from Theo-
rem 5.1. �

6. Polynomial moments and the spectral norm of a random matrix. We
can also study the spectral norm of a random matrix by bounding its polyno-
mial moments. To present these results, we must introduce the family of Schatten
norms.

DEFINITION 6.1 (Schatten norm). For each p ≥ 1, the Schatten p-norm is
defined as

‖B‖p := (
tr |B|p)1/p for B ∈ M

d .
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In this setting, |B| := (B∗B)1/2. Bhatia’s book [2], Chapter IV, contains a detailed
discussion of these norms and their properties.

The following proposition is a matrix analog of the Chebyshev bound from
classical probability. As in the scalar case [27], Exercise 1, this bound is at least as
tight as the analogous matrix Laplace transform bound (3.1).

PROPOSITION 6.2 (Matrix Chebyshev method). Let X be a random matrix.
For all t > 0,

P
{‖X‖ ≥ t

} ≤ inf
p≥1

t−p ·E‖X‖p
p.(6.1)

Furthermore,

E‖X‖ ≤ inf
p≥1

(
E‖X‖p

p

)1/p
.(6.2)

PROOF. To prove (6.1), we use Markov’s inequality. For p ≥ 1,

P
{‖X‖ ≥ t

} ≤ t−p ·E‖X‖p = t−p ·E∥∥|X|p∥∥ ≤ t−p ·E tr |X|p,

since the trace of a positive matrix dominates the maximum eigenvalue. To ver-
ify (6.2), select p ≥ 1. Jensen’s inequality implies that

E‖X‖ ≤ (
E‖X‖p)1/p = (

E
∥∥|X|p∥∥)1/p ≤ (

E tr |X|p)1/p
.

Identify the Schatten p-norm and take infima to complete the bounds. �

7. Polynomial moment inequalities for random matrices. Our last major
result demonstrates that the polynomial moments of a random Hermitian matrix
are controlled by the moments of the conditional variance. By combining this result
with the matrix Chebyshev method, Proposition 6.2, we can obtain probability
inequalities for the spectral norm of a random Hermitian matrix.

THEOREM 7.1 (Matrix BDG inequality). Let p = 1 or p ≥ 1.5. Suppose that
(X,X′) is a matrix Stein pair where E‖X‖2p

2p < ∞. Then

(
E‖X‖2p

2p

)1/(2p) ≤
√

2p − 1 · (
E‖�X‖p

p

)1/(2p)
.

The conditional variance �X is defined in (2.4).

REMARK 7.2 (Missing values). Theorem 7.1 also holds when 1 < p < 1.5. In
this range, our bound for the constant is

√
4p − 2. The proof requires a variant of

the mean value trace inequality for a convex function h.



MATRIX CONCENTRATION VIA EXCHANGEABLE PAIRS 925

Theorem 7.1 extends a scalar result of Chatterjee [6], Theorem 1.5(iii), to the
matrix setting. Chatterjee’s bound can be viewed as an exchangeable pairs ver-
sion of the Burkholder–Davis–Gundy (BDG) inequality from classical martingale
theory [4]. Other matrix extensions of the BDG inequality appear in the work of
Pisier–Xu [40] and the work of Junge–Xu [21, 22]. The proof of Theorem 7.1,
which applies equally to infinite dimensional operators X, appears below in Sec-
tion 7.3.

7.1. Application: Matrix Khintchine inequality. First, we demonstrate that the
matrix BDG inequality contains an improvement of the noncommutative Khint-
chine inequality [28, 29] in the matrix setting. This result has been a dominant
tool in several application areas over the last few years, largely because of the
articles [44, 45].

COROLLARY 7.3 (Matrix Khintchine). Suppose that p = 1 or p ≥ 1.5. Con-
sider a finite sequence (Yk)k≥1 of independent, random, Hermitian matrices and
a deterministic sequence (Ak)k≥1 for which

EYk = 0 and Y2
k � A2

k almost surely for each index k.(7.1)

Then (
E

∥∥∥∥∑
k

Yk

∥∥∥∥2p

2p

)1/(2p)

≤
√

p − 0.5 ·
∥∥∥∥
(∑

k

(
A2

k +EY2
k

))1/2∥∥∥∥
2p

.

In particular, when (εk)k≥1 is an independent sequence of Rademacher random
variables, (

E

∥∥∥∥∑
k

εkAk

∥∥∥∥
2p

2p

)1/(2p)

≤
√

2p − 1 ·
∥∥∥∥
(∑

k

A2
k

)1/2∥∥∥∥
2p

.(7.2)

PROOF. Consider the random matrix X = ∑
k Yk . We use the matrix Stein

pair constructed in Section 2.4. According to (2.6), the conditional variance �X
satisfies

�X = 1

2

∑
k

(
Y2

k +EY2
k

)
� 1

2

∑
k

(
A2

k +EY2
k

)
.

An application of Theorem 7.1 completes the argument. �

For each positive integer p, the optimal constant C2p on the right-hand side
of (7.2) satisfies

C2p
2p = (2p − 1)!! = (2p)!/(

2pp!)
as shown by Buchholz [3], Theorem 5. Since (2p − 1)p/(2p − 1)!! < ep−1/2 for
each positive integer p, the constant in (7.2) lies within a factor

√
e of optimal.
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Previous methods for establishing the matrix Khintchine inequality are rather in-
volved, so it is remarkable that the simple argument based on exchangeable pairs
leads to a result that is so accurate. The same argument even yields a result under
the weaker assumption that

∑
k Y2

k � A2 almost surely.

7.2. Application: Matrix Rosenthal inequality. As a second example, we can
develop a more sophisticated set of moment inequalities that are roughly the poly-
nomial equivalent of the exponential moment bound underlying the matrix Bern-
stein inequality.

COROLLARY 7.4 (Matrix Rosenthal inequality). Suppose that p = 1 or
p ≥ 1.5. Consider a finite sequence (Pk)k≥1 of independent, random psd matri-

ces that satisfy E‖Pk‖2p
2p < ∞. Then(

E

∥∥∥∥∑
k

Pk

∥∥∥∥2p

2p

)1/(2p)

(7.3)

≤
[∥∥∥∥∑

k

EPk

∥∥∥∥
1/2

2p

+
√

4p − 2 ·
(∑

k

E‖Pk‖2p
2p

)1/(4p)]2

.

Now, consider a finite sequence (Yk)k≥1 of centered, independent, random Hermi-

tian matrices, and assume that E‖Yk‖4p
4p < ∞. Then(

E

∥∥∥∥∑
k

Yk

∥∥∥∥
4p

4p

)1/(4p)

(7.4)

≤
√

4p − 1 ·
∥∥∥∥
(∑

k

EY2
k

)1/2∥∥∥∥
4p

+ (4p − 1) ·
(∑

k

E‖Yk‖4p
4p

)1/(4p)

.

Turn to Appendix B for the proof of Corollary 7.4. This result extends a moment
inequality due to Nagaev and Pinelis [33], which refines the constants in Rosen-
thal’s inequality [43], Lemma 1. See the historical discussion [39], Section 5, for
details. An interesting application of Corollary 7.4 is to establish improved sam-
ple complexity bounds for masked sample covariance estimation [8] when the
dimension of a covariance matrix exceeds the number of samples. As we were
finishing this paper, we learned that Junge and Zheng have recently established
a noncommutative moment inequality [23], Theorem 0.4, that is quite similar to
Corollary 7.4.

7.3. Proof of the matrix BDG inequality. In many respects, the proof of the
matrix BDG inequality is similar to the proof of the exponential concentration
result, Theorem 4.1. Both are based on moment comparison arguments that ul-
timately depend on the method of exchangeable pairs and the mean value trace
inequality.
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Suppose that (X,X′) is a matrix Stein pair with scale factor α. First, observe
that the result for p = 1 already follows from (2.5). Therefore, we may assume
that p ≥ 1.5. Introduce notation for the quantity of interest,

E := E‖X‖2p
2p = E tr |X|2p.

Rewrite the expression for E by peeling off a copy of |X|. This move yields

E = E tr
[|X| · |X|2p−1] = E tr

[
X · sgn (X) · |X|2p−1]

.

Apply the method of exchangeable pairs, Lemma 2.4, with F(X) = sgn (X) ·
|X|2p−1 to reach

E = 1

2α
E tr

[(
X − X′) · (

sgn (X) · |X|2p−1 − sgn
(
X′) · ∣∣X′∣∣2p−1)]

.

To verify the regularity condition (2.2) in Lemma 2.4, compute that

E
∥∥(

X − X′) · sgn (X) · |X|2p−1∥∥
≤ E

(‖X‖‖X‖2p−1) +E
(∥∥X′∥∥‖X‖2p−1)

≤ 2
(
E‖X‖2p)1/(2p)(

E‖X‖2p)(2p−1)/2p

= 2E‖X‖2p < ∞.

We have used the fact that sgn (X) is a unitary matrix, the exchangeability of
(X,X′), Hölder’s inequality for expectation and the fact that the Schatten 2p-norm
dominates the spectral norm.

We intend to apply the mean value trace inequality to obtain an estimate for the
quantity E. Consider the function h : s �→ sgn (s) · |s|2p−1. Its derivative h′(s) =
(2p − 1) · |s|2p−2 is convex because p ≥ 1.5. Lemma 3.4 delivers the bound

E ≤ 2p − 1

4α
E tr

[(
X − X′)2 · (|X|2p−2 + ∣∣X′∣∣2p−2)]

= 2p − 1

2α
E tr

[(
X − X′)2 · |X|2p−2]

= (2p − 1) ·E tr
[
�X · |X|2p−2]

.

The second line follows from the exchangeability of X and X′. In the last line,
we identify the conditional variance �X, defined in (2.4). As before, the moment
bound E‖X‖2p

2p < ∞ is strong enough to justify using the pull-through property in
this step.

To continue, we must find a copy of E within the latter expression. We can
accomplish this goal using one of the basic results from the theory of Schatten
norms [2], Corollary IV.2.6.
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PROPOSITION 7.5 (Hölder inequality for trace). Let p and q be Hölder con-
jugate indices, that is, positive numbers with the relationship q = p/(p − 1). Then

tr(BC) ≤ ‖B‖p‖C‖q for all B,C ∈M
d .

To complete the argument, apply the Hölder inequality for the trace followed by
the Hölder inequality for the expectation. Thus

E ≤ (2p − 1) ·E[‖�X‖p · ∥∥|X|2p−2∥∥
p/(p−1)

]
= (2p − 1) ·E[‖�X‖p · ‖X‖2p−2

2p

]
≤ (2p − 1) · (

E‖�X‖p
p

)1/p · (
E‖X‖2p

2p

)(p−1)/p

= (2p − 1) · (
E‖�X‖p

p

)1/p · E(p−1)/p.

Solve this algebraic inequality for the positive number E to conclude that

E ≤ (2p − 1)p ·E‖�X‖p
p.

Extract the (2p)th root to establish the matrix BDG inequality.

8. Extension to general complex matrices. Although, at first sight, it may
seem that our theory is limited to random Hermitian matrices, results for general
random matrices follow as a formal corollary [42, 49]. The approach is based on a
device from operator theory [37].

DEFINITION 8.1 (Hermitian dilation). Let B be a matrix in C
d1×d2 , and set

d = d1 + d2. The Hermitian dilation of B is the matrix

D(B) :=
[

0 B
B∗ 0

]
∈ H

d .

The dilation has two valuable properties. First, it preserves spectral information,

λmax
(
D(B)

) = ∥∥D(B)
∥∥ = ‖B‖.(8.1)

Second, the square of the dilation satisfies

D(B)2 =
[

BB∗ 0
0 B∗B

]
.(8.2)

We can study a random matrix—not necessarily Hermitian—by applying our
matrix concentration inequalities to the Hermitian dilation of the random matrix.
As an illustration, let us prove a Bernstein inequality for general random matrices.

COROLLARY 8.2 (Bernstein inequality for general matrices). Consider a fi-
nite sequence (Zk)k≥1 of independent random matrices in C

d1×d2 that satisfy

EZk = 0 and ‖Zk‖ ≤ R almost surely for each index k.
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Define d := d1 + d2, and introduce the variance measure

σ 2 := max
{∥∥∥∥∑

k

E
(
ZkZ∗

k

)∥∥∥∥,
∥∥∥∥∑

k

E
(
Z∗

kZk

)∥∥∥∥
}
.

Then, for all t ≥ 0,

P

{∥∥∥∥∑
k

Zk

∥∥∥∥ ≥ t

}
≤ d · exp

{ −t2

3σ 2 + 2Rt

}
.(8.3)

Furthermore,

E

∥∥∥∥∑
k

Zk

∥∥∥∥ ≤ σ
√

3 logd + R logd.(8.4)

PROOF. Consider the random series
∑

k D(Zk). The summands are indepen-
dent, random Hermitian matrices that satisfy

ED(Zk) = 0 and
∥∥D(Zk)

∥∥ ≤ R.

The second identity depends on the spectral property (8.1). Therefore, the matrix
Bernstein inequality, Corollary 5.2, applies. To state the outcome, we first note that
λmax(

∑
k D(Zk)) = ‖∑

k Zk‖, again because of the spectral property (8.1). Next,
use the formula (8.2) to compute that

∥∥∥∥∑
k

E
[
D(Zk)

2]∥∥∥∥ =

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣

∑
k

E
(
ZkZ∗

k

)
0

0
∑
k

E
(
Z∗

kZk

)
⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥
= σ 2.

This observation completes the proof. �

Corollary 8.2 has important implications for the problem of estimating a ma-
trix from noisy measurements. Indeed, bound (8.4) leads to a sample complexity
analysis for matrix completion [13]. Moreover, a variety of authors have used tail
bounds of the form (8.3) to control the error of convex optimization methods for
matrix estimation [16, 30, 34, 42].

9. A sum of conditionally independent, zero-mean matrices. A chief ad-
vantage of the method of exchangeable pairs is its ability to handle random ma-
trices constructed from dependent random variables. In this section, we briefly
describe a way to relax the independence requirement when studying a sum of
random matrices. In Sections 10 and 11, we develop more elaborate examples.
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9.1. Formulation. Let us consider a finite sequence (Y1, . . . ,Yn) of random
Hermitian matrices that are conditionally independent given an auxiliary random
element Z. Suppose moreover that

E[Yk | Z] = 0 almost surely for each index k.(9.1)

We are interested in the sum of these conditionally independent, zero-mean ran-
dom matrices

X := Y1 + · · · + Yn.(9.2)

This type of series includes many examples that arise in practice.

EXAMPLE 9.1 (Rademacher series with random matrix coefficients). Con-
sider a finite sequence (Wk)k≥1 of random Hermitian matrices. Suppose the se-
quence (εk)k≥1 consists of independent Rademacher random variables that are in-
dependent from the random matrices. Consider the random series∑

k

εkWk.

The summands may be strongly dependent on each other, but the independence of
the Rademacher variables ensures that the summands are conditionally indepen-
dent and of zero mean (9.1) given Z := (Wk)k≥1.

9.2. A matrix Stein pair. Let us describe how to build a matrix Stein pair
(X,X′) for the sum (9.2) of conditionally independent, zero-mean random matri-
ces. The approach is similar to the case of an independent sum, which appears in
Section 2.4. For each k, we draw a random matrix Y′

k so that Y′
k and Yk are condi-

tionally i.i.d. given (Yj )j �=k . Then, independently, we draw an index K uniformly
at random from {1, . . . , n}. As in Section 2.4, the random matrix

X′ := Y1 + · · · + YK−1 + Y′
K + YK+1 + · · · + Yn

is an exchangeable counterpart to X. The conditional independence and condi-
tional zero-mean (9.1) assumptions imply that, almost surely,

E
[
Y′

k | (Yj )j �=k

] = E
[
Yk | (Yj )j �=k

] = E
[
E[Yk | Z] | (Yj )j �=k

] = 0.

Hence,

E
[
X − X′ | (Yj )j≥1

] = E
[
YK − Y′

K | (Yj )j≥1
]

= 1

n

n∑
k=1

(
Yk −E

[
Y′

k | (Yj )j �=k

]) = 1

n

n∑
k=1

Yk = 1

n
X.

Therefore, (X,X′) is a matrix Stein pair with scale factor α = n−1.
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We can determine the conditional variance after a short argument that parallels
computation (2.6) in the independent setting,

�X = n

2
·E[(

YK − Y′
K

)2 | (Yj )j≥1
]

(9.3)

= 1

2

n∑
k=1

(
Y2

k +E
[
Y2

k | (Yj )j �=k

])
.

Expression (9.3) shows that, even in the presence of some dependence, we can
control the size of the conditional expectation uniformly if we control the size of
the individual summands.

Using the Stein pair (X,X′) and expression (9.3), we may develop a variety of
concentration inequalities for conditionally independent, zero-mean sums that are
analogous to our results for independent sums. We omit detailed examples.

10. Combinatorial sums of matrices. The method of exchangeable pairs can
also be applied to many types of highly symmetric distributions. In this section,
we study a class of combinatorial matrix statistics, which generalize the scalar
statistics studied by Hoeffding [18].

10.1. Formulation. Consider a deterministic array (Ajk)
n
j,k=1 of Hermitian

matrices, and let π be a uniformly random permutation on {1, . . . , n}. Define the
random matrix

Y :=
n∑

j=1

Ajπ(j) whose mean EY = 1

n

n∑
j,k=1

Ajk.(10.1)

The combinatorial sum Y is a natural candidate for an exchangeable pair analysis.
Before we describe how to construct a matrix Stein pair, let us mention a few
problems that lead to a random matrix of the form Y.

EXAMPLE 10.1 (Sampling without replacement). Consider a finite collection
B := {B1, . . . ,Bn} of deterministic Hermitian matrices. Suppose that we want to
study a sum of s matrices sampled randomly from B without replacement. We can
express this type of series in the form

W :=
s∑

j=1

Bπ(j),

where π is a random permutation on {1, . . . , n}. The matrix W is therefore an
example of a combinatorial sum.

EXAMPLE 10.2 (A randomized “inner product”). Consider two fixed se-
quences of complex matrices

B1, . . . ,Bn ∈C
d1×s and C1, . . . ,Cn ∈ C

s×d2 .
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We may form a permuted matrix “inner product” by arranging one sequence in ran-
dom order, multiplying the elements of the two sequences together, and summing
the terms. That is, we are interested in the random matrix

Z :=
n∑

j=1

Bj Cπ(j).

This random matrix D(Z) is a combinatorial sum of Hermitian matrices.

10.2. A matrix Stein pair. To study the combinatorial sum (10.1) of matrices
using the method of exchangeable pairs, we first introduce the zero-mean random
matrix

X := Y −EY.

To construct a matrix Stein pair (X,X′), we draw a pair (J,K) of indices indepen-
dently of π and uniformly at random from {1, . . . , n}2. Define a second random
permutation π ′ := π ◦ (J,K) by composing π with the transposition of the ran-
dom indices J and K . The pair (π,π ′) is exchangeable, so

X′ :=
n∑

j=1

Ajπ ′(j) −EY

is an exchangeable counterpart to X.
To verify that (X,X′) is a matrix Stein pair, we calculate that

E
[
X − X′ | π] = E[AJπ(J ) + AKπ(K) − AJπ(K) − AKπ(J ) | π ]

= 1

n2

n∑
j,k=1

[Ajπ(j) + Akπ(k) − Ajπ(k) − Akπ(j)]

= 2

n
(Y −EY) = 2

n
X.

The first identity holds because the sums X and X′ differ for only four choices of
indices. Thus (X,X′) is a Stein pair with scale factor α = 2/n.

Turning to the conditional variance, we find that

�X(π) = n

4
E

[(
X − X′)2 | π]

(10.2)

= 1

4n

n∑
j,k=1

[Ajπ(j) + Akπ(k) − Ajπ(k) − Akπ(j)]2.

The structure of the conditional variance differs from previous examples, but we
recognize that �X is controlled when the matrices Ajk are bounded.
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10.3. Exponential concentration for a combinatorial sum. We can apply our
matrix concentration results to study the behavior of a combinatorial sum of ma-
trices. As an example, let us present a Bernstein-type inequality. The argument is
similar to the proof of Corollary 5.2, so we leave the details to Appendix C.

COROLLARY 10.3 (Bernstein inequality for a combinatorial matrix sum).
Consider an array (Ajk)

n
j,k=1 of deterministic matrices in H

d that satisfy

n∑
j,k=1

Ajk = 0 and ‖Ajk‖ ≤ R for each pair (j, k) of indices.

Define the random matrix X := ∑n
j=1 Ajπ(j), where π is a uniformly random per-

mutation on {1, . . . , n}. Then, for all t ≥ 0,

P
{
λmax(X) ≥ t

} ≤ d · exp
{ −t2

12σ 2 + 4
√

2Rt

}
for σ 2 := 1

n

∥∥∥∥∥
n∑

j,k=1

A2
jk

∥∥∥∥∥.
Furthermore,

Eλmax(X) ≤ σ
√

12 logd + 2
√

2R logd.

11. Self-reproducing matrix functions. The method of exchangeable pairs
can also be used to analyze nonlinear matrix-valued functions of random variables.
In this section, we explain how to analyze matrix functions that satisfy a self-
reproducing property.

11.1. Example: Matrix second-order Rademacher chaos. We begin with an
example that shows how the self-reproducing property might arise. Consider a
quadratic form that takes on random matrix values

H(ε) := ∑
k

∑
j<k

εj εkAjk.(11.1)

In this expression, ε is a finite vector of independent Rademacher random vari-
ables. The array (Ajk)j,k≥1 consists of deterministic Hermitian matrices, and we
assume that Ajk = Akj .

Observe that the summands in H(ε) are dependent, and they do not satisfy the
conditional zero-mean property (9.1) in general. Nevertheless, H(ε) does satisfy a
fruitful self-reproducing property∑

k

(
H(ε) −E

[
H(ε) | (εj )j �=k

]) = ∑
k

∑
j �=k

εj

(
εk −E[εk])Ajk

= ∑
k

∑
j �=k

εj εkAjk = 2H(ε).
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We have applied the pull-through property of conditional expectation, the assump-
tion that the Rademacher variables are independent and the fact that Ajk = Akj .
As we will see, this type of self-reproducing condition can be used to construct a
matrix Stein pair.

A random matrix of the form (11.1) is called a second-order Rademacher chaos.
This class of random matrices arises in a variety of situations, including ran-
domized linear algebra [11], compressed sensing [41], Section 9, and chance-
constrained optimization [9]. Indeed, concentration inequalities for the matrix-
valued Rademacher chaos have many potential applications.

11.2. Formulation and matrix Stein pair. In this section, we describe a more
general version of the self-reproducing property. Suppose that z := (Z1, . . . ,Zn)

is a random vector taking values in a Polish space Z . First, we construct an ex-
changeable counterpart

z′ := (
Z1, . . . ,ZK−1,Z

′
K,ZK+1, . . . ,Zn

)
,(11.2)

where Zk and Z′
k are conditionally i.i.d. given (Zj )j �=k , and K is an independent

coordinate drawn uniformly at random from {1, . . . , n}.
Next, let H :Z → H

d be a bounded measurable function. Assume that H(z)
satisfies an abstract self-reproducing property: for a parameter s > 0,

n∑
k=1

(
H(z) −E

[
H(z) | (Zj )j �=k

]) = s · (
H(z) −EH(z)

)
almost surely.

Under this assumption, we can easily check that the random matrices

X := H(z) −EH(z) and X′ := H
(
z′) −EH(z)

form a matrix Stein pair. Indeed,

E
[
X − X′ | z

] = E
[
H(z) − H

(
z′) | z

] = s

n

(
H(z) −EH(z)

) = s

n
X.

We see that (X,X′) is a matrix Stein pair with scaling factor α = s/n.
Finally, we compute the conditional variance

�X(z) = n

2s
E

[(
H(z) − H

(
z′))2 | z

]
(11.3)

= 1

2s

n∑
k=1

E
[(

H(z) − H
(
Z1, . . . ,Z

′
k, . . . ,Zn

))2 | z
]
.

We discover that the conditional variance is small when H has controlled coor-
dinate differences. In this case, the method of exchangeable pairs provides good
concentration inequalities for the random matrix X.
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11.3. Matrix bounded differences inequality. As an example, we can develop a
bounded differences inequality for random matrices by appealing to Theorem 4.1.

COROLLARY 11.1 (Matrix bounded differences). Let z := (Z1, . . . ,Zn) be a
random vector taking values in a Polish space Z , and, for each index k, let Z′

k and
Zk be conditionally i.i.d. given (Zj )j �=k . Suppose that H :Z → H

d is a function
that satisfies the self-reproducing property

n∑
k=1

(
H(z) −E

[
H(z) | (Zj )j �=k

]) = s · (
H(z) −EH(z)

)
almost surely

for a parameter s > 0 as well as the bounded differences condition

E
[(

H(z) − H
(
Z1, . . . ,Z

′
k, . . . ,Zn

))2 | z
]
� A2

k for each index k(11.4)

almost surely, where Ak is a deterministic matrix in H
d . Then, for all t ≥ 0,

P
{
λmax

(
H(z) −EH(z)

) ≥ t
} ≤ d · e−st2/L for L :=

∥∥∥∥∥
n∑

k=1

A2
k

∥∥∥∥∥.
Furthermore,

Eλmax
(
H(z) −EH(z)

) ≤
√

L logd

s
.

In the scalar setting, Corollary 11.1 reduces to a version of McDiarmid’s
bounded difference inequality [31]. The result also complements the matrix
bounded difference inequality of [49], Corollary 7.5, which requires independent
input variables but makes no self-reproducing assumption.

PROOF OF COROLLARY 11.1. Since H(z) is self-reproducing, we may con-
struct a matrix Stein pair (X,X′) with scale factor α = s/n as in Section 11. Ac-
cording to (11.3), the conditional variance of the pair satisfies

�X = 1

2s

n∑
k=1

E
[(

H(z) − H
(
Z1, . . . ,Z

′
k, . . . ,Zn

))2 | z
]

� 1

2s

n∑
k=1

A2
k �

L

2s
· I.

We have used the bounded differences condition (11.4) and the definition of the
bound L. To complete the proof, we apply the concentration result, Theorem 4.1,
with the parameters c = 0 and v = L/2s. �
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APPENDIX A: PROOF OF THEOREM 5.1

The proof of the refined exponential concentration bound, Theorem 5.1, paral-
lels the argument in Theorem 4.1, but it differs at an important point. In the earlier
result, we used an almost sure bound on the conditional variance to control the
derivative of the trace m.g.f. This time, we use entropy inequalities to introduce
finer information about the behavior of the conditional variance. The proof is es-
sentially a matrix version of Chatterjee’s argument [7], Theorem 3.13.

Our main object is to bound the trace m.g.f. of X in terms of the trace m.g.f. of
the conditional variance. The next result summarizes our bounds.

LEMMA A.1 (Refined trace m.g.f. estimates). Let (X,X′) be a matrix Stein
pair, and assume that X is almost surely bounded in norm. Then the normalized
trace m.g.f. m(θ) := E t̄r eθX satisfies the bounds

logm(θ) ≤ 1

2
log

(
1

1 − θ2/ψ

)
logE t̄r eψ�X

(A.1)

≤ θ2/ψ

2(1 − θ2/ψ)
logE t̄r eψ�X for ψ > 0 and 0 ≤ θ <

√
ψ .

We establish Lemma A.1 in Section A.1 et seq. Afterward, in Section A.5, we
invoke the matrix Laplace transform bound to complete the proof of Theorem 5.1.

A.1. The derivative of the trace m.g.f. The first steps of the argument are the
same as in the proof of Theorem 4.1. Since X is almost surely bounded, we need
not worry about regularity conditions. The derivative of the trace m.g.f. satisfies

m′(θ) = E tr
[
XeθX]

for θ ∈ R.(A.2)

Lemma 3.7 provides a bound for the derivative in terms of the conditional variance,

m′(θ) ≤ θ ·E t̄r
[
�XeθX]

for θ ≥ 0.(A.3)

In the proof of Lemma 4.3, we applied an almost sure bound for the conditional
variance to control the derivative of the m.g.f. This time, we incorporate informa-
tion about the typical size of �X by developing a bound in terms of the function
r(ψ).

A.2. Entropy for random matrices and duality. Let us introduce an entropy
function for random matrices.

DEFINITION A.2 (Entropy for random matrices). Let W be a random matrix
in H

d+ subject to the normalization E t̄r W = 1. The (negative) matrix entropy is
defined as

ent(W) := E t̄r(W log W).(A.4)

We enforce the convention that 0 log 0 = 0.
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The matrix entropy is relevant to our discussion because its Fenchel–Legendre
conjugate is the cumulant generating function. The Young inequality for matrix
entropy offers one way to formulate this duality relationship.

PROPOSITION A.3 (Young inequality for matrix entropy). Suppose that V is
a random matrix in H

d that is almost surely bounded in norm, and suppose that
W is a random matrix in H

d+ subject to the normalization E t̄r W = 1. Then

E t̄r(VW) ≤ logE t̄r eV + ent(W).

Proposition A.3 follows from a variant of the argument in [5], Theorem 2.13.

A.3. A refined differential inequality for the trace m.g.f. We intend to ap-
ply the Young inequality for matrix entropy to decouple the product of random
matrices in (A.3). First, we must rescale the exponential in (A.3), so its expected
trace equals one,

W(θ) := 1

E t̄r eθX · eθX = 1

m(θ)
· eθX.(A.5)

For each ψ > 0, we can rewrite (A.3) as

m′(θ) ≤ θm(θ)

ψ
·E t̄r

[
ψ�X · W(θ)

]
.

The Young inequality for matrix entropy, Proposition A.3, implies that

m′(θ) ≤ θm(θ)

ψ

[
logE t̄r eψ�X + ent

(
W(θ)

)]
.(A.6)

The first term in the bracket is precisely ψr(ψ). Let us examine the second term
more closely.

To control the matrix entropy of W(θ), we need to bound its logarithm. Refer-
ring back to definition (A.5), we see that

log W(θ) = θX − (
logE t̄r eθX) · I � θX − (

log t̄r eθ EX) · I = θX.(A.7)

The second relation depends on Jensen’s inequality and the fact that the trace ex-
ponential is convex [38], Section 2. The third relation relies on the property that
EX = 0. Since the matrix W(θ) is positive, we can substitute the semidefinite
bound (A.7) into the definition (A.4) of the matrix entropy,

ent
(
W(θ)

) = E t̄r
[
W(θ) · log W(θ)

]
≤ θ ·E t̄r

[
W(θ) · X

] = θ

m(θ)
·E t̄r

[
XeθX]

.
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We have reintroduced the definition (A.5) of W(θ) in the last relation. Identify the
derivative (A.2) of the trace m.g.f. to reach

ent
(
W(θ)

) ≤ θm′(θ)

m(θ)
.(A.8)

To establish a differential inequality, substitute the definition (5.1) of r(ψ) and
the bound (A.8) into the estimate (A.6) to discover that

m′(θ) ≤ θm(θ)

ψ

[
ψr(ψ) + θm′(θ)

m(θ)

]
= r(ψ)θ · m(θ) + θ2

ψ
· m′(θ).

Rearrange this formula to isolate the log-derivative m′(θ)/m(θ) of the trace m.g.f.
We conclude that

d

dθ
logm(θ) ≤ r(ψ)θ

1 − θ2/ψ
for 0 ≤ θ <

√
ψ .(A.9)

A.4. Solving the differential inequality. To integrate (A.9), recall that
logm(0) = 0, and invoke the fundamental theorem of calculus to reach

logm(θ) =
∫ θ

0

d

ds
logm(s)ds ≤

∫ θ

0

r(ψ)s

1 − s2/ψ
ds = ψr(ψ)

2
log

(
1

1 − θ2/ψ

)
.

We can develop a weaker inequality by making a further approximation within the
integral

logm(θ) ≤
∫ θ

0

r(ψ)s

1 − s2/ψ
ds ≤

∫ θ

0

r(ψ)s

1 − θ2/ψ
ds = r(ψ)θ2

2(1 − θ2/ψ)
.

These calculations are valid when 0 ≤ θ <
√

ψ , so claim (A.1) follows.

A.5. The matrix Laplace transform argument. With the trace m.g.f.
bound (A.1) at hand, we can complete the proof of Theorem 5.1. Proposition 3.3,
the matrix Laplace transform method, yields the estimate

P
{
λmax(X) ≥ t

} ≤ d · inf
0<θ<

√
ψ

exp
{
−θt + r(ψ)θ2

2(1 − θ2/ψ)

}

≤ d · inf
0<θ<

√
ψ

exp
{
−θt + r(ψ)θ2

2(1 − θ/
√

ψ)

}

= d · exp
{
−r(ψ)ψ

2

(
1 −

√
1 + 2t/

(
r(ψ)

√
ψ

))2
}

≤ d · exp
{
− t2

2r(ψ) + 2t/
√

ψ

}
,

since the infimum occurs at θ = √
ψ −√

ψ/

√
1 + 2t/(r(ψ)

√
ψ). This delivers the

tail bound (5.2).
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To establish inequality (5.3) for the expectation of the maximum eigenvalue, we
can apply Proposition 3.3 and the trace m.g.f. bound (A.1) a second time. Indeed,

Eλmax(X) ≤ inf
0<θ<

√
ψ

1

θ

[
logd + r(ψ)θ2

2(1 − θ2/ψ)

]

≤ inf
0<θ<

√
ψ

1

θ

[
logd + r(ψ)θ2

2(1 − θ/
√

ψ)

]
=

√
2r(ψ) logd + logd√

ψ
.

This completes the proof of Theorem 5.1.

APPENDIX B: PROOF OF THEOREM 7.4

The proof of the matrix Rosenthal inequality takes place in two steps. First, we
verify that the bound (7.3) holds for psd random matrices. Then, we use this result
to provide a short proof of the bound (7.4) for Hermitian random matrices. Before
we start, let us remind the reader that the Lp norm of a scalar random variable Z

is given by (E |Z|p)1/p for each p ≥ 1.

B.1. A sum of random psd matrices. We begin with the moment bound (7.3)
for an independent sum of random psd matrices. Introduce the quantity of interest

E2 :=
(
E

∥∥∥∥∑
k

Pk

∥∥∥∥
2p

2p

)1/(2p)

.

We may invoke the triangle inequality for the L2p norm to obtain

E2 ≤
(
E

∥∥∥∥∑
k

(Pk −EPk)

∥∥∥∥
2p

2p

)1/(2p)

+
∥∥∥∥∑

k

EPk

∥∥∥∥
2p

= :
(
E‖X‖2p

2p

)1/(2p) + μ.

We can apply the matrix BDG inequality to control this expectation, which yields
an algebraic inequality between E2 and E. We solve this inequality to bound E2.

The series X consists of centered, independent random matrices, so we can use
the Stein pair described in Section 2.4. According to (2.6), the conditional variance
�X takes the form

�X = 1

2

∑
k

[
(Pk −EPk)

2 +E(Pk −EPk)
2]

� 1

2

∑
k

[
2P2

k + 2(EPk)
2 +EP2

k − (EPk)
2]

�
∑
k

(
P2

k +EP2
k

)
.
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The first inequality follows from the operator convexity (1.1) of the square func-
tion; the second expectation is computed exactly. The last bound uses the operator
Jensen inequality (1.2). Now, the matrix BDG inequality yields

E2 ≤
√

2p − 1 · (
E‖�X‖p

p

)1/(2p) + μ

≤
√

2p − 1 ·
(
E

∥∥∥∥∑
k

(
P2

k +EP2
k

)∥∥∥∥
p

p

)1/(2p)

+ μ

≤
√

4p − 2 ·
(
E

∥∥∥∥∑
k

P2
k

∥∥∥∥
p

p

)1/(2p)

+ μ.

The third line follows from the triangle inequality for the Lp norm and Jensen’s
inequality.

Next, we search for a copy of E2 inside this expectation. To accomplish this
goal, we want to draw a factor Pk off of each term in the sum. The following result
of Pisier and Xu [40], Lemma 2.6, has the form we desire.

PROPOSITION B.1 (A matrix Schwarz-type inequality). Consider a finite se-
quence (Ak)k≥1 of deterministic psd matrices. For each p ≥ 1,∥∥∥∥∑

k

A2
k

∥∥∥∥
p

≤
(∑

k

‖Ak‖2p
2p

)1/(2p)∥∥∥∥∑
k

Ak

∥∥∥∥
2p

.

Apply the matrix Schwarz-type inequality, Proposition B.1, to reach

E2 ≤
√

4p − 2 ·
[
E

(∑
k

‖Pk‖2p
2p

)1/2∥∥∥∥∑
k

Pk

∥∥∥∥
p

2p

]1/(2p)

+ μ

≤
√

4p − 2 ·
(∑

k

E‖Pk‖2p
2p

)1/(4p)(
E

∥∥∥∥∑
k

Pk

∥∥∥∥
2p

2p

)1/(4p)

+ μ.

The second bound is the Cauchy–Schwarz inequality for expectation. The resulting
estimate takes the form E2 ≤ cE + μ. Solutions of this quadratic inequality must
satisfy E ≤ c + √

μ. We reach

E ≤
√

4p − 2 ·
(∑

k

E‖Pk‖2p
2p

)1/(4p)

+
∥∥∥∥∑

k

EPk

∥∥∥∥
1/2

2p

.

Square this expression to complete the proof of (7.3).

B.2. A sum of centered, random Hermitian matrices. We are now prepared
to establish bound (7.4) for a sum of centered, independent, random Hermitian
matrices. Define the random matrix X := ∑

k Yk . We may use the matrix Stein pair



MATRIX CONCENTRATION VIA EXCHANGEABLE PAIRS 941

described in Section 2.4. According to (2.6), the conditional variance �X takes the
form

�X = 1

2

∑
k

(
Y2

k +EY2
k

)
.

The matrix BDG inequality, Theorem 7.1, yields(
E‖X‖4p

4p

)1/(4p) ≤
√

4p − 1 · (
E‖�X‖2p

2p

)1/(4p)

=
√

4p − 1 ·
(
E

∥∥∥∥1

2

∑
k

(
Y2

k +EY2
k

)∥∥∥∥
2p

2p

)1/(4p)

≤
√

4p − 1 ·
(
E

∥∥∥∥∑
k

Y2
k

∥∥∥∥
2p

2p

)1/(4p)

.

The third line follows from the triangle inequality for the L2p norm and Jensen’s
inequality. To bound the remaining expectation, we simply note that the sum con-
sists of independent, random psd matrices. We complete the proof by invoking the
matrix Rosenthal inequality (7.3) and simplifying.

APPENDIX C: PROOF OF THEOREM 10.3

Consider the matrix Stein pair (X,X′) constructed in Section 10.2. Expres-
sion (10.2) and the operator convexity (1.1) of the matrix square allow us to bound
the conditional variance as follows.

�X(π) = 1

4n

n∑
j,k=1

[Ajπ(j) + Akπ(k) − Ajπ(k) − Akπ(j)]2

� 1

n

n∑
j,k=1

[
A2

jπ(j) + A2
kπ(k) + A2

jπ(k) + A2
kπ(j)

]

= 2
n∑

j=1

A2
jπ(j) + 2

n

n∑
j,k=1

A2
jk = W + 4�,

where

W := 2

(
n∑

j=1

A2
jπ(j)

)
− 2� and � := 1

n

n∑
j,k=1

A2
jk.

Substitute the bound for �X(π) into the definition (5.1) of r(ψ) to see that

r(ψ) := 1

ψ
logE t̄r eψ�X(π)

(C.1)

≤ 1

ψ
logE t̄r eψ(W+4�) ≤ 4σ 2 + 1

ψ
logE t̄r eψW.



942 L. MACKEY ET AL.

The inequalities follow from the monotonicity of the trace exponential [38], Sec-
tion 2 and the fact that σ 2 = ‖�‖. Therefore, it suffices to bound the trace m.g.f.
of W.

Our approach is to construct a matrix Stein pair for W and to argue that the
associated conditional variance �W(π) satisfies a semidefinite bound. We may
then exploit the trace m.g.f. bounds from Lemma 4.3. Observe that W and X take
the same form: both have mean zero and share the structure of a combinatorial
sum. Therefore, we can study the behavior of W using the matrix Stein pair from
Section 10.2. Adapting (10.2), we see that the conditional variance of W satisfies

�W(π) = 1

n

n∑
j,k=1

[
A2

jπ(j) + A2
kπ(k) − A2

jπ(k) − A2
kπ(j)

]2

� 4

n

n∑
j,k=1

[
A4

jπ(j) + A4
kπ(k) + A4

jπ(k) + A4
kπ(j)

]

� 4R2

n

n∑
j,k=1

[
A2

jπ(j) + A2
kπ(k) + A2

jπ(k) + A2
kπ(j)

]
.

In the first line, the centering terms in W cancel each other out. Then we apply the
operator convexity (1.1) of the matrix square and the bound A4

jk �R2A2
jk . Finally,

identify W and � to reach

�W(π) � 4R2(W + 4�)� 4R2 · W + 16R2σ 2 · I.(C.2)

Matrix inequality (C.2) gives us access to established trace m.g.f. bounds. Indeed,

logE t̄r eψW ≤ 8R2σ 2ψ2

1 − 4R2ψ

as a consequence of Lemma 4.3 with parameters c = 4R2 and v = 16R2σ 2.
At last, we substitute the latter bound into (C.1) to discover that

r(ψ) ≤ 4σ 2 + 8R2σ 2ψ

1 − 4R2ψ
.

In particular, setting ψ = (8R2)−1, we find that r(ψ) ≤ 6σ 2. Apply Theorem 5.1
to wrap up.
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