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Motivation: Large-scale Posterior Inference

Example: Bayesian logistic regression
1 Fixed covariate vector: vl ∈ Rd for each datapoint l = 1, . . . , L
2 Unknown parameter vector: β ∼ N (0, I)

3 Binary class label: Yl | vl, β
ind∼ Ber

(
1

1+e−〈β,vl〉

)
Generative model simple to express
Posterior distribution over unknown parameters is complex

Normalization constant unknown, exact integration intractable

Standard inferential approach: Use Markov chain Monte Carlo
(MCMC) to (eventually) draw samples from the posterior distribution

Benefit: Approximates intractable posterior expectations
EP [h(Z)] =

∫
X p(x)h(x)dx with asymptotically exact sample

estimates EQ[h(X)] = 1
n

∑n
i=1 h(xi)

Problem: Each new MCMC sample point xi requires iterating
over entire observed dataset: prohibitive when dataset is large!
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Motivation: Large-scale Posterior Inference

Question: How do we scale Markov chain Monte Carlo (MCMC)
posterior inference to massive datasets?

MCMC Benefit: Approximates intractable posterior
expectations EP [h(Z)] =

∫
X p(x)h(x)dx with asymptotically

exact sample estimates EQ[h(X)] = 1
n

∑n
i=1 h(xi)

Problem: Each point xi requires iterating over entire dataset!

Template solution: Approximate MCMC with subset posteriors
[Welling and Teh, 2011, Ahn, Korattikara, and Welling, 2012, Korattikara, Chen, and Welling, 2014]

Approximate standard MCMC procedure in a manner that makes
use of only a small subset of datapoints per sample
Reduced computational overhead leads to faster sampling and
reduced Monte Carlo variance
Introduces asymptotic bias: target distribution is not stationary
Hope that for fixed amount of sampling time, variance reduction
will outweigh bias introduced
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Motivation: Large-scale Posterior Inference

Template solution: Approximate MCMC with subset posteriors
[Welling and Teh, 2011, Ahn, Korattikara, and Welling, 2012, Korattikara, Chen, and Welling, 2014]

Hope that for fixed amount of sampling time, variance reduction
will outweigh bias introduced

Introduces new challenges

How do we compare and evaluate samples from approximate
MCMC procedures?

How do we select samplers and their tuning parameters?

How do we quantify the bias-variance trade-off explicitly?

Difficulty: Standard evaluation criteria like effective sample size,
trace plots, and variance diagnostics assume convergence to the
target distribution and do not account for asymptotic bias

This talk: Introduce new quality measures suitable for comparing
the quality of approximate MCMC samples
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Quality Measures for Samples

Challenge: Develop measure suitable for comparing the quality of
any two samples approximating a common target distribution

Given

Continuous target distribution P with support X = Rd and
density p

p known up to normalization, integration under P is intractable

Sample points x1, . . . , xn ∈ X
Define discrete distribution Qn with, for any function h,
EQn [h(X)] = 1

n

∑n
i=1 h(xi) used to approximate EP [h(Z)]

We make no assumption about the provenance of the xi

Goal: Quantify how well EQn approximates EP in a manner that

I. Detects when a sample sequence is converging to the target

II. Detects when a sample sequence is not converging to the target

III. Is computationally feasible
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Integral Probability Metrics

Goal: Quantify how well EQn approximates EP
Idea: Consider an integral probability metric (IPM) [Müller, 1997]

dH(Qn, P ) = sup
h∈H
|EQn [h(X)]− EP [h(Z)]|

Measures maximum discrepancy between sample and target
expectations over a class of real-valued test functions H
When H sufficiently large, convergence of dH(Qn, P ) to zero
implies (Qn)n≥1 converges weakly to P (Requirement II)

Examples

Bounded Lipschitz (or Dudley) metric, dBL‖·‖
(H = BL‖·‖ , {h : supx |h(x)|+ supx 6=y

|h(x)−h(y)|
‖x−y‖ ≤ 1})

Wasserstein (or Kantorovich-Rubenstein) distance, dW‖·‖
(H =W‖·‖ , {h : supx 6=y

|h(x)−h(y)|
‖x−y‖ ≤ 1})
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Integral Probability Metrics

Goal: Quantify how well EQn approximates EP
Idea: Consider an integral probability metric (IPM) [Müller, 1997]

dH(Qn, P ) = sup
h∈H
|EQn [h(X)]− EP [h(Z)]|

Measures maximum discrepancy between sample and target
expectations over a class of real-valued test functions H
When H sufficiently large, convergence of dH(Qn, P ) to zero
implies (Qn)n≥1 converges weakly to P (Requirement II)

Problem: Integration under P intractable!
⇒ Most IPMs cannot be computed in practice

Idea: Only consider functions with EP [h(Z)] known a priori to be 0
Then IPM computation only depends on Qn!
How do we select this class of test functions?
Will the resulting discrepancy measure track sample sequence
convergence (Requirements I and II)?
How do we solve the resulting optimization problem in practice?
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Stein’s Method

Stein’s method [1972] provides a recipe for controlling convergence:
1 Identify operator T and set G of functions g : X → Rd with

EP [(T g)(Z)] = 0 for all g ∈ G.
T and G together define the Stein discrepancy [Gorham and Mackey, 2015]

S(Qn,T ,G) , sup
g∈G
|EQn [(T g)(X)]| = dT G(Qn, P ),

an IPM-type measure with no explicit integration under P

2 Lower bound S(Qn,T ,G) by reference IPM dH(Qn, P )
⇒ S(Qn, T ,G)→ 0 only if (Qn)n≥1 converges to P (Req. II)

Performed once, in advance, for large classes of distributions

3 Upper bound S(Qn,T ,G) by any means necessary to
demonstrate convergence to 0 (Requirement I)

Standard use: As analytical tool to prove convergence
Our goal: Develop Stein discrepancy into practical quality measure
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Identifying a Stein Operator T
Goal: Identify operator T for which EP [(T g)(Z)] = 0 for all g ∈ G
Approach: Generator method of Barbour [1988, 1990], Götze [1991]

Identify a Markov process (Zt)t≥0 with stationary distribution P
Under mild conditions, its infinitesimal generator

(Au)(x) = lim
t→0

(E[u(Zt) | Z0 = x]− u(x))/t

satisfies EP [(Au)(Z)] = 0

Overdamped Langevin diffusion: dZt = 1
2
∇ log p(Zt)dt+ dWt

Generator: (APu)(x) = 1
2
〈∇u(x),∇ log p(x)〉+ 1

2
〈∇,∇u(x)〉

Stein operator: (TPg)(x) , 〈g(x),∇ log p(x)〉+ 〈∇, g(x)〉
[Gorham and Mackey, 2015, Oates, Girolami, and Chopin, 2016]

Depends on P only through ∇ log p; computable even if p
cannot be normalized!
Multivariate generalization of density method operator
(T g)(x) = g(x) ddx log p(x) + g′(x) [Stein, Diaconis, Holmes, and Reinert, 2004]
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Identifying a Stein Set G

Goal: Identify set G for which EP [(TPg)(Z)] = 0 for all g ∈ G

Approach: Reproducing kernels k : X × X → R
A reproducing kernel k is symmetric (k(x, y) = k(y, x)) and
positive semidefinite (

∑
i,l ciclk(zi, zl) ≥ 0,∀zi ∈ X , ci ∈ R)

Gaussian kernel k(x, y) = e−
1
2
‖x−y‖22

Inverse multiquadric kernel k(x, y) = (1 + ‖x− y‖22)−1/2

Generates a reproducing kernel Hilbert space (RKHS) Kk
We define the kernel Stein set Gk,‖·‖ as vector-valued g with

Each component gj in Kk
Component norms ‖gj‖Kk jointly bounded by 1

EP [(TPg)(Z)] = 0 for all g ∈ Gk,‖·‖ under mild conditions [Gorham

and Mackey, 2017]
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Computing the Kernel Stein Discrepancy

Kernel Stein discrepancy (KSD) S(Qn, TP ,Gk,‖·‖)
Stein operator (TPg)(x) , 〈g(x),∇ log p(x)〉+ 〈∇, g(x)〉
Stein set Gk,‖·‖ , {g = (g1, . . . , gd) | ‖v‖∗ ≤ 1 for vj , ‖gj‖Kk}

Benefit: Computable in closed form [Gorham and Mackey, 2017]

S(Qn, TP ,Gk,‖·‖) = ‖w‖ for wj ,
√∑n

i,i′=1 k
j
0(xi, xi′).

Reduces to parallelizable pairwise evaluations of Stein kernels

kj0(x, y) ,
1

p(x)p(y)∇xj∇yj (p(x)k(x, y)p(y))

Stein set choice inspired by control functional kernels
k0 =

∑d
j=1 k

j
0 of Oates, Girolami, and Chopin [2016]

When ‖·‖ = ‖·‖2, recovers the KSD of Chwialkowski, Strathmann, and

Gretton [2016], Liu, Lee, and Jordan [2016]

To ease notation, will use Gk , Gk,‖·‖2 in remainder of the talk
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Detecting Non-convergence

Goal: Show S(Qn, TP ,Gk)→ 0 only if (Qn)n≥1 converges to P
Let P be the set of targets P with Lipschitz ∇ log p and distant
strong log concavity ( 〈∇ log(p(x)/p(y)),y−x〉

‖x−y‖22
≥ k for ‖x− y‖2 ≥ r)

Includes Gaussian mixtures with common covariance, Bayesian
logistic and Student’s t regression with Gaussian priors, ...

For a different Stein set G, Gorham, Duncan, Vollmer, and Mackey [2016]

showed (Qn)n≥1 converges to P if P ∈ P and S(Qn, TP ,G)→ 0

New contribution [Gorham and Mackey, 2017]

Theorem (Univarite KSD detects non-convergence)

Suppose P ∈ P and k(x, y) = Φ(x− y) for Φ ∈ C2 with a
non-vanishing generalized Fourier transform. If d = 1, then
S(Qn, TP ,Gk)→ 0 only if (Qn)n≥1 converges weakly to P .

Justifies use of KSD with Gaussian, Matérn, or inverse
multiquadric kernels k in the univariate case
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The Importance of Kernel Choice

Goal: Show S(Qn, TP ,Gk)→ 0 only if Qn converges to P

In higher dimensions, KSDs based on common kernels fail to
detect non-convergence, even for Gaussian targets P

Theorem (KSD fails with light kernel tails [Gorham and Mackey, 2017])

Suppose d ≥ 3, P = N (0, Id), and α , (1
2
− 1

d
)−1. If k(x, y) and its

derivatives decay at a o(‖x− y‖−α2 ) rate as ‖x− y‖2 →∞, then
S(Qn, TP ,Gk)→ 0 for some (Qn)n≥1 not converging to P .

Gaussian (k(x, y) = e−
1
2
‖x−y‖22) and Matérn kernels fail for d ≥ 3

Inverse multiquadric kernels (k(x, y) = (1 + ‖x− y‖22)β) with
β < −1 fail for d > 2β

1+β

The violating sample sequences (Qn)n≥1 are simple to construct

Problem: Kernels with light tails ignore excess mass in the tails
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The Importance of Tightness

Goal: Show S(Qn, TP ,Gk)→ 0 only if Qn converges to P

A sequence (Qn)n≥1 is uniformly tight if for every ε > 0, there
is a finite number R(ε) such that supnQn(‖X‖2 > R(ε)) ≤ ε

Intuitively, no mass in the sequence escapes to infinity

Theorem (KSD detects tight non-convergence [Gorham and Mackey, 2017])

Suppose that P ∈ P and k(x, y) = Φ(x− y) for Φ ∈ C2 with a
non-vanishing generalized Fourier transform. If (Qn)n≥1 is uniformly
tight and S(Qn, TP ,Gk)→ 0, then (Qn)n≥1 converges weakly to P .

Good news, but, ideally, KSD would detect non-tight sequences
automatically...
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Detecting Non-convergence

Goal: Show S(Qn, TP ,Gk)→ 0 only if Qn converges to P

Consider the inverse multiquadric (IMQ) kernel

k(x, y) = (c2 + ‖x− y‖22)
β for some β < 0, c ∈ R.

IMQ KSD fails to detect non-convergence when β < −1

However, IMQ KSD automatically enforces tightness and detects
non-convergence when β ∈ (−1, 0)

Theorem (IMQ KSD detects non-convergence [Gorham and Mackey, 2017])

Suppose P ∈ P and k(x, y) = (c2 + ‖x− y‖22)β for β ∈ (−1, 0). If
S(Qn, TP ,Gk)→ 0, then (Qn)n≥1 converges weakly to P .

No extra assumptions on sample sequence (Qn)n≥1 needed

Intuition: Slow decay rate of kernel ⇒ unbounded (coercive)
test functions in TPGk ⇒ non-tight sequences detected
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Detecting Convergence

Goal: Show S(Qn, TP ,Gk)→ 0 when Qn converges to P

Proposition (KSD detects convergence [Gorham and Mackey, 2017])

If k ∈ C(2,2)
b and ∇ log p Lipschitz and square integrable under P ,

then S(Qn, TP ,Gk)→ 0 whenever the Wasserstein distance
dW‖·‖2 (Qn, P )→ 0.

Covers Gaussian, Matérn, IMQ, and other common bounded
kernels k
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A Simple Example
i.i.d. from mixture

target P
i.i.d. from single

mixture component
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Left plot:

For target p(x) ∝ e−
1
2
(x+1.5)2 + e−

1
2
(x−1.5)2 , compare an i.i.d.

sample Qn from P and an i.i.d. sample Q′n from one component
Expect S(Q1:n, TP ,Gk)→ 0 & S(Q′1:n, TP ,Gk) 6→ 0
Compare IMQ KSD (β = −1/2, c = 1) with Wasserstein distance
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A Simple Example
i.i.d. from mixture
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mixture component

101 102 103 104 101 102 103 104
10−2.5

10−2

10−1.5

10−1

10−0.5

100

Number of sample points, n

D
is

cr
ep

an
cy

 v
al

ue

Discrepancy

IMQ KSD

Wasserstein

i.i.d. from mixture
target P

i.i.d. from single
mixture component

g
h

=
T

P   g

−3 0 3 −3 0 3

0.2

0.4

0.6

0.8

1.0

−1.0

−0.5

0.0

0.5

x

Right plot: For n = 103 sample points,

(Top) Recovered optimal Stein functions g

(Bottom) Associated test functions h , TPg which best
discriminate sample Qn from target P
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The Importance of Kernel Choice

i.i.d. from target P Off−target sample
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Dimension
● d = 5

d = 8

d = 20

Target P = N (0, Id)

Off-target Qn has all
‖xi‖2 ≤ 2n1/d log n,
‖xi − xj‖2 ≥ 2 log n

Gaussian and Matérn
KSDs driven to 0 by
an off-target sequence
that does not converge
to P

IMQ KSD
(β = −1

2
, c = 1) does

not have this
deficiency
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Selecting Sampler Hyperparameters

Target posterior density: p(x) ∝ π(x)
∏L

l=1 π(yl | x)

Prior π(x), Likelihood π(y | x)

Approximate slice sampling [DuBois, Korattikara, Welling, and Smyth, 2014]

Approximate MCMC procedure designed for scalability

Uses random subset of datapoints to approximate each slice
sampling step
Target P is not stationary distribution

Tolerance parameter ε controls number of datapoints evaluated

ε too small ⇒ too few sample points generated
ε too large ⇒ sampling from very different distribution
Standard MCMC selection criteria like effective sample size
(ESS) and asymptotic variance do not account for this bias
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Selecting Sampler Hyperparameters

Setup [Welling and Teh, 2011]

Consider the posterior distribution P induced by L datapoints yl
drawn i.i.d. from a Gaussian mixture likelihood

Yl|X
iid∼ 1

2
N (X1, 2) + 1

2
N (X1 +X2, 2)

under Gaussian priors on the parameters X ∈ R2

X1 ∼ N (0, 10) ⊥⊥ X2 ∼ N (0, 1)

Draw m = 100 datapoints yl with parameters (x1, x2) = (0, 1)
Induces posterior with second mode at (x1, x2) = (1,−1)

For range of parameters ε, run approximate slice sampling for
148000 datapoint likelihood evaluations and store resulting
posterior sample Qn

Use minimum IMQ KSD (β = −1
2
, c = 1) to select appropriate ε

Compare with standard MCMC parameter selection criterion,
effective sample size (ESS), a measure of Markov chain
autocorrelation
Compute median of diagnostic over 50 random sequences
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Selecting Sampler Hyperparameters

● ●
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ESS maximized at tolerance ε = 10−1

IMQ KSD minimized at tolerance ε = 10−2
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Selecting Samplers

Target posterior density: p(x) ∝ π(x)
∏L

l=1 π(yl | x)

Prior π(x), Likelihood π(y | x)

Stochastic Gradient Fisher Scoring (SGFS)
[Ahn, Korattikara, and Welling, 2012]

Approximate MCMC procedure designed for scalability

Approximates Metropolis-adjusted Langevin algorithm and
continuous-time Langevin diffusion with preconditioner
Random subset of datapoints used to select each sample
No Metropolis-Hastings correction step
Target P is not stationary distribution

Two variants

SGFS-f inverts a d× d matrix for each new sample point
SGFS-d inverts a diagonal matrix to reduce sampling time

Mackey (MSR) Kernel Stein Discrepancy June 25, 2018 23 / 31



Selecting Samplers

Setup

MNIST handwritten digits [Ahn, Korattikara, and Welling, 2012]

10000 images, 51 features, binary label indicating whether
image of a 7 or a 9

Bayesian logistic regression posterior P

L independent observations (yl, vl) ∈ {1,−1} × Rd with

P(Yl = 1|vl, X) = 1/(1 + exp(−〈vl, X〉))

Flat improper prior on the parameters X ∈ Rd

Use IMQ KSD (β = −1
2
, c = 1) to compare SGFS-f to SGFS-d

drawing 105 sample points and discarding first half as burn-in

For external support, compare bivariate marginal means and
95% confidence ellipses with surrogate ground truth Hamiltonian
Monte chain with 105 sample points [Ahn, Korattikara, and Welling, 2012]
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Selecting Samplers
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Left: IMQ KSD quality comparison for SGFS Bayesian logistic
regression (no surrogate ground truth used)

Right: SGFS sample points (n = 5× 104) with bivariate
marginal means and 95% confidence ellipses (blue) that align
best and worst with surrogate ground truth sample (red).

Both suggest small speed-up of SGFS-d (0.0017s per sample vs.
0.0019s for SGFS-f) outweighed by loss in inferential accuracy
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Beyond Sample Quality Comparison

Goodness-of-fit testing
Chwialkowski, Strathmann, and Gretton [2016] used the KSD S(Qn, TP ,Gk)
to test whether a sample was drawn from a target distribution P
(see also Liu, Lee, and Jordan [2016])
Test with default Gaussian kernel k experienced considerable loss
of power as the dimension d increased
We recreate their experiment with IMQ kernel (β = −1

2
, c = 1)

For n = 500, generate sample (xi)
n
i=1 with xi = zi + ui e1

zi
iid∼ N (0, Id) and ui

iid∼ Unif[0, 1]. Target P = N (0, Id).
Compare with standard normality test of Baringhaus and Henze [1988]

Table: Mean power of multivariate normality tests across 400 simulations

d=2 d=5 d=10 d=15 d=20 d=25
B&H 1.0 1.0 1.0 0.91 0.57 0.26

Gaussian 1.0 1.0 0.88 0.29 0.12 0.02
IMQ 1.0 1.0 1.0 1.0 1.0 1.0
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Beyond Sample Quality Comparison

Improving sample quality

Given sample points (xi)
n
i=1, can minimize KSD S(Q̃n, TP ,Gk)

over all weighted samples Q̃n =
∑n

i=1 qn(xi)δxi for qn a
probability mass function

Liu and Lee [2016] do this with Gaussian kernel k(x, y) = e−
1
h
‖x−y‖22

Bandwidth h set to median of the squared Euclidean distance
between pairs of sample points

We recreate their experiment with the IMQ kernel
k(x, y) = (1 + 1

h
‖x− y‖22)−1/2
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Improving Sample Quality
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Future Directions

Many opportunities for future development
1 Improve KSD scalability while maintaining convergence control

Inexpensive approximations of kernel matrix [?]

Subsampling of likelihood terms in ∇ log p
2 Addressing other inferential tasks

Control variate design
[??Oates, Girolami, and Chopin, 2016]

Variational inference [Liu and Wang, 2016, Liu and Feng, 2016]

Training generative adversarial networks [Wang and Liu, 2016] and
variational autoencoders [Pu, Gan, Henao, Li, Han, and Carin, 2017]

3 Exploring the impact of Stein operator choice
An infinite number of operators T characterize P
How is discrepancy impacted? How do we select the best T ?

Thm: If ∇ log p bounded and k ∈ C(1,1)
0 , then

S(Qn, TP ,Gk)→ 0 for some (Qn)n≥1 not converging to P
Diffusion Stein operators (T g)(x) = 1

p(x)〈∇, p(x)m(x)g(x)〉 of
Gorham, Duncan, Vollmer, and Mackey [2016] may be appropriate for heavy tails
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Comparing Discrepancies
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