Mixed Membership Matrix Factorization

Lester Mackey¹ David Weiss² Michael I. Jordan¹

 1 University of California, Berkeley

²University of Pennsylvania

International Conference on Machine Learning, 2010

Dyadic Data Prediction (DDP)

Learning from Pairs

- Given two sets of objects
 - Set of users and set of items
- Observe labeled object pairs
 - $r_{ui} = 5 \Leftrightarrow \mathsf{User}\ u$ gave item j a rating of 5
- Predict labels of unobserved pairs
 - How will user u rate item k?

Examples

- Rating prediction in collaborative filtering
 - How will user u rate movie j?
- Click prediction in web search
 - Will user u click on URL j?
- Link prediction in a social network
 - Is user u friends with user j?

Prior Models for Dyadic Data

Latent Factor Modeling / Matrix Factorization

Rennie & Srebro (2005); DeCoste (2006); Salakhutdinov & Mnih (2008); Takács et al. (2009); Lawrence & Urtasun (2009)

- Associate latent factor vector, $\mathbf{a}_u \in \mathbb{R}^D$, with each user u
- ullet Associate latent factor vector, $\mathbf{b}_j \in \mathbb{R}^D$, with each item j
- ullet Generate expected rating via inner product: $r_{uj} = {f a}_u \cdot {f b}_j$

Pro: State-of-the-art predictive performance

Con: Fundamentally static rating mechanism

- ullet Assumes user u rates according to ${f a}_u$, regardless of context
- In reality, dyadic interactions are heterogeneous
 - User's ratings may be influenced by instantaneous mood
 - Distinct users may share single account or web browser

Prior Models for Dyadic Data

Mixed Membership Modeling

Airoldi et al. (2008); Porteous et al. (2008)

- ullet Each user u maintains distribution over topics, $heta_{\scriptscriptstyle u}^U \in \mathbb{R}^{K^U}$
- Each item j maintains distribution over topics, $\theta_i^M \in \mathbb{R}^{K^M}$
- Expected rating r_{ui} determined by interaction-specific topics sampled from user and item topic distributions

Pro: Context-sensitive clustering

- User moods: in the mood for comedy vs. romance
- Item contexts: opening night vs. in high school classroom

Con: Purely groupwise interactions

- Assumes user and item interact only through their topics
- Relatively poor predictive performance

Mixed Membership Matrix Factorization (M³F)

Goal: Leverage the complementary strengths of latent factor models and mixed membership models for improved dyadic data prediction

General M³F Framework:

- Users and items endowed both with latent factor vectors (\mathbf{a}_u and (\mathbf{b}_i) and with topic distribution parameters (θ_u^U) and (θ_i^M)
- To rate an item
 - User u draws topic i from θ_u^U
 - Item j draws topic k from $\theta_i^{\tilde{M}}$
 - Expected rating

$$r_{uj} = \underbrace{\mathbf{a}_u \cdot \mathbf{b}_j}_{\text{static base rating}} + \underbrace{\beta_{uj}^{\imath k}}_{\text{context-sensitive bias}}$$

- M³F models differ in specification of β_{ui}^{ik}
- Fully Bayesian framework

Mixed Membership Matrix Factorization (M^3F)

Goal: Leverage the complementary strengths of latent factor models and mixed membership models for improved dyadic data prediction

General M³F Framework:

 \bullet ${\rm M^3F}$ models differ in specification of β^{ik}_{uj}

Specific M³F Models:

- M³F Topic-Indexed Bias Model
- M³F Topic-Indexed Factor Model

M³F Topic-Indexed Bias Model (M³F-TIB)

Contextual bias decomposes into latent user and latent item bias

$$\beta_{uj}^{ik} = c_u^k + d_j^i$$

- Item bias d_i^i influenced by user topic i
 - ullet Group predisposition toward liking/disliking item j
 - Captures polarizing Napoleon Dynamite effect
 - Certain movies provoke strongly differing reactions from otherwise similar users
- User bias c_u^k influenced by item topic k
 - ullet Predisposition of u toward liking/disliking item group

M³F Topic-Indexed Factor Model (M³F-TIF)

Contextual bias is an inner product of topic-indexed factor vectors

$$\beta_{uj}^{ik} = \mathbf{c}_u^k \cdot \mathbf{d}_j^i$$

- User u maintains latent vector $\mathbf{c}_u^k \in \mathbb{R}^{\tilde{D}}$ for each item topic k
- ullet Item j maintains latent vector $\mathbf{d}^i_j \in \mathbb{R}^{ ilde{D}}$ for each user topic i
- ullet Extends globally predictive factor vectors $({f a}_u,{f b}_j)$ with context-specific factors

Goal: Predict unobserved labels given labeled pairs

- Posterior inference over latent topics and parameters intractable
- Use block Gibbs sampling with closed form conditionals
 - User parameters sampled in parallel (same for items)
 - Interaction-specific topics sampled in parallel
- Bayes optimal prediction under root mean squared error (RMSE)

$$\mathbf{M}^{3}\text{F-TIB: } \frac{1}{T} \sum_{t=1}^{T} \left(\mathbf{a}_{u}^{(t)} \cdot \mathbf{b}_{j}^{(t)} + \sum_{k=1}^{K^{M}} c_{u}^{k(t)} \theta_{jk}^{M(t)} + \sum_{i=1}^{K^{U}} d_{j}^{i(t)} \theta_{ui}^{U(t)} \right)$$

$$\mathbf{M}^{3} \mathbf{F} \text{-} \mathbf{TIF:} \ \frac{1}{T} \sum_{t=1}^{T} \left(\mathbf{a}_{u}^{(t)} \cdot \mathbf{b}_{j}^{(t)} + \sum_{i=1}^{K^{U}} \sum_{k=1}^{K^{M}} \theta_{ui}^{U(t)} \theta_{jk}^{M(t)} \mathbf{c}_{u}^{k(t)} \cdot \mathbf{d}_{j}^{i(t)} \right)$$

Experimental Evaluation

The Data

- Real-world movie rating collaborative filtering datasets
- 1M MovieLens Dataset¹
 - 1 million ratings in $\{1, \ldots, 5\}$
 - 6,040 users, 3,952 movies
- EachMovie Dataset
 - 2.8 million ratings in $\{1, \ldots, 6\}$
 - 1,648 movies, 74,424 users
- Netflix Prize Dataset²
 - 100 million ratings in $\{1, \ldots, 5\}$
 - 17,770 movies, 480,189 users

http://www.grouplens.org/

²http://www.netflixprize.com/

Experimental Evaluation

The Setup

- Evaluate movie rating prediction performance on each dataset
 - RMSE as primary evaluation metric
 - Performance averaged over standard train-test splits
- Compare to state-of-the-art latent factor models
 - Bayesian Probabilistic Matrix Factorization³ (BPMF)
 - M³F reduces to BPMF when no topics are sampled
 - Gaussian process matrix factorization model⁴ (L&U)
- Matlab/MEX implementation on dual quad-core CPUs

³Salakhutdinov & Mnih (2008)

⁴Lawrence & Urtasun (2009)

1M MovieLens Data

Question: How does M³F performance vary with number of topics and static factor dimensionality?

- 3,000 Gibbs samples for M³F-TIB and BPMF
- 512 Gibbs samples for M 3 F-TIF ($\tilde{D}=2$)

Method	D=10	D=20	D=30	D=40
BPMF	0.8695	0.8622	0.8621	0.8609
M^3F-TIB (1,1)	0.8671	0.8614	0.8616	0.8605
$M^{3}F-TIF(1,2)$	0.8664	0.8629	0.8622	0.8616
M^3F -TIF (2,1)	0.8674	0.8605	0.8605	0.8595
$M^{3}F-TIF(2,2)$	0.8642	0.8584*	0.8584	0.8592
$M^{3}F-TIB$ (1,2)	0.8669	0.8611	0.8604	0.8603
$M^{3}F-TIB$ (2,1)	0.8649	0.8593	0.8581*	0.8577*
$M^{3}F-TIB$ (2,2)	0.8658	0.8609	0.8605	0.8599
L&U (2009)	0.8801	(RBF)	0.8791	(Linear)

EachMovie Data

Question: How does M³F performance vary with number of topics and static factor dimensionality?

- 3,000 Gibbs samples for M³F-TIB and BPMF
- 512 Gibbs samples for M 3 F-TIF ($\tilde{D}=2$)

Method	D=10	D=20	D=30	D=40
BPMF	1.1229	1.1212	1.1203	1.1163
M^3F-TIB (1,1)	1.1205	1.1188	1.1183	1.1168
$M^{3}F-TIF(1,2)$	1.1351	1.1179	1.1095	1.1072
$M^3F-TIF(2,1)$	1.1366	1.1161	1.1088	1.1058
$M^{3}F-TIF(2,2)$	1.1211	1.1043	1.1035	1.1020
$M^{3}F-TIB(1,2)$	1.1217	1.1081	1.1016	1.0978
$M^{3}F-TIB$ (2,1)	1.1186	1.1004	1.0952	1.0936
$M^{3}F-TIB$ (2,2)	1.1101*	1.0961*	1.0918*	1.0905*
L&U (2009)	1.1111	(RBF)	1.0981	(Linear)

Netflix Prize Data

Question: How does performance vary with latent dimensionality?

- Contrast M³F-TIB $(K^U, K^M) = (4, 1)$ with BPMF
- 500 Gibbs samples for M³F-TIB and BPMF

Method	RMSE	Time
BPMF/15	0.9121	27.8s
TIB/15	0.9090	46.3s
BPMF/30	0.9047	38.6s
TIB/30	0.9015	56.9s
BPMF/40	0.9027	48.3s
TIB/40	0.8990	70.5s
BPMF/60	0.9002	94.3s
TIB/60	0.8962	97.0s
BPMF/120	0.8956	273.7s
TIB/120	0.8934	285.2s
BPMF/240	0.8938	1152.0s
TIB/240	0.8929	1158.2s

Netflix

Stratification

Question: Where are improvements over BPMF being realized?

Figure: RMSE improvements over BPMF/40 on the Netflix Prize as a function of movie or user rating count. Left: Each bin represents 1/6 of the movie base. Right: Each bin represents 1/8 of the user base.

The Napolean Dynamite Effect

Question: Do M³F models capture polarization effects?

Table: Top 200 Movies from the Netflix Prize dataset with the highest and lowest cross-topic variance in $\mathbb{E}(d_i^i|\mathbf{r}^{(v)})$.

Movie Title	$\mathbb{E}(d_j^i \mathbf{r}^{(\mathrm{v})})$
Napoleon Dynamite	-0.11 ± 0.93
Fahrenheit $9/11$	-0.06 ± 0.90
Chicago	-0.12 ± 0.78
The Village	-0.14 ± 0.71
Lost in Translation	-0.02 ± 0.70
LotR: The Fellowship of the Ring	0.15 ± 0.00
LotR: The Two Towers	0.18 ± 0.00
LotR: The Return of the King	0.24 ± 0.00
Star Wars: Episode V	0.35 ± 0.00
Raiders of the Lost Ark	0.29 ± 0.00

Conclusions

New framework for dyadic data prediction

- Strong predictive performance and static specificity of latent factor models
- Clustered context-sensitivity of mixed membership models
- Outperforms pure latent factor modeling while fitting fewer parameters
- Greatest improvements for high-variance, sparsely rated items

Future work

- Modeling user choice: missingness is informative
- Nonparametric priors on topic parameters
- Alternative approaches to inference

References

- Airoldi, E., Blei, D., Fienberg, S., and Xing, E. Mixed membership stochastic blockmodels. *JMLR*, 9:1981–2014, 2008.
- DeCoste, D. Collaborative prediction using ensembles of maximum margin matrix factorizations. In *ICML*, 2006.
- Lawrence, N.D. and Urtasun, R. Non-linear matrix factorization with Gaussian processes. In *ICML*, 2009.
- Porteous, I., Bart, E., and Welling, M. Multi-HDP: A non parametric Bayesian model for tensor factorization. In *AAAI*, 2008.
- Rennie, J. and Srebro, N. Fast maximum margin matrix factorization for collaborative prediction. In *ICML*, 2005.
- Salakhutdinov, R. and Mnih, A. Bayesian probabilistic matrix factorization using Markov chain Monte Marlo. In *ICML*, 2008.
- Takács, G., Pilászy, I., Németh, B., and Tikk, D. Scalable collaborative filtering approaches for large recommender systems. *JMLR*, 10:623–656, 2009.

The End

Thanks!