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1 Introduction

As the result of a proton-proton collision at a hadron collider, hundreds of particles are

created and detected [1, 2]. While some particles can be identified by their type, such as

electrons [3, 4] and muons [5, 6], most of the detected particles are light hadrons produced

in collimated sprays called jets. Jets are the consequence of high energy quarks or gluons

fragmenting into colorless hadrons. Experimentally, jets are defined by clustering schemes

which group together measured calorimeter energy deposits or reconstructed charged par-

ticle tracks. A jet algorithm is a clustering scheme that connects the measured objects

with theoretical quantities that can be calculated and simulated. At a hadron collider, the

natural coordinates for describing particles are pT , y, and φ, where pT is the magnitude

of the momentum transverse to the proton beam, y is the rapidity, and φ is the azimuthal

angle. Particles or calorimeter energy deposits are clustered using jet algorithms based on
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distance metrics on their coordinates in (pT , ~ρ) = (pT , y, φ). In order for a jet algorithm to

be useful to experimentalists and theorists, the collection of jets should be IRC safe in the

following sense:

1. Infrared safe (IR): if a particle i is added with |pT | → 0, the jets are unaffected.

2. Collinear safe (C): if a particle i with momentum pi is replaced with two particles j

and k with momenta pj +pk = pi such that |~ρi−~ρj | = 0, then the jets are unaffected.

The jet algorithms most widely used at hadron colliders fall into a class of schemes

known as sequential recombination [7]. These IRC safe schemes require metrics d on mo-

menta dij = d(pi, pj) : (pi, pj)→ R+, diB = d(pi) : pi → R+ and proceed as follows:

1. Assign each particle as a proto-jet.

2. Repeat until there are no proto-jets left: let (k, `) = argmini,jd(pi, pj). If dmB < dk`
for m = argminid(pi), then declare proto-jet m a jet and remove it from the list.

Otherwise, combine proto-jets k and ` into a new proto-jet with momentum pnew =

p` + pk.

One common prescription is called the Cambridge-Aachen (C/A) algorithm [8, 9],

which uses dij = |~ρi− ~ρj |2/R2 and diB = 1. The fixed quantity R is roughly the size of the

jet in (y, φ). By far, the most ubiquitous jet algorithm used at the Large Hadron Collider

(LHC) is the anti-kt algorithm [10] with dij = min(p−2T,i, p
−2
T,j)|~ρi − ~ρj |2/R2 and diB = p−2T,i.

The purpose of this paper is to introduce a new paradigm for jet clustering, called

fuzzy jets, based on probabilistic mixture modeling and to demonstrate its use in boosted

topologies. section 2 introduces the statistical concept of a mixture model and describes

the necessary modification to make the procedure IRC safe. Section 3 gives one efficient

method for clustering fuzzy jets based on the Expectation-Maximization (EM) algorithm.

Section 4 contains several examples comparing fuzzy jets with sequential recombination

and section 5 describes how one might mitigate the impact of overlapping proton-proton

collisions (pileup). We conclude in section 6 with some summary remarks and outlook for

the future.

2 Mixture model jets

Mixture models [11] are a statistical tool for clustering which postulate a particular class of

probability densities for the data to be clustered. Generically, for grouping n m-dimensional

data points into k clusters, the mixture model density is

p(x1, . . . , xn|θ) =

n∏
i=1

 k∑
j=1

πjf(xi|θj)

 , (2.1)

where πj is the unknown weight of cluster j such that
∑

j πj = 1 and f(xi|θj) is a probability

density on m-dimensions with unknown parameters θj to be learned from the data. A
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Figure 1. An example of the learned per-particle probability density specified in eq. (2.1) with

k = 3 and Gaussian f = Φ in m = 2 dimensions. One cluster is associated with each component

density Φi = Φ(· | µi,Σi), where the dot · is a placeholder for the function argument.

common choice for f is the normal density Φ with θj = (µj ,Σj) for µj the m-dimensional

mean and Σj the m ×m covariance matrix. In the mixture model paradigm, the θj are

the cluster properties; in the Gaussian case, µj is the location of cluster j and Σj describes

its shape in the m-dimensional space. When clustering with a finite mixture, the number

of clusters k must be specified ahead of time,1 which is dual to the usual use of sequential

recombination2 in which k is learned and the size of jets is specified ahead of time. The

standard objective in (frequentist) mixture modeling is to select the parameters θj which

maximize the likelihood (eq. (2.1)) of the observed dataset. Figure 1 illustrates what the

learned event density might look like for k = 3 and Gaussian f = Φ in m = 2 dimensions.

An equivalent way of approaching mixture modeling is to view eq. (2.1) as the density

used to generate the data. We view the data as having been drawn randomly from the

density specified in eq. (2.1), with the following setup:

1. Throw n independent and identical k-sided dice with probability πj to land on side

j = 1, . . . , k and label the outcomes λ1, . . . , λn.

2. Independent of the others, data point i ∈ {1, . . . , n} is drawn randomly from f(· | θλi).

Once θ and π are learned by minimizing eq. (2.1), we can compute qij = Pr(λi = j | xi),
the posterior probability that xi was generated by f(· | θj) or, intuitively, the posterior

probability that xi belongs to cluster j. The qij are the soft assignments of particles i

to jet j and will play an important role in section 3 when we show how to maximize the

likelihood in eq. (2.1). In particular, we can write, qij = πjf(xi|θj)/
∑

j′ πj′f(xi|θj′). Jets

produced with mixture modeling are called fuzzy jets because of the soft memberships —

1There is a wealth of literature on the subject of choosing k, for a survey of methods, see [12]. The

likelihood monotonically increases with k; as alternatives to maximum likelihood, one can for instance look

for kinks in the likelihood as a function of k [13].
2It is similar to the exclusive form of the kT sequential recombination scheme [14]. The exclusive

nature of the algorithm (and the minimization procedure used to find the jets) is similar to the XCone

algorithm [15, 16] that became public as this manuscript was in its final preparation.

– 3 –



J
H
E
P
0
6
(
2
0
1
6
)
0
1
0

every particle can belong to every jet with some probability.3 This can be seen explicitly

in figure 1 where the densities of all three clusters are everywhere nonzero, so qij > 0 for all

j. The idea of probabilistic membership was recently studied in the context of the Q-jets

algorithm [18] in which the same event is interpreted many times by injecting randomness

into the clustering procedure. Unlike Q-jets, fuzzy jets allocates the soft membership

functions deterministically throughout the clustering procedure. However, like Q-jets, there

is an ambiguity in how to assign kinematic properties to the clustered jets. Fuzzy jets are

defined by their shape (and location), not their constituents. This is in contrast to anti-kt
jets, which are defined by their constituents without an explicit shape determined from the

clustering procedure. One simple assignment scheme is to define the momentum of a fuzzy

jet j as

pjet j =

n∑
i=1

pi

{
1 j = argmaxkqik
0 else

}
. (2.2)

In other words, this procedure assigns every particle to its most probable associated jet.

This scheme will be known as the hard maximum likelihood (HML) scheme, but is not

the only possible assignment algorithm. The dual problem in sequential recombination

is the jet area, which must be defined [19], whereas the jet kinematics are the ‘natural’

coordinates.

We now specialize the likelihood in eq. (2.1) to the case of clustering particles into jets

at a collider like the LHC. Consider a mixture model in two dimensions4 with xi = ρi. The

resulting mixture model (MM) jets are inherently not IR safe: particle pT does not appear

in the likelihood and therefore arbitrarily low energy particles can influence the clustering

procedure. Therefore, we add a modification to the log likelihood:

logL({pT,i, ρi}|θ) =
n∑
i=1

pαT,i log

 k∑
j=1

πjf(ρi|θj)

 , (2.3)

where α is a weighting factor. Equation (2.3) is the log of eq. (2.1) with the term pαT,i
inserted in the outer sum. For α > 0, the resulting modified mixture model (mMM) jets

are IR safe, and when α = 1, the jets are C safe. Therefore, for α = 1, the jets are IRC safe.

Different choices of component densities f in eq. (2.3) give rise to different IRC safe MM jet

algorithms. We have studied several possibilities for f , but for the remainder of this paper

will specialize to (wrapped4) Gaussian5 f = Φ. The resulting fuzzy jets are called modified

Gaussian Mixture Model jets (mGMM) and are parameterized by the locations µj , the

covariance matrices Σi, and the cluster weights πj . We initialize πj = 1/k and Σj = I.

Since practical procedures for maximizing the modified likelihood in eq. (2.3) may

converge to stationary points that are not globally optimal, the output of a fuzzy jet

3Soft assignments for jets during clustering was studied in the context of the “optimal jet finder” [17]

which maximizes a function of the soft assignments.
4One must take care in selecting a class of densities appropriate for the angular quantity φ. For more

details on the wrapped Gaussian distribution and motivation for its use in this context, see appendix A.
5When f is a circular step function, the algorithm is related to the Snowmass iterative cone algorithm [20]

via the ‘Snowmass Potential’ [21].
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algorithm will depend on an initial setting of the cluster parameters θ and π. One simple

procedure, used exclusively for the rest of the paper, is to seed fuzzy jets based on the

output of a sequential recombination jet algorithm. This guarantees an IRC safe initial

condition and therefore the entire procedure is IRC safe. We now discuss practically how

one can find the maximum of the fuzzy jets likelihood.

3 Clustering fuzzy jets: the EM algorithm

One iterative procedure for maximizing the mixture model likelihood in eq. (2.1) is the

Expectation-Maximization (EM) algorithm [22–24]. After initializing the cluster locations

and prior density π, the following two steps are repeated:

Expectation Given the current values of θj , compute the fuzzy membership probabilities

qij = πjΦ(~ρi|µj ,Σj)/
∑

j′ πj′Φ(~ρi|µj′ ,Σj′).

Maximization Given qij , maximize the expected modified complete log likelihood over the

parameters π, µ,Σ.

The expected modified complete log likelihood has the form

n∑
i=1

k∑
j=1

pαTi(qij log Φ(~ρi; ~µj ,Σj) + qij log πj). (3.1)

Note that the expected modified complete log likelihood is not the same as the expected

modified log likelihood, shown in eq. (2.3). They differ in that the complete log likelihood

has the second sum outside the logarithm while eq. (2.3) has the sum inside the logarithm.

The power of the EM algorithm is that maximizing the complete log likelihood results in

fixed point iteration to monotonically improve the original log likelihood. This desirable

property of the EM algortihm is still true when α > 0; for a proof, see appendix B. Many

choices for f have closed form maxima for the M step; in the Gaussian f = Φ case outlined

above, the updates are given by

µ∗j =

n∑
i=1

q̃ijxi Σ∗j =

n∑
i=1

q̃ij(xi − µj)(xi − µj)T π∗j =
1∑n

i=1 p
α
Ti

n∑
i=1

pαTiq̃ij , (3.2)

where q̃ij = qijp
α
Ti/
∑n

l=1 qljp
α
T l. The well-known k-means clustering algorithm [25] can

be recovered as the limit of expectation-maximization in a Gaussian mixture model with

Σ = σ2I, σ2 → 0. Figure 2 illustrates GMM clustering using the EM algorithm with k = 2

clusters. The EM algorithm readily accommodates constraints on the model parameters.

One constraint we will consider throughout the rest of the paper is Σj = σ2j I for all j,

which requires the curves of constant likelihood in (y, φ) to be circular. We will see in the

next section that the learned value of σj is useful for distinguishing jets originating from

different physics processes. Note that since the modified complete log likelihood is IRC

safe, the EM algorithm does not break the IRC safety of the original log likelihood.
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Figure 2. An illustration of of the EM algorithm for k = 2. The circles represent data points, the

triangles represent the estimated cluster locations µj , and the ellipsoids are equidensity contours

describing the shapes Σj of the learned cluster distributions. In the E-step, bluer colors correspond

to higher value of pi,blue jet.

4 Comparisons with sequential recombination and jet tagging

This section describes some numerical comparisons between sequential recombination and

fuzzy jets. Section 4.1 summarizes the simulation details with some first event displays

showing both fuzzy and sequential recombination jets. These two approaches to jet clus-

tering are studied over an ensemble of events in section 4.2. A third subsection, section 4.3,

illustrates that fuzzy jets captures new information about the hadronic final state, and in

the fourth section, section 4.4, it is demonstrated that this new information can be used

to classify the jet type.

4.1 Details of the simulation

In order to study fuzzy jets in a realistic scenario, we run Monte Carlo (MC) simulations.

Three physics processes are generated using Pythia 8.170 [26, 27] at
√
s = 8 TeV. Hadronic

W boson and top quarks are used for studying hard 2- and 3-prong type jets, respectively.

To simulate high pT hadronic W decays, W ′ bosons are generated to decay exclusively into

a W and Z boson which subsequently decay into quarks and leptons, respectively. The pT
scale of the hadronically decaying W is set by the mass of the W ′ which is tuned to 800 GeV

for this study so that the pWT . 400 GeV. In this pWT range, the W decay products are

expected to merge within a cone of R 1.0 where ∆R2 = ∆φ2+∆η2 ∼ 4m2
W /p

2
T,W . A sample

enriched in 3-prong type jets is generated with Z ′ → tt̄, where the Z ′ mass sets the energy

scale of the hadronically decaying top quarks. In this analysis, we use mZ′ = 1.0 TeV,

which sets ptT & 500 GeV. To study the impact on signal versus background, QCD dijets

are generated with a range of p̂T that is approximately in the same range as the relevant

signal process. In all distributions, the QCD pT spectrum is weighted to exactly match

that of the signal to control for differences between signal and background due only to
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the pT spectrum differences. Pileup is simulated by overlaying additional independently

generated minimum-bias interactions with each signal event. For the rest of this section,

the number of pileup interactions nPU = 0. See section 5 for studies of nPU > 0.

For a comparison to fuzzy jets, anti-kt jets are clustered using FastJet [28] 3.0.3.

The signal processes are chosen such that jets with radius parameter R = 1 are most

appropriate in capturing the decay products of the heavy particles. The anti-kt jets are

trimmed [29] by re-clustering the constituents into R = 0.3 kt subjets and dropping those

which have psubjetT < 0.05× pjetT . Anti-kt jets are also used to seed the fuzzy jet clustering;

the pT threshold for this initialization is 5 GeV,6 and the impact of this choice is studied

in appendix C. The choice of the parameters for the anti-kt jet seeds is akin to the radius

parameter R in the usual sequential recombination paradigm in that they can have a

significant impact on the clustered jet properties. In complete analogy to the choice of R,

the choice of seed jet parameters will depend on the targeted final state and the initial

event conditions (e.g. pileup). Trimming is applied to all anti-kt jets shown in subsequent

sections and never applied to fuzzy jets.

At each iteration in the EM algorithm for fuzzy jet clustering, we record the value of

the log likelihood. We make the choice to end the algorithm and declare convergence when

the per iteration increase in this value is less than 10−6 for five consecutive iterations, or

when a maximum of 100 iterations is reached. In practice most events converge after a

much smaller number of iterations than this bound, with only a small fraction of events

stopping for lack of convergence, and then only in high pileup scenarios (nPU > 80).

To model the discretization and finite acceptance of a real detector, a calorimeter of

towers with size 0.1×0.1 in (y, φ) extends out to y = 5.0. The total energy of the simulated

particles incident upon a particular cell are added as scalars and the four-vector pj of any

particular tower j is given by

pj =
∑

i incident on j

Ei(cosφj/ cosh yj , sinφj/ cosh yj , sinh yj/ cosh yj , 1). (4.1)

To simulate a particle flow reconstruction, the sum in eq. (4.1) contains only neutral par-

ticles for |y| < 2.5 and both charged and neutral particles for 2.5 < |y| < 5. Charged

particles within |y| < 2.5 are individually added to the list of inputs for clustering, unless

they originate from a pileup collision. Anti-kt jet momenta are corrected for pileup on av-

erage using area subtraction [19]. The median pileup density, ρ, is estimated by clustering

hard scatter particles, neutral pileup particles, and charged pileup particles in the range

|y| < 2.5 using kt R = 0.4 jets in FastJet with ghosted areas.

A representative event display for a Z ′ → tt̄ event is shown in figure 3. The top right

plot in figure 3 shows the anti-kt jets with pT > 5 GeV as filled in (partial) circles. The

filled area is determined by the jet area and there are deviations from circles only one a

low pT jet is close to a higher pT jet. The two top quarks are depicted as red stars, each

of which sits at the center of two high pT jets. The top left plot in figure 3 shows mGMM

6This low threshold guarantees that there are enough seed jets around to capture the radiation from

the underlying event. Another strategy could be to use the Event Jet (see section 5) even when there is

no pileup.
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Figure 3. A representative event display for a Z ′ → tt̄ event. In the top left plot, gray circles show

the location and size of mGMM fuzzy jets after clustering, with the size of the circle indicating 1-σ

contours in the detector; the black circle indicates the highest pT jet with HML particle assignment.

The small filled colored circles are the particles, with the color and size indicating their energy. In

each case, the events have been rotated in φ to place the truth top quark at φ = 3π/2, which is

indicated by a red star. Anti-kt jet locations are shown with gray crosses in the left hand plot, the

long tail of which points towards the mGMM jet for which it was a seed. In the top right plot,

anti-kt R = 1.0 jets passing a 5 GeV pT cut are shown as discs under the particles indicating their

active area, with centers the same as the crosses in the left hand side. Shades of gray in the anti-kt
discs have no scale and are meant to aid the eye, but go from low pT (lighter) to high pT (darker).

fuzzy jets. The fuzzy jets are depicted by their 1-σ contours. In contrast to the anti-kt jets,

fuzzy jets vary widely in radial size. Gray crosses in the top left plot indicate the locations

of the anti-kt jets shown in the top right plot. The long tail of the crosses point toward

the fuzzy jet for which they were the seed. The two jets closest to the top quarks did not

move a long distance from the seed location, though the size did change significantly from

R = 1. The lowest pT fuzzy jet moved a long distance from the seed to the final location.

Another new feature of fuzzy jets compared to anti-kt jets is that they can overlap

with each other. This is seen by the four jets with overlapping 1-σ contours in the top

left plot of figure 3. Overlapping mGMM jets are an expression of structure inadequately

captured with a single Gaussian shape. The ability to learn features at different scales in

the same event without relying on a size parameter like the anti-kt radius parameter can

give mGMM fuzzy jets additional descriptive power over anti-kt and other traditional jet

algorithms. This particular event will be used again for reference in section 5 during a

discussion on the performance of the technique in the presence of pileup interactions.

4.2 Kinematic properties of fuzzy jets

Jets clustered according to the mGMM algorithm capture similar hard jet locations and jet

energy (under HML) as those clustered by anti-kt R = 1. In figure 4, the pT distribution
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Figure 4. The jet pT for the leading anti-kt jet (left) and leading fuzzy jet under the HML particle

assignment scheme (right). All the processes are re-weighted so that the anti-kt pT spectra are

the same.

for the highest pT jets for three different physics processes are plotted as given by anti-kt
R = 1.0 and mGMM jets. The anti-kt pT distributions are re-weighted so that all three

processes have identical distributions in the left plot. On the right, the distributions are

in good correspondence with those in the left plot, though there is a slight shift of the

peak. Additionally, the (y, φ) locations of the highest pT mGMM jets are in excellent

correspondence with the locations of the anti-kt jets as was already discussed in reference

to figure 3.

The mGMM algorithm differs from the anti-kt algorithm in how the size and structure

of clustered jets. This was already shown qualitatively in figure 3: fuzzy jets come in a

variety of sizes, and can overlap in complex ways. The matter is further complicated by

the choice of particle assignment scheme for defining kinematic properties in the mGMM

family of algorithms. The catchment area’s volume and shape of a fuzzy jet depends in

general on the full set of learned jet locations and model parameters, Σ. In contrast, for

anti-kt jets, the catchment area is bounded from above by R and is only smaller when

another high pT jet is nearby. The nonlocality of the mGMM clustering model can be

observed quantitatively by examining jet mass, given in eq. (4.2), which is sensitive to

the distribution of energy within a jet. The jet mass distributions for both mGMM (HML

assignment) and anti-kt jets are shown in figure 5, with the same pT weighting as in figure 4.

Even though fuzzy jets learn the same core (i.e. pT ) for jets as anti-kt, they do not learn

the same mass. The white dashed lines in figure 5 mark the locations of the W boson and

top quark masses at about 80 GeV and 175 GeV, respectively [30]. For both anti-kt and

fuzzy jets, there are clear peaks at the W mass for the boosted W → qq′ from W ′ simulated

events and at the top quark mass for Z ′ → tt̄ simulated events. However, there are clear

differences in the shape of these distributions — in particular the fuzzy jets generally have

a lower mass than their anti-kt analogues. The W mass peak for W ′ events is more peaked

for fuzzy jets, though there is also a low-mass contribution to the distribution. For Z ′

events, the top quark mass peak is less populated for fuzzy jets, which instead has shifted
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Figure 5. The jet mass for the leading anti-kt (left) and leading fuzzy jet under the HML particle

assignment scheme (right), in an anti-kt leading jet pT window of 350 to 450 GeV. All the processes

are re-weighted so that the anti-kt pT distributions are the same. The dashed white lines mark

mW = 80.4 GeV and mt = 173.3 GeV.

events to the W mass peak. This often happens when the tree-prong structure is learned by

two (overlapping) fuzzy jets. The QCD multi-jet jet mass distribution is also qualitatively

different between fuzzy jets and anti-kt jets, with the former shifted to lower values of

the mass

m2
jet =

∑
i∈jet

Ei

2

−

∑
i∈jet

~pi

2

. (4.2)

4.3 New information from fuzzy jets

The properties Σ of a fuzzy jet can be useful in distinguishing jets resulting from different

physics processes. In the simplest realization of mGMM jets already described above,

Σ = σ2I, where σ is a measure of the size of the core of a jet. Although σ is a simple

variable to construct from the wealth of data available after clustering with the mGMM

algorithm, it captures at least some of the schematic differences in the likelihood for Z ′ → tt̄

and W ′ →WZ relative to a QCD multijet background (shown below).

The left plot of figure 6 also shows the average σ over all fuzzy jets in an event. The

generic fuzzy jet is rather independent of the physics process and tends to be quite large.

This is because fuzzy jets capturing hard radiation tend to be small, but most of the fuzzy

jets needed to capture the sparse radiation pattern from the underlying event need to be

large. In contrast, the σ for the leading7 mGMM jets are shown the right plot of figure 6

for each of the three physics processes. As expected, the decay relative size of the highest

7The distribution for σ for the sub-leading jet in the W ′ and Z′ processes is qualitatively similar to that

of the leading jet even though event-by-event they are largely uncorrelated. The σ for the sub-leading jet in

QCD multijet events is systemically wider than for the leading jet, as expected from the discussions around

figure 6.
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Figure 6. The learned value of σ for the highest pT jet under the HML scheme (left) and for all

jets (right) for various physics processes.

pT jets depends on the physics process. For the decay of a boosted heavy particle with

mass m and pT , the radial size of the decay products scales as 2m/pT and thus since the

pT distribution in figure 6 is fixed, one would expect that the top quark jets have a larger

σ than the W boson jets, which are in turn larger than the quark and gluon jets. This is

reflected8 in the three peaks in the left plot of figure 6. The separation between the three

physics processes it not 100% correlated with the naive scaling m/pT of the corresponding

leading anti-kt jets. Figure 7 shows that there is a strong positive correlation between

σ and the corresponding anti-kt mass over pT as expected. There are two peaks in the

correlation for the Z ′ → tt̄ events because the anti-kt mass spectrum has peaks at both the

top mass, and the W boson mass. While the correlations between the fuzzy jet σ and the

anti-kt m/pT are non-negligible, they are far from unity and thus there may be additional

information contained in the fuzzy jet σ that is useful for tagging the flavour of a jet. Note

that part of the new information in σ is resulting from the clustering procedure and not

simply the definition of the observable. For example, computing σ from the constituents

of an anti-kt jet (i.e. running fuzzy jets on these constituents with k = 1) would result in

σ2 =

∑n
i=1 pT,i∆R

2∑n
i=1 pT,i

, (4.3)

which is nearly the same as m/pT.

4.4 Fuzzy jets for tagging

In this section, σ is compared with another class of jet substructure variables known to

be useful for tagging: the N -subjettiness ratios [31]. N -subjettiness moments are defined

8At leading order, there is an exact relationship between σ and the jet mass — See appendix D. While

beyond the scope of this study, it would be interesting to understand in more detail how σ compares to

mass analytically (beyond leading order, with k > 1, etc.).
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Figure 7. The left and right plots show the correlation between σ and the leading jet anti-kt mass

divided by pT in an anti-kt pT window of 350 to 450 GeV for Z ′ → tt̄ and QCD events, respectively.

Indicated in the lower right of each figure is the linear correlation between the variables.

over a set of N axes9, and calculated as:

τN =
1

d0

∑
k

pT,k min{∆R1,k,∆R2,k, . . .∆RN,k}, (4.4)

where d0 is the normalization

d0 =
∑
k

pT,kR0, (4.5)

and R0 is the radius of the jet. In practice, the useful variables for determining how much

more i-pronged a jet is compared to j-pronged are the N -subjettiness ratios:

τij =
τi
τj
. (4.6)

The variable τ21 is often used for the separation of W from QCD jets [32, 33] and is

a measure of the compatibility of a jet with a 2-prong hypothesis compared to a 1-prong

hypothesis. Low value of τ21 indicates that the jet likely has a 2-prong structure. Similarly,

τ32 is useful for top tagging in that it measures whether a 3-prong structure is a better

description of a jet relative to a 2-prong structure.

The rest of his section contains comparisons of the performance of σ relative to τ21
(τ32) as well as m/pT for separating W (Z ′ → tt̄) from QCD jets. In figures 8 and 9,

a k-nearest neighbors classifier was trained with 2-fold cross validation10 in TMVA [35].

The left plots in figures 8 and 9 demonstrate an increase in performance for discriminating

Z ′ → tt̄ from QCD relative to using τ32 or m/pT (an anti-kt analogue to the jet size)

9We use the “one-pass” kt axes optimization technique, which uses an exclusive kt algorithm to find N

axes and then refines them by minimizing the N -subjettiness value.
10This is a standard procedure for selecting the free parameters of the algorithm (in this case, k) by

dividing the training sample into a sub-training sample and a sub-test sample. For more details, see for

instance ref. [34].
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Figure 9. The tagging performance of σ relative to m/pT (using anti-kt R = 1.0 trimmed jets) for

distinguishing top quarks (W bosons) from a QCD background is shown on the left (right). The

random tagger keeps a fixed fraction of all events, regardless of their origin and is a lower bound

on the performance of any tagger.

alone. The fuzzy jet σ is roughly equally useful to the N -subjettiness ratio (and m/pT) at

a signal efficiency of 0.85, and using both variables greatly improves background rejection.

Similar results can be seen in the right plots of figures 8 and 9, where σ boosts background

rejection relative to τ21 or m/pT alone. In each case, the training and classification was

performed in a mass window around the particles of interest, the top quark mass in the

Z ′ → tt̄ sample and the W boson mass to discriminate W → qq′ from QCD.
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The comparisons of the fuzzy jet σ and N -subjettiness are intended to be an illustrative

example. As discussed in the opening of this section, σ is just one variable that can be

constructed by using mGMM clustered jets. Expanded studies of the various learned

parameters could come up with additional variables, or the full learned parameter set

could be thrown into an off the shelf classifier or machine learning model.

5 Underlying event and pileup

As with any new jet algorithm or jet variable, understanding the effect of pileup vertices

from additional proton-proton collisions is essential to make meaningful statements about

how the method will be applicable to real data analyses at the LHC. Studying pileup in

the context of mGMM jets is complicated by the effective catchment area of the jets. For

hierarchical-agglomerative algorithms like anti-kt, the catchment area scales with the radius

parameter. However fuzzy jets can have infinite catchment area because the likelihood for

particle membership is nonzero for any finite distance and arrangement of Gaussian jets

and particles. Furthermore, the catchment area can change depending on the other jets in

an event. Although this effect also occurs in the hierarchical-agglomerative case, the effect

is much more pronounced in the mGMM clustering algorithm, with some jets having finite

catchment areas while others cluster infinite area.

The challenge of pileup for fuzzy jets is illustrated in figure 10, where the same event

is shown with nPU = 0, and with nPU = 40. The event displays show the central region of

the detector, where most of the decay products of the hard scatter lie. Qualitatively, it can

be seen that the introduction of additional interaction vertices broadens all of the mGMM

jets. This broadening clearly impacts the power of σ for differentiating QCD background

from signal processes.

The next sections explore two methods for mitigating the impact of pileup in relation

to fuzzy jets, illustrated with the variable σ.

5.1 Changing α for pileup suppression

In section 2, it was discussed that choosing α = 1 in the likelihood (eq. (2.3)) guarantees

IRC safety. With α = 1, the mGMM algorithm treats hard structure and soft structure

linearly in the particle or tower pT . However, one can exploit the fact that σ is dispropor-

tionately a measure of the shape and extent of the leading jet hard structure to make the

variable more resilient to the effects of pileup. In particular, choosing α > 1 stabilizes σ

at high nPU because so long as the average input particle pT due to pileup is significantly

smaller than the pT of the particles constituting the leading jet hard structure, the change

in likelihood will be suppressed roughly according to (pT,hs/pT,PU)α. An example of this

effect is illustrated in figure 11, which shows the same event as in figure 10. The price for

adjusting α is the loss of collinear safety. Varying α is not explored further, as section 5.2

demonstrates a method for dealing with pileup effectively that does not rely on moving α

away from the IRC safe value of one.
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Figure 10. mGMM jets defined according to section 2 with an isotropic kernel are broadened as

a result of the introduction of additional pp pileup vertices. The same hard scatter is clustered

twice, on the left with nPU = 0 and on the right with nPU = 40. Vertical dashed lines at η = ±2.5

show the extent of a simulated tracker with the same η extent as that used at ATLAS and CMS.

Charged pileup falling within the extent of the simulated tracker is discarded before clustering and

the aggregation of particles into towers.
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Figure 11. Clustering in the mGMM model with α = 2. There is little broadening between the

nPU = 0 (left) and nPU = 40 (right) cases, but jets at the locations of the tops in the event are

substantially narrower than in the case where α = 1, even with nPU = 0 (compare to figure 10).

Under the ML particle assignment, the α = 2 algorithm identifies the other top as the highest pT
jet in the event, demonstrating the difficulty in dealing with fuzzy jet kinematics.
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5.2 Tower subtraction and the event jet: effective pileup correction

Recent developments in pileup mitigation have led to several algorithms for correcting

jet inputs before jet clustering beings. Such techniques include Pileup Per Particle Iden-

tification (PUPPI), Constituent Subtraction, and SoftKiller [36–38]. One simple input-

correction scheme is to subtract from each calorimeter tower the estimated pileup pT den-

sity per unit area multiplied by the size of the tower in the detector. As a first step, ρ

is calculated in the same way as described in section 4.1. Tower momenta are then cor-

rected according to eq. (5.1), where pT,s is the corrected momentum, pT,o is the original

momentum, and A is the area of the tower.11 Even though this procedure undersubtracts,

it already mitigates a large amount of the impact of pileup (one reason a second step is

introduced, below). In this study, all towers have area 0.1× 0.1 in y-φ space.

pT,s = max (pT,o − ρA, 0) . (5.1)

While subtracting the average pT background from towers before clustering is a relatively

safe way of reducing the effect of pileup, at least when the pT scales of the tower to tower

fluctuations are small compared to the hard scatter pT scale, it would still be helpful to

systematically address the question of catchment areas. The mGMM clustering algorithm

provides a natural framework in which to think about pileup, however, because the algo-

rithm deals fundamentally with likelihoods, and the pileup likelihood is to leading order

uniform over the detector (this is the motivation for the area-subtraction technique). This is

the motivation for modifying the mGMM likelihood using a technique we call the event jet.

In addition to learning k mGMM jets throughout clustering, the event jet includes

another background contribution to the likelihood which attempts to capture the intuition

of a uniform contribution of particle likelihood due to pileup. Constraints are further

imposed on the likelihood on the event level jet so that it has constant likelihood during the

clustering process, making the necessary modifications to the algorithm procedures simpler.

Practically, the effect of the event jet can be parameterized through the introduction

of an algorithmic parameter γ. Particle membership probabilities change according to

eq. (5.2) with corresponding changes to the analytical M step for the Gaussian kernel type.

The choice of γ is important, and it should reflect the fact that not all events are created

equal in the sense that not all events have the same contributions due to pileup. Although

there is no strict way of dealing with this issue, it is reasonable to replace γ by a meaningful

combination of parameters which is sensitive to our estimates of the amount of pileup in

a particular event. We have chosen to take γ = ρAγw where ρ is our estimate of the pT
density due to pileup, A is the calorimeter area, and γw is a parameter of the algorithm

controlling the strength of the event jet. Initial studies with the event jet indicate that

introducing a ρ dependent γ is much more effective than a ρ independent one.

qij →
qij

γ +
∑

k pik
(5.2)

11A simple tower-based subtraction scheme is used here for illustration, but in principle the fuzzy-jet +

event-jet algorithm can run after the application of any tower-based or particle-based constituent pileup

subtraction technique.
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Figure 12. Jet correction using tower subtraction and the event jet with parameter γw = 0.01.

The two leading pT jets are almost identical in size in the left and right insets, which show the

nPU = 0 and nPU = 40 cases respectively. Although many of the other jets change (including

the migration of jets to higher |η| as a result of the simulated tracker), those that give the σ and

sub-leading σ variables are insensitive to the effect of pileup.

Studies of the pileup conditions similar to LHC Run I, with ∼ 20 pileup interactions,

indicate that with a 5 GeV pT cut, γw = 0.01 provides reasonable stability12 of the learned

σ. This is demonstrated qualitatively in figure 12, in which the tower and event jet cor-

rections are applied to the same event shown in figure 3 at both nPU = 0 and nPU = 40.

Unlike any of the methods discussed previously, this method for correction maintains IRC

safety, demonstrates very little jet broadening at nPU = 40, and is not drastically different

in its qualitative features by comparison to the standard mGMM algorithm. Note that the

assignment of towers to jets under the HML scheme is impacted with the event jet because

many towers belong to the event jet with higher probability than any of the other fuzzy

jets. In particular, under the HML scheme, a tower is assigned to the event jet and not

another jet if maxk pik < γ. To preserve tower-to-jet assignments under pileup, a smaller

value of γw should be chosen. The event jet is useful instead because it changes the dy-

namics of clustering, making jets less sensitive to soft radiation far away from the jet axis

during the EM update steps, and therefore increasing the stability of the hard core that is

eventually clustered.

A quantitative study of the pileup mitigation suggested qualitatively by figure 12

requires an ensemble of events. Figure 13 shows how the mean and standard deviation of

learned σ evolve with nPU. The uncorrected σ is shown in red downward pointing triangles

while the tower subtraction and event jet corrections are shown in blue upward pointing

12This particular value was ∼optimal for both the W ′ and Z′ signal processes and for nPU ranging from

0 to 40. The optimal value of γw does depend on the pT cut: changing the number of jets in the event

modifies the scale for the likelihood and γw operates by rescaling the likelihood.
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Figure 13. For both QCD and Z ′ → tt̄ samples, using the pileup correction (blue triangles) via the

event jet and tower subtraction stabilizes the mean relative to the uncorrected samples (red inverted

triangles), and prevents widening of the σ distribution in pileup conditions somewhat worse than

during Run 1 at the LHC.

triangles. For both Z ′ → tt̄ and QCD, the pileup dependence is dramatically reduced with

the tower subtraction and the event jet. The uncorrected mean σ increases as a function of

nPU as all of the fuzzy jets become the same size. The standard deviation of the uncorrected

σ actually decreases beyond nPU ∼ 5 as all of the fuzzy jets become the same size. For

modest levels of pileup, tower subtraction and event and the event jet maintain the mean

and standard deviation of the σ distribution.

6 Conclusions

The modified mixture model algorithms provide a new way of looking at whole event

structure. In contrast to the usual uses of hierarchical-agglomerative algorithms like anti-

kt, the number of seeds is fixed ahead of time and their properties are learned during the

clustering process. The learned parameters provide a new set of handles for distinguishing
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jets of different types. Even simple variables constructed out of the learned parameters

of a mixture of isotropic Gaussian jets, like σ, offer complementary information to the

n-subjettiness variables τ21 and τ32 for tagging W boson and top quark jets. Even though

the variable σ is sensitive to changes in pileup conditions, small modifications to the fuzzy

jets algorithm — correcting jet inputs and adding a pileup likelihood — can mitigate the

impact of pileup.

Fuzzy jets are new paradigm for jet clustering in high energy physics. These IRC safe

likelihood-based clustering schemes set the stage for many possibilities for future studies

related to jet tagging, probabilistic clustering, and pileup suppression.
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A Wrapped gaussian

In the EM algorithm described in section 3, there are explicit (and implicit) dependencies

on the topology. For instance, if a Gaussian density is used to model φ, then, in the E

step, a particle with φi near 2π will be deemed far from a cluster with location φj near 0.

To avoid this undesirable behavior and enforce the equivalence of the angles 0 and 2π, we

associate φ with a wrapped Gaussian density and y with a standard Gaussian density:

Φ(y, φ|µφ, µy, σ2) = Φy(y|µy, σ2)
1√

2πσ2

∞∑
I=−∞

exp

[
−(φ− µφ(I))2

2σ2

]
, (A.1)

where Φy is a normal distribution and µφ(I) = µφ + 2πI. In order to approximate the

sum in eq. (A.1), we take only the leading contribution by choosing µφ(I∗) for I∗ =

argminI′ |φ − µφ + 2πI ′|. As other contributions are exponentially suppressed, this is a

good approximation and recovers continuity near 0 and 2π. Figure 14 illustrates the im-

proved clustering behavior that results when φ is modeled using the wrapped Gaussian

approximation in place of the standard Gaussian density.

B The EM algorithm

This appendix contains two derivations: the modified EM algorithm updates in eq. (3.2)

and the proof that the modified EM algorithm generically improves the original modified

log likelihood eq. (2.3) with every iteration. Recall the expected modified complete log

likelihood (mmCLL) from eq. (3.1):

n∑
i=1

k∑
j=1

pαTi (qij log Φ(~ρi; ~µj ,Σj) + qij log πj) .
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Figure 14. A three-particle event display illustrating the results of fuzzy jet clustering using a

Gaussian density for φ (left) and a wrapped Gaussian density approximation for φ (right).

Viewing the mCLL as a function of ~µ,Σ and π for fixed λ and ~ρ we can maximize. For π,

we optimize

n∑
i=1

k∑
j=1

pαTi (qij log πj) + λ

 k∑
j=1

πj − 1

 ,

where the last term is needed so that the optimal π∗ is a probability. The derivative of

this expression with respect to πj is

πj = − 1

λ

n∑
i=1

pαTiqij ,

and then summing the equation over j and using
∑k

j=1 qij = 1 and the constraint equation∑k
j=1 πj = 1, we find that

π∗j =
1∑n

i=1 p
α
Ti

n∑
i=1

pαTiqij

The updates for ~µ and Σ follow from the standard derivation (by similarly taking derivatives

of the mCLL with respect to components of these multi-dimensional objects) by noting that

the only difference is that qij 7→ qijp
α
Ti and there are no Lagrange multipliers needed unlike

for π∗j .

Finally, we prove the claim that the modified EM algorithm described in the body of

the text monotonically improves the modified log likelihood in eq. (2.3). First, we note
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that we can rewrite the (log) likelihood as

pαT log p(ρ|θ) = pαT log

 ∑
λ∈{1,2,...,k}

p(ρ, λ; θ)


= pαT log

 ∑
λ∈{1,2,...,k}

q(λ)p(ρ, λ; θ)

q(λ)


= pαT logEq

[
p(ρ, λ; θ)

q(λ)

]
≥ Eq

[
pαT log

(
p(ρ, λ; θ)

q(λ)

)]
≡ L(q, θ),

where the inequality in the last line follows from Jensen’s inequality. Now, we are ready to

prove the claim that pαT p(ρ|θ(t)) improves monotonically with t, the index for the iteration

of the EM algorithm. First, note that

L(q, θ) = Eq
[
pαT log

(
p(ρ, λ; θ)

q(λ)

)]
= Eq [pαT log (p(ρ, λ; θ))]− Eq [pαT log (q(λ))] ,

where the first term is the mCLL and the second term has no θ dependance and so maximize

L(q, θ) over θ is equivalent to maximize the mCLL over θ. Therefore, L(q(t+1), θ(t)) ≤
L(q(t+1), θ(t+1)). By the inequality above, L(q(t+1), θ(t+1)) ≤ pαT p(ρ|θ(t+1)). The E step can

be recast as choosing

q(t+1)(λi = j) = qij(θ
(t)) = Eθ(t) [qij ] = p(λ|ρ, θ(t)).

This enforces:

L(p(λ|ρ, θ(t)), θ(t)) = Ep(λ|ρ,θ(t))

[
pαT log

(
p(ρ, λ; θ(t))

p(λ|ρ, θ(t))

)]
= Ep(λ|ρ,θ(t))

[
pαT log

(
p(ρ; θ(t))

)]
= pαT log

(
p(ρ; θ(t))

)
Putting this together with the bounds from the M step, we arrive at the desired result:

pαT p(ρ|θ(t)) ≤ pαT p(ρ|θ(t+1)), i.e., every step of the modified EM algorithm improves or leaves

the same the original likelihood.

C Controlling jet multiplicity with pT

In contrast to most uses of hierarchical-agglomerative clustering algorithms, the number of

fuzzy jets is fixed before clustering begins. Whereas a single traditional jet can reasonably

be considered to correspond to a parton in appropriate cases, mGMM jets should not be,

as several mGMM jets can together express structure of what would be one or several
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Figure 15. Changing the choice of the pT cut used to select seeds can make a vast difference in the

values of the constructed variables, like σ. In this event, clustered on the left with a cut of 5 GeV

resulting in five jets, and on the right with a cut of 50 GeV resulting four jets. Fewer degrees of

freedom in the four jet case means a much larger learned value for the σ variable.

jets according to another algorithm. The choice of the number of jets used in mGMM

jet clustering therefore controls the expressive power of the algorithm to look at the event

structure. In practice, choosing too many jets does not greatly affect the value of the

leading learned σ variable, because the additional jets learn finer features of the event

structure. On the other hand, choosing too few jets is often problematic as can be seen in

figure 15 — the fuzzy jets need to grow in order to cover the full energy distribution in the

event. Using anti-kt jets as seeds for fuzzy jets has the feature that the number of fuzzy jets

changes dynamically with the complexity of the event. The algorithm is not very sensitive

to the exact locations of the anti-kt jets — studies which randomly perturbed the initial

jet locations inside a disc of radius 1.0 found that σ was robust to such fluctuations, even

on an event by event basis. However, the pT threshold for the seed anti-kt jets can have a

significant impact on the fuzzy jets as this alters the number of seeds. The pT threshold for

the anti-kt seeds is typically lower than the pT threshold one would use to consider anti-kt
jets alone because the fuzzy jets algorithm needs enough seeds to populate the low energy

regions of the detector. One way of mitigating the impact of the pT cut on the fuzzy jet

clustering is to introduce an event jet, described in section 5.2.

D A leading order description of fuzzy jet σ

We have seen in section 4 that the fuzzy jet σ is correlated with ρ = m/pT . We can build

some intuition for this relationship by considering a leading order QCD calculation of σ.

Consider an isolated quark jet with energy E which radiates a gluon with angle θ � 1

from the jet axis and with energy fraction z � 1. Without loss of generality, suppose the
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quark is moving in the φ = 0 direction and the splitting happens in the φ = π/2 direction

so that the four vector of the quark is qµ = E(1− z)(1, 0, 0, 1), and the gluon four-vector is

gµ = Ez(1, θ, 0, 1), to leading order. To this order, the jet mass is simply m = Ezθ2. What

is σ? Consider k = 1 and something like the event-jet applied so that we can treat this jet

in isolation from other hadronic activity in the event. Since k = 1, the soft memberships

are all one, i.e., qi1 = 1 and there is only one step of the EM algorithm. The anti-kt jet

has (y, φ) coordinates (0, θ), which could be used for the seed, but since k = 1, the seed is

not used. The quark has coordinates (0, 0), and the gluon has coordinates (0, θ). We can

compute the fuzzy jet coordinates in the (single) M step:

µy = 0 (D.1)

µφ =
0× E(1− z) + θ × Ez

E(1− z) + Ez
= zθ (D.2)

σ2 =
(0− zθ)2 × E(1− z) + (θ − zθ)2 × Ez

2(E(1− z) + Ez)
(D.3)

= zθ2 +O(θ2z2). (D.4)

Therefore, to leading order and k = 1, the learned σ is the jet mass. For k = 2, there

are enough degrees of freedom to resolve the substructure of the hard splitting and so the

relationship between the jet mass and σ breaks down.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] ATLAS collaboration, Charged-particle multiplicities in pp interactions measured with the

ATLAS detector at the LHC, New J. Phys. 13 (2011) 053033 [arXiv:1012.5104] [INSPIRE].

[2] CMS collaboration, Charged particle multiplicities in pp interactions at
√
s = 0.9, 2.36 and 7

TeV, JHEP 01 (2011) 079 [arXiv:1011.5531] [INSPIRE].

[3] CMS collaboration, Performance of electron reconstruction and selection with the CMS

detector in proton-proton collisions at
√
s = 8 TeV, 2015 JINST 10 P06005

[arXiv:1502.02701] [INSPIRE].

[4] ATLAS collaboration, Electron and photon energy calibration with the ATLAS detector

using LHC Run 1 data, Eur. Phys. J. C 74 (2014) 3071 [arXiv:1407.5063] [INSPIRE].

[5] CMS collaboration, Performance of CMS muon reconstruction in pp collision events at√
s = 7 TeV, 2012 JINST 7 P10002 [arXiv:1206.4071] [INSPIRE].

[6] ATLAS collaboration, Measurement of the muon reconstruction performance of the ATLAS

detector using 2011 and 2012 LHC proton-proton collision data, Eur. Phys. J. C 74 (2014)

3130 [arXiv:1407.3935] [INSPIRE].

[7] S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys.

Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].

– 23 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1088/1367-2630/13/5/053033
http://arxiv.org/abs/1012.5104
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.5104
http://dx.doi.org/10.1007/JHEP01(2011)079
http://arxiv.org/abs/1011.5531
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5531
http://dx.doi.org/10.1088/1748-0221/10/06/P06005
http://arxiv.org/abs/1502.02701
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.02701
http://dx.doi.org/10.1140/epjc/s10052-014-3071-4
http://arxiv.org/abs/1407.5063
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.5063
http://dx.doi.org/10.1088/1748-0221/7/10/P10002
http://arxiv.org/abs/1206.4071
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.4071
http://dx.doi.org/10.1140/epjc/s10052-014-3130-x
http://dx.doi.org/10.1140/epjc/s10052-014-3130-x
http://arxiv.org/abs/1407.3935
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.3935
http://dx.doi.org/10.1103/PhysRevD.48.3160
http://dx.doi.org/10.1103/PhysRevD.48.3160
http://arxiv.org/abs/hep-ph/9305266
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9305266


J
H
E
P
0
6
(
2
0
1
6
)
0
1
0

[8] Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms,

JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].

[9] M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic

scattering, hep-ph/9907280 [INSPIRE].

[10] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008)

063 [arXiv:0802.1189] [INSPIRE].

[11] G.J. McLachlan and D. Peel, Finite mixture models, Wiley series in probability and

statistics. J. Wiley & Sons, New York U.S.A. (2000).

[12] G. Milligan and M. Cooper, An examination of procedures for determinig the number of

clusters in a data set, Psychometrika 50 (1985) 159.

[13] R. Tibshirani, G. Walther and T. Hastie, Estimating the number of clusters in a data set via

the gap statistic, J. R. Stat. Soc. B 63 (2001) 411.

[14] S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant Kt

clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].

[15] I.W. Stewart, F.J. Tackmann, J. Thaler, C.K. Vermilion and T.F. Wilkason, XCone:

N-jettiness as an exclusive cone jet algorithm, JHEP 11 (2015) 072 [arXiv:1508.01516]

[INSPIRE].

[16] J. Thaler and T.F. Wilkason, Resolving boosted jets with XCone, JHEP 12 (2015) 051

[arXiv:1508.01518] [INSPIRE].

[17] D.Yu. Grigoriev, E. Jankowski and F.V. Tkachov, Optimal jet finder, Comput. Phys.

Commun. 155 (2003) 42 [hep-ph/0301226] [INSPIRE].

[18] S.D. Ellis, A. Hornig, T.S. Roy, D. Krohn and M.D. Schwartz, Qjets: a non-deterministic

approach to tree-based jet substructure, Phys. Rev. Lett. 108 (2012) 182003

[arXiv:1201.1914] [INSPIRE].

[19] M. Cacciari and G.P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119

[arXiv:0707.1378] [INSPIRE].

[20] J.E. Huth et al., Snowmass 2001: Jet energy flow project, hep-ph/0202207.

[21] S.D. Ellis, J. Huston, K. Hatakeyama, P. Loch and M. Tonnesmann, Jets in hadron-hadron

collisions, Prog. Part. Nucl. Phys. 60 (2008) 484 [arXiv:0712.2447] [INSPIRE].

[22] H. Hartley, Maximum likelihood estimation from incomplete data, Biometrics 14 (1958) 174.

[23] A. Dempster, N. Laird and D. Rubin, Maximum likelihood from incomplete data via the EM

algorithm, J. Roy. Soc. Ser. B 39 (1977) 1.

[24] G. McLachlan and T. Krishnan, The EM algorithm and extensions, Wiley, New York U.S.A.

(1997).

[25] J. MacQueen, Some methods for classification and analysis of multivariate observations, in

the proceedings of the Berkeley symposium on mathematical statistics and probability,

University of California Press, Berkeley, U.S.A. (1967).
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[34] S. Jörg, A. Höcker, P. Speckmayer and H. Voss, Current developments in TMVA — An

outlook to TMVA4, PoS(ACAT08)063.

[35] A. Hocker et al., TMVA — Toolkit for Multivariate Data Analysis, PoS(ACAT)040

[physics/0703039] [INSPIRE].

[36] D. Bertolini, P. Harris, M. Low and N. Tran, Pileup per particle identification, JHEP 10

(2014) 059 [arXiv:1407.6013] [INSPIRE].

[37] P. Berta, M. Spousta, D.W. Miller and R. Leitner, Particle-level pileup subtraction for jets

and jet shapes, JHEP 06 (2014) 092 [arXiv:1403.3108] [INSPIRE].

[38] M. Cacciari, G.P. Salam and G. Soyez, SoftKiller, a particle-level pileup removal method,

Eur. Phys. J. C 75 (2015) 59 [arXiv:1407.0408] [INSPIRE].

– 25 –

http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
http://arxiv.org/abs/1111.6097
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.6097
http://dx.doi.org/10.1007/JHEP02(2010)084
http://arxiv.org/abs/0912.1342
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.1342
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://inspirehep.net/search?p=find+J+%22Chin.Phys.,C38,090001%22
http://dx.doi.org/10.1007/JHEP03(2011)015
http://dx.doi.org/10.1007/JHEP03(2011)015
http://arxiv.org/abs/1011.2268
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.2268
http://cds.cern.ch/record/1577417
http://cds.cern.ch/record/1690048
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(ACAT08)063
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(ACAT)040
http://arxiv.org/abs/physics/0703039
http://inspirehep.net/search?p=find+EPRINT+physics/0703039
http://dx.doi.org/10.1007/JHEP10(2014)059
http://dx.doi.org/10.1007/JHEP10(2014)059
http://arxiv.org/abs/1407.6013
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.6013
http://dx.doi.org/10.1007/JHEP06(2014)092
http://arxiv.org/abs/1403.3108
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.3108
http://dx.doi.org/10.1140/epjc/s10052-015-3267-2
http://arxiv.org/abs/1407.0408
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.0408

	Introduction
	Mixture model jets
	Clustering fuzzy jets: the EM algorithm
	Comparisons with sequential recombination and jet tagging
	Details of the simulation
	Kinematic properties of fuzzy jets
	New information from fuzzy jets
	Fuzzy jets for tagging

	Underlying event and pileup
	Changing alpha for pileup suppression
	Tower subtraction and the event jet: effective pileup correction

	Conclusions
	Wrapped gaussian
	The EM algorithm
	Controlling jet multiplicity with p(T)
	A leading order description of fuzzy jet sigma

